1
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Ziętek P, Chlubek D, Baranowska-Bosiacka I. Choline kinases: Enzymatic activity, involvement in cancer and other diseases, inhibitors. Int J Cancer 2025; 156:1314-1325. [PMID: 39660774 DOI: 10.1002/ijc.35286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
One of the aspects of tumor metabolism that distinguish it from healthy tissue is the phosphorylation of choline by choline kinases, which initiates the synthesis of phosphatidylcholine. Presently, there is a lack of comprehensive reviews discussing the current understanding of the role of choline kinase in cancer processes, as well as studies on the anti-tumor properties of choline kinase inhibitors. To address these gaps, this review delves into the enzymatic and non-enzymatic properties of CHKα and CHKβ and explores their precise involvement in cancer processes, particularly cancer cell proliferation. Additionally, we discuss clinical aspects of choline kinases in various tumor types, including pancreatic ductal adenocarcinoma, ovarian cancer, lung adenocarcinoma, lymphoma, leukemia, hepatocellular carcinoma, colon adenocarcinoma, and breast cancer. We examine the potential of CHKα inhibitors as anti-tumor drugs, although they are not yet in the clinical trial phase. Finally, the paper also touches upon the significance of choline kinases in non-cancerous diseases.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
Lu L, Li J, Liu L, Wang C, Xie Y, Yu X, Tian L. Grape seed extract prevents oestrogen deficiency-induced bone loss by modulating the gut microbiota and metabolites. Microb Biotechnol 2024; 17:e14485. [PMID: 38850270 PMCID: PMC11162104 DOI: 10.1111/1751-7915.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024] Open
Abstract
Proanthocyanidin-rich grape seed extract (GSE) has been shown to have the potential to protect bones, although the underlying mechanism remains unknown. The current study aims to explore GSE's preventive and therapeutic impact on bone loss induced by oestrogen deficiency and the underlying mechanism through the gut microbiota (GM) and metabolomic responses. In oestrogen-deficient ovariectomized (OVX) mice, GSE ameliorated bone loss by inhibiting the expansion of bone marrow adipose tissue (BMAT), restoring BMAT lipolysis and promoting bone formation. GSE regulated OVX-induced GM dysbiosis by reducing the abundance of opportunistic pathogenic bacteria, such as Alistipes, Turicibacter and Romboutsia, while elevating the abundance of beneficial bacteria, such as Bifidobacterium. The modified GM primarily impacted lipid and amino acid metabolism. Furthermore, the serum metabolites of GSE exhibited a significant enrichment in lipid metabolism. In summary, GSE shows potential as a functional food for preventing oestrogen deficiency-induced bone loss by modulating GM and metabolite-mediated lipid metabolism.
Collapse
Affiliation(s)
- Lingyun Lu
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China HospitalSichuan UniversityChengduChina
| | - Lu Liu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Cui Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Bragg MG, Prado EL, Caswell BL, Arnold CD, George M, Oakes LM, Beckner AG, DeBolt MC, Bennett BJ, Maleta KM, Stewart CP. The association between plasma choline, growth and neurodevelopment among Malawian children aged 6-15 months enroled in an egg intervention trial. MATERNAL & CHILD NUTRITION 2023; 19:e13471. [PMID: 36567549 PMCID: PMC10019050 DOI: 10.1111/mcn.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/27/2022]
Abstract
Choline is an essential micronutrient that may influence growth and development; however, few studies have examined postnatal choline status and children's growth and development in low- and middle-income countries. The aim of this observational analysis was to examine associations of plasma choline with growth and development among Malawian children aged 6-15 months enrolled in an egg intervention trial. Plasma choline and related metabolites (betaine, dimethylglycine and trimethylamine N-oxide) were measured at baseline and 6-month follow-up, along with anthropometric (length, weight, head circumference) and developmental assessments (the Malawi Developmental Assessment Tool [MDAT], the Infant Orienting with Attention task [IOWA], a visual paired comparison [VPC] task and an elicited imitation [EI] task). In cross-sectional covariate-adjusted models, each 1 SD higher plasma choline was associated with lower length-for-age z-score (-0.09 SD [95% confidence interval, CI -0.17 to -0.01]), slower IOWA response time (8.84 ms [1.66-16.03]) and faster processing speed on the VPC task (-203.5 ms [-366.2 to -40.7]). In predictive models, baseline plasma choline was negatively associated with MDAT fine motor z-score at 6-month follow-up (-0.13 SD [-0.22 to -0.04]). There were no other significant associations of plasma choline with child measures. Similarly, associations of choline metabolites with growth and development were null except higher trimethylamine N-oxide was associated with slower information processing on the VPC task and higher memory scores on the EI task. In this cohort of children with low dietary choline intake, we conclude that there were no strong or consistent associations between plasma choline and growth and development.
Collapse
Affiliation(s)
- Megan G. Bragg
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
- AJ Drexel Autism InstituteDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Bess L. Caswell
- USDA Western Human Nutrition Research CenterDavisCaliforniaUSA
| | - Charles D. Arnold
- Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Matthews George
- School of Public Health and Family MedicineKamuzu University of Health SciencesBlantyreMalawi
| | - Lisa M. Oakes
- Center for Mind and BrainUniversity of California DavisDavisCaliforniaUSA
| | - Aaron G. Beckner
- Center for Mind and BrainUniversity of California DavisDavisCaliforniaUSA
| | - Michaela C. DeBolt
- Center for Mind and BrainUniversity of California DavisDavisCaliforniaUSA
| | | | - Kenneth M. Maleta
- School of Public Health and Family MedicineKamuzu University of Health SciencesBlantyreMalawi
| | | |
Collapse
|
4
|
Xu J, Ma J, Zeng Y, Si H, Wu Y, Zhang S, Shen B. Transcriptome-wide association study identifies novel genes associated with bone mineral density and lean body mass in children. Endocrine 2023; 79:400-409. [PMID: 36572794 PMCID: PMC9892108 DOI: 10.1007/s12020-022-03225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/05/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To identify novel candidate genes whose expression is associated with bone mineral density (BMD) and body lean mass (LM) in children. METHODS A tissue-specific transcriptome-wide association study (TWAS) was conducted utilizing a large-scale genome-wide association study (GWAS) dataset associated with BMD and LM and involving 10,414 participants. The measurement of BMD and LM phenotypes was made based on total-body dual-energy X-ray absorptiometry (TB-DXA) scans. TWAS was conducted by using FUSION software. Reference panels for muscle skeleton (MS), peripheral blood (NBL) and whole blood (YBL) were used for TWAS analysis. Functional enrichment and protein-protein interaction (PPI) analyses of the genes identified by TWAS were performed by using the online tool Metascape ( http://metascape.org ). RESULTS For BMD, we identified 174 genes with P < 0.05, such as IKZF1 (P = 1.46 × 10-9) and CHKB (P = 8.31 × 10-7). For LM, we identified 208 genes with P < 0.05, such as COPS5 (P = 3.03 × 10-12) and MRPS33 (P = 5.45 × 10-10). Gene ontology (GO) enrichment analysis of the BMD-associated genes revealed 200 GO terms, such as protein catabolic process (Log P = -5.09) and steroid hormone-mediated signaling pathway (Log P = -3.13). GO enrichment analysis of the LM-associated genes detected 287 GO terms, such as the apoptotic signaling pathway (Log P = -8.08) and lipid storage (Log P = -3.55). CONCLUSION This study identified several candidate genes for BMD and LM in children, providing novel clues to the genetic mechanisms underlying the development of childhood BMD and LM.
Collapse
Affiliation(s)
- Jiawen Xu
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Jun Ma
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Haibo Si
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Shaoyun Zhang
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Bragg MG, Prado EL, Stewart CP. Choline and docosahexaenoic acid during the first 1000 days and children's health and development in low- and middle-income countries. Nutr Rev 2021; 80:656-676. [PMID: 34338760 PMCID: PMC8907485 DOI: 10.1093/nutrit/nuab050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Choline and DHA are nutrients that, when provided during the first 1000 days from conception to age 2 years, may have beneficial effects on child neurodevelopment as well as related health factors, including birth outcomes and child growth, morbidity, and inflammation. Because these nutrients are found mainly in animal-source foods, they may be lacking in the diets of pregnant and lactating women and young children in low- and middle-income countries, potentially putting children at risk for suboptimal development and health. Prior reviews of these nutrients have mainly focused on studies from high-income countries. Here, a narrative review is presented of studies describing the pre- and postnatal roles of choline, docosahexaenoic acid, and a combination of the 2 nutrients on child neurodevelopment, birth outcomes, growth, morbidity, and inflammation in low- and middle-income countries. More studies are needed to understand the specific, long-term effects of perinatal choline and docosahexaenoic acid intake in various contexts.
Collapse
Affiliation(s)
- Megan G Bragg
- M.G. Bragg, E.L. Prado, and C.P. Stewart are with the Institute for Global Nutrition, University of California Davis, Davis, California, United States
| | - Elizabeth L Prado
- M.G. Bragg, E.L. Prado, and C.P. Stewart are with the Institute for Global Nutrition, University of California Davis, Davis, California, United States
| | - Christine P Stewart
- M.G. Bragg, E.L. Prado, and C.P. Stewart are with the Institute for Global Nutrition, University of California Davis, Davis, California, United States
| |
Collapse
|
6
|
Lacal JC, Zimmerman T, Campos JM. Choline Kinase: An Unexpected Journey for a Precision Medicine Strategy in Human Diseases. Pharmaceutics 2021; 13:788. [PMID: 34070409 PMCID: PMC8226952 DOI: 10.3390/pharmaceutics13060788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Choline kinase (ChoK) is a cytosolic enzyme that catalyzes the phosphorylation of choline to form phosphorylcholine (PCho) in the presence of ATP and magnesium. ChoK is required for the synthesis of key membrane phospholipids and is involved in malignant transformation in a large variety of human tumours. Active compounds against ChoK have been identified and proposed as antitumor agents. The ChoK inhibitory and antiproliferative activities of symmetrical bispyridinium and bisquinolinium compounds have been defined using quantitative structure-activity relationships (QSARs) and structural parameters. The design strategy followed in the development of the most active molecules is presented. The selective anticancer activity of these structures is also described. One promising anticancer compound has even entered clinical trials. Recently, ChoKα inhibitors have also been proposed as a novel therapeutic approach against parasites, rheumatoid arthritis, inflammatory processes, and pathogenic bacteria. The evidence for ChoKα as a novel drug target for approaches in precision medicine is discussed.
Collapse
Affiliation(s)
- Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, 28046 Madrid, Spain
| | - Tahl Zimmerman
- Food Microbiology and Biotechnology Laboratory, Department of Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina University, 1601 East Market Street, Greensboro, NC 27411, USA;
| | - Joaquín M. Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/Campus de Cartuja, s/n, Universidad de Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), SAS-Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|
8
|
Li S, Liu Q, Wu D, He T, Yuan J, Qiu H, Tickner J, Zheng SG, Li X, Xu J, Rong L. PKC-δ deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast-osteoblast uncoupling. Cell Death Dis 2020; 11:762. [PMID: 32938907 PMCID: PMC7494897 DOI: 10.1038/s41419-020-02947-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
PKC-δ is an important molecule for B-cell proliferation and tolerance. B cells have long been recognized to play a part in osteoimmunology and pathological bone loss. However, the role of B cells with PKC-δ deficiency in bone homeostasis and the underlying mechanisms are unknown. We generated mice with PKC-δ deletion selectively in B cells by crossing PKC-δ-loxP mice with CD19-Cre mice. We studied their bone phenotype using micro-CT and histology. Next, immune organs were obtained and analyzed. Western blotting was used to determine the RANKL/OPG ratio in vitro in B-cell cultures, ELISA assay and immunohistochemistry were used to analyze in vivo RANKL/OPG balance in serum and bone sections respectively. Finally, we utilized osteoclastogenesis to study osteoclast function via hydroxyapatite resorption assay, and isolated primary calvaria osteoblasts to investigate osteoblast proliferation and differentiation. We also investigated osteoclast and osteoblast biology in co-culture with B-cell supernatants. We found that mice with PKC-δ deficiency in B cells displayed an osteopenia phenotype in the trabecular and cortical compartment of long bones. In addition, PKC-δ deletion resulted in changes of trabecular bone structure in association with activation of osteoclast bone resorption and decrease in osteoblast parameters. As expected, inactivation of PKC-δ in B cells resulted in changes in spleen B-cell number, function, and distribution. Consistently, the RANKL/OPG ratio was elevated remarkably in B-cell culture, in the serum and in bone specimens after loss of PKC-δ in B cells. Finally, in vitro analysis revealed that PKC-δ ablation suppressed osteoclast differentiation and function but co-culture with B-cell supernatant reversed the suppression effect, as well as impaired osteoblast proliferation and function, indicative of osteoclast–osteoblast uncoupling. In conclusion, PKC-δ plays an important role in the interplay between B cells in the immune system and bone cells in the pathogenesis of bone lytic diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Southern Medical University, Guangzhou Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| |
Collapse
|
9
|
Yu M, Wang Y, Zhang Y, Cui D, Gu G, Zhao D. Gallium ions promote osteoinduction of human and mouse osteoblasts via the TRPM7/Akt signaling pathway. Mol Med Rep 2020; 22:2741-2752. [PMID: 32945378 PMCID: PMC7453624 DOI: 10.3892/mmr.2020.11346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Gallium (Ga) ions have been widely utilized for biomedical applications; however, their role in osteoblast regulation is not completely understood. The aim of the present study was to investigate the potential effect of Ga ions on osteoinduction in two osteoblast cell lines and to explore the underlying mechanisms. Human hFOB1.19 and mouse MC3T3‑E1 osteoblasts were treated with Ga nitride (GaN) at different concentrations, and the degree of osteoinduction was assessed. Ga ion treatment was found to increase alkaline phosphatase activity and accelerate calcium nodule formation, as assessed using ALP activity assay and Alizarin red S staining. Moreover, upregulated expression levels of osteogenic proteins in osteoblasts were identified using western blotting and reverse transcription‑quantitative PCR. Western blotting was also performed to demonstrate that the biological action of Ga ions was closely associated with the transient receptor potential melastatin 7/Akt signaling pathway. Furthermore, it was found that Ga ions did not cause osteoblast apoptosis, as indicated via flow cytometry, but promoted osteoclast proliferation, migration or invasion. The present study investigated the potential role of Ga ions in regulating osteoinduction of osteoblasts, thereby providing a promising strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mingyang Yu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yunguang Wang
- Laboratory of Molecular Biology, Institute of Nuclear‑Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yao Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Daping Cui
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Guishan Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
10
|
Giallourou N, Fardus-Reid F, Panic G, Veselkov K, McCormick BJJ, Olortegui MP, Ahmed T, Mduma E, Yori PP, Mahfuz M, Svensen E, Ahmed MMM, Colston JM, Kosek MN, Swann JR. Metabolic maturation in the first 2 years of life in resource-constrained settings and its association with postnatal growths. SCIENCE ADVANCES 2020; 6:eaay5969. [PMID: 32284996 PMCID: PMC7141821 DOI: 10.1126/sciadv.aay5969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/14/2020] [Indexed: 05/10/2023]
Abstract
Malnutrition continues to affect the growth and development of millions of children worldwide, and chronic undernutrition has proven to be largely refractory to interventions. Improved understanding of metabolic development in infancy and how it differs in growth-constrained children may provide insights to inform more timely, targeted, and effective interventions. Here, the metabolome of healthy infants was compared to that of growth-constrained infants from three continents over the first 2 years of life to identify metabolic signatures of aging. Predictive models demonstrated that growth-constrained children lag in their metabolic maturity relative to their healthier peers and that metabolic maturity can predict growth 6 months into the future. Our results provide a metabolic framework from which future nutritional programs may be more precisely constructed and evaluated.
Collapse
Affiliation(s)
- N. Giallourou
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - F. Fardus-Reid
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - G. Panic
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - K. Veselkov
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | | | - M. P. Olortegui
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
| | - T. Ahmed
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - E. Mduma
- Haydom Global Health Institute, Haydom, Tanzania
| | - P. P. Yori
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - M. Mahfuz
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - E. Svensen
- Haydom Global Health Institute, Haydom, Tanzania
- Haukeland University Hospital, Bergen, Norway
| | - M. M. M. Ahmed
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - J. M. Colston
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - M. N. Kosek
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- Corresponding author.
| | - J. R. Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
11
|
Zhou B, Ichikawa R, Parnell LD, Noel SE, Zhang X, Bhupathiraju SN, Smith CE, Tucker KL, Ordovas JM, Lai CQ. Metabolomic Links between Sugar-Sweetened Beverage Intake and Obesity. J Obes 2020; 2020:7154738. [PMID: 32399287 PMCID: PMC7211252 DOI: 10.1155/2020/7154738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sugar-sweetened beverage (SSB) consumption is highly associated with obesity, but the metabolic mechanism underlying this correlation is not understood. OBJECTIVE Our objective was to examine metabolomic links between SSB intake and obesity to understand metabolic mechanisms. DESIGN We examined the association of plasma metabolomic profiles with SSB intake and obesity risk in 781 participants, aged 45-75 y, in the Boston Puerto Rican Health Study (BPRHS) using generalized linear models, controlling for potential confounding factors. Based on identified metabolites, we conducted pathway enrichment analysis to identify potential metabolic pathways that link SSB intake and obesity risk. Variants in genes encoding enzymes known to function in identified metabolic pathways were examined for their interactions with SSB intake on obesity. RESULTS SSB intake was correlated with BMI (β = 0.607, P=0.045). Among 526 measured metabolites, 86 showed a significant correlation with SSB intake and 148 with BMI (P ≤ 0.05); 28 were correlated with both SSB intake and BMI (P ≤ 0.05). Pathway enrichment analysis identified the phosphatidylcholine and lysophospholipid pathways as linking SSB intake to obesity, after correction for multiple testing. Furthermore, 8 of 10 genes functioning in these two pathways showed strong interaction with SSB intake on BMI. Our results further identified participants who may exhibit an increased risk of obesity when consuming SSB. CONCLUSIONS We identified two key metabolic pathways that link SSB intake to obesity, revealing the potential of phosphatidylcholine and lysophospholipid to modulate how SSB intake can increase obesity risk. The interaction between genetic variants related to these pathways and SSB intake on obesity further supports the mechanism.
Collapse
Affiliation(s)
- Bingjie Zhou
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Reiko Ichikawa
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Laurence D. Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Sabrina E. Noel
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Xiyuan Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Shilpa N. Bhupathiraju
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Caren E. Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Katherine L. Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
12
|
Kall SL, Whitlatch K, Smithgall TE, Lavie A. Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase. Sci Rep 2019; 9:17121. [PMID: 31745227 PMCID: PMC6864063 DOI: 10.1038/s41598-019-53447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Choline kinase alpha is a 457-residue protein that catalyzes the reaction between ATP and choline to yield ADP and phosphocholine. This metabolic action has been well studied because of choline kinase's link to cancer malignancy and poor patient prognosis. As the myriad of x-ray crystal structures available for this enzyme show, chemotherapeutic drug design has centered on stopping the catalytic activity of choline kinase and reducing the downstream metabolites it produces. Furthermore, these crystal structures only reveal the catalytic domain of the protein, residues 80-457. However, recent studies provide evidence for a non-catalytic protein-binding role for choline kinase alpha. Here, we show that choline kinase alpha interacts with the SH3 domain of c-Src. Co-precipitation assays, surface plasmon resonance, and crystallographic analysis of a 1.5 Å structure demonstrate that this interaction is specific and is mediated by the poly-proline region found N-terminal to the catalytic domain of choline kinase. Taken together, these data offer strong evidence that choline kinase alpha has a heretofore underappreciated role in protein-protein interactions, which offers an exciting new way to approach drug development against this cancer-enhancing protein.
Collapse
Affiliation(s)
- Stefanie L Kall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Kindra Whitlatch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.
- The Jesse Brown VA Medical Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
13
|
Yuan J, Tickner J, Mullin BH, Zhao J, Zeng Z, Morahan G, Xu J. Advanced Genetic Approaches in Discovery and Characterization of Genes Involved With Osteoporosis in Mouse and Human. Front Genet 2019; 10:288. [PMID: 31001327 PMCID: PMC6455049 DOI: 10.3389/fgene.2019.00288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a complex condition with contributions from, and interactions between, multiple genetic loci and environmental factors. This review summarizes key advances in the application of genetic approaches for the identification of osteoporosis susceptibility genes. Genome-wide linkage analysis (GWLA) is the classical approach for identification of genes that cause monogenic diseases; however, it has shown limited success for complex diseases like osteoporosis. In contrast, genome-wide association studies (GWAS) have successfully identified over 200 osteoporosis susceptibility loci with genome-wide significance, and have provided most of the candidate genes identified to date. Phenome-wide association studies (PheWAS) apply a phenotype-to-genotype approach which can be used to complement GWAS. PheWAS is capable of characterizing the association between osteoporosis and uncommon and rare genetic variants. Another alternative approach, whole genome sequencing (WGS), will enable the discovery of uncommon and rare genetic variants in osteoporosis. Meta-analysis with increasing statistical power can offer greater confidence in gene searching through the analysis of combined results across genetic studies. Recently, new approaches to gene discovery include animal phenotype based models such as the Collaborative Cross and ENU mutagenesis. Site-directed mutagenesis and genome editing tools such as CRISPR/Cas9, TALENs and ZNFs have been used in functional analysis of candidate genes in vitro and in vivo. These resources are revolutionizing the identification of osteoporosis susceptibility genes through the use of genetically defined inbred mouse libraries, which are screened for bone phenotypes that are then correlated with known genetic variation. Identification of osteoporosis-related susceptibility genes by genetic approaches enables further characterization of gene function in animal models, with the ultimate aim being the identification of novel therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zhiyu Zeng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
14
|
Goshu HA, Chu M, Xiaoyun W, Pengjia B, Zhi DX, Yan P. Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Mol Genet Genomics 2019; 294:549-561. [DOI: 10.1007/s00438-018-01530-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
|
15
|
Chen K, Tang P, Bao Z, He T, Xiang Y, Gong W, Yoshimura T, Le Y, Tessarollo L, Chen X, Wang JM. Deficiency in Fpr2 results in reduced numbers of Lin -cKit +Sca1 + myeloid progenitor cells. J Biol Chem 2018; 293:13452-13463. [PMID: 30018139 PMCID: PMC6120191 DOI: 10.1074/jbc.ra118.002683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The Lin-c-Kit+ Sca-1+ cell population in the bone marrow (BM) serves as the direct precursor for differentiation of myeloid cells. In this study, we report that deficiency in Fpr2, a G protein-coupled chemoattractant receptor in mice, is associated with reduced BM nucleated cells, including CD31+Ly6C+ (granulocytes and monocytes), CD31-/Ly6Cint (granuloid cells), and CD31-/Ly6Chigh (predominantly monocytes) cells. In particular, the number of Lin-c-Kit+Sca-1+ (LKS) cells was reduced in Fpr2-/- mouse BM. This was supported by observations of the reduced incorporation of intraperitoneally injected bromodeoxyuridine by cells in the c-Kit+ population from Fpr2-/- mouse BM. Purified c-Kit+ cells from Fpr2-/- mice showed reduced expansion when cultured in vitro with stem cell factor (SCF). SCF/c-Kit-mediated phosphorylation of P38, STAT1, Akt (Thr-308), and Akt (Ser-473) was also significantly reduced in c-Kit+ cells from Fpr2-/- mice. Furthermore, Fpr2 agonists enhanced SCF-induced proliferation of c-Kit+ cells. Colony-forming unit assays revealed that CFU-granulocyte-macrophage formation of BM cells from Fpr2-/- mice was significantly reduced. After heat-inactivated bacterial stimulation in the airway, the expansion of c-kit+ Sca-1+ cells in BM and recruitment of Ly6G+ cells to the lungs and CD11b+Ly6C+TNFα+ cells to the spleen of Fpr2-/- mice was significantly reduced. These results demonstrate an important role for Fpr2 in the development of myeloid lineage precursors in mouse BM.
Collapse
Affiliation(s)
| | - Peng Tang
- From the Cancer and Inflammation Program and
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhiyao Bao
- From the Cancer and Inflammation Program and
- the Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Tianzhen He
- the State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yi Xiang
- the Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wanghua Gong
- the Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Teizo Yoshimura
- the Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan, and
| | - Yingying Le
- the Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Xin Chen
- the State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | | |
Collapse
|
16
|
Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients 2018; 10:nu10040417. [PMID: 29597262 PMCID: PMC5946202 DOI: 10.3390/nu10040417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Collapse
Affiliation(s)
| | - Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY 11210, USA.
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
17
|
Cheng J, Zhou L, Liu Q, Tickner J, Tan Z, Li X, Liu M, Lin X, Wang T, Pavlos NJ, Zhao J, Xu J. Cyanidin Chloride inhibits ovariectomy-induced osteoporosis by suppressing RANKL-mediated osteoclastogenesis and associated signaling pathways. J Cell Physiol 2018; 233:2502-2512. [PMID: 28771720 DOI: 10.1002/jcp.26126] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
Abstract
Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk, and trap. Further investigation revealed that Cyanidin Chloride inhibits RANKL-induced NF-κB activation, suppresses the degradation of IκB-α and attenuates the phosphorylation of extracellular signal-regulated kinases (ERK). In addition, Cyanidin Chloride abrogated RANKL-induced calcium oscillations, the activation of nuclear factor of activated T cells calcineurin-dependent 1 (NFATc1), and the expression of c-Fos. Further, we showed that Cyanidin Chloride protects against ovariectomy-induced bone loss in vivo. Together our findings suggest that Cyanidin Chloride is capable of inhibiting osteoclast formation, hydroxyapatite resorption and RANKL-induced signal pathways in vitro and OVX-induced bone loss in vivo, and thus might have therapeutic potential for osteolytic diseases.
Collapse
Affiliation(s)
- Jianwen Cheng
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhen Tan
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaofeng Li
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xixi Lin
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Tao Wang
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Nathan J Pavlos
- School of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Jinmin Zhao
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Guangxi, China
| | - Jiake Xu
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Abstract
High content imaging-based cell cycle analysis allows multiplexing of various parameters including DNA content, DNA synthesis, cell proliferation, and other cell cycle markers such as phosho-histone H3. 5'-Ethynyl-2'-deoxyuridine (EdU) incorporation is a thymidine analog that provides a sensitive method for the detection of DNA synthesis in proliferating cells that is a more convenient method than the traditional BrdU detection by antibody. Caspase 3 is activated in programmed cell death induced by both intrinsic (mitochondrial) and extrinsic factors (death ligand). Cell cycle and apoptosis are common parameters studied in the phenotypic analysis of compound toxicity and anti-cancer drugs. In this chapter, we describe methods for the detection of s-phase cell cycle progression by EdU incorporation, and caspase 3 activation using the CellEvent caspase 3/7 detection reagent.
Collapse
|
19
|
Jacobs RL, Jiang H, Kennelly JP, Orlicky DJ, Allen RH, Stabler SP, Maclean KN. Cystathionine beta-synthase deficiency alters hepatic phospholipid and choline metabolism: Post-translational repression of phosphatidylethanolamine N-methyltransferase is a consequence rather than a cause of liver injury in homocystinuria. Mol Genet Metab 2017; 120:325-336. [PMID: 28291718 DOI: 10.1016/j.ymgme.2017.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Classical homocystinuria (HCU) due to inactivating mutation of cystathionine β-synthase (CBS) is a poorly understood life-threatening inborn error of sulfur metabolism. A previously described cbs-/- mouse model exhibits a semi-lethal phenotype due to neonatal liver failure. The transgenic HO mouse model of HCU exhibits only mild liver injury and recapitulates multiple aspects of the disease as it occurs in humans. Disruption of the methionine cycle in HCU has the potential to impact multiple aspect of phospholipid (PL) metabolism by disruption of both the Kennedy pathway and phosphatidylethanolamine N-methyltransferase (PEMT) mediated synthesis of phosphatidylcholine (PC). Comparative metabolomic analysis of HO mouse liver revealed decreased levels of choline, and choline phosphate indicating disruption of the Kennedy pathway. Alterations in the relative levels of multiple species of PL included significant increases in PL degradation products consistent with enhanced membrane PL turnover. A significant decrease in PC containing 20:4n6 which primarily formed by the methylation of phosphatidylethanolamine to PC was consistent with decreased flux through PEMT. Hepatic expression of PEMT in both the cbs-/- and HO models is post-translationally repressed with decreased levels of PEMT protein and activity that inversely-correlates with the scale of liver injury. Failure to induce further repression of PEMT in HO mice by increased homocysteine, methionine and S-adenosylhomocysteine or depletion of glutathione combined with examination of multiple homocysteine-independent models of liver injury indicated that repression of PEMT in HCU is a consequence rather than a cause of liver injury. Collectively, our data show significant alteration of a broad range of hepatic PL and choline metabolism in HCU with the potential to contribute to multiple aspects of pathogenesis in this disease.
Collapse
Affiliation(s)
- René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G2E1, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John P Kennelly
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G2E1, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Robert H Allen
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Chen X, Qiu H, Wang C, Yuan Y, Tickner J, Xu J, Zou J. Molecular structure and differential function of choline kinases CHKα and CHKβ in musculoskeletal system and cancer. Cytokine Growth Factor Rev 2016; 33:65-72. [PMID: 27769579 DOI: 10.1016/j.cytogfr.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Choline, a hydrophilic cation, has versatile physiological roles throughout the body, including cholinergic neurotransmission, memory consolidation and membrane biosynthesis and metabolism. Choline kinases possess enzyme activity that catalyses the conversion of choline to phosphocholine, which is further converted to cytidine diphosphate-coline (CDP-choline) in the biosynthesis of phosphatidylcholine (PC). PC is a major constituent of the phospholipid bilayer which constitutes the eukaryotic cell membrane, and regulates cell signal transduction. Choline Kinase consists of three isoforms, CHKα1, CHKα2 and CHKβ, encoded by two separate genes (CHKA(Human)/Chka(Mouse) and CHKB(Human)/Chkb(Mouse)). Both isoforms have similar structures and enzyme activity, but display some distinct molecular structural domains and differential tissue expression patterns. Whilst Choline Kinase was discovered in early 1950, its pivotal role in the development of muscular dystrophy, bone deformities, and cancer has only recently been identified. CHKα has been proposed as a cancer biomarker and its inhibition as an anti-cancer therapy. In contrast, restoration of CHKβ deficiency through CDP-choline supplements like citicoline may be beneficial for the treatment of muscular dystrophy, bone metabolic diseases, and cognitive conditions. The molecular structure and expression pattern of Choline Kinase, the differential roles of Choline Kinase isoforms and their potential as novel therapeutic targets for muscular dystrophy, bone deformities, cognitive conditions and cancer are discussed.
Collapse
Affiliation(s)
- Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Sports Science, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Heng Qiu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Chao Wang
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jiake Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia.
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
21
|
Semba RD, Zhang P, Gonzalez-Freire M, Moaddel R, Trehan I, Maleta KM, Ordiz MI, Ferrucci L, Manary MJ. The association of serum choline with linear growth failure in young children from rural Malawi. Am J Clin Nutr 2016; 104:191-7. [PMID: 27281303 PMCID: PMC4919529 DOI: 10.3945/ajcn.115.129684] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Choline is an essential nutrient for cell structure, cell signaling, neurotransmission, lipid transport, and bone formation. Choline can be irreversibly converted to betaine, a major source of methyl groups. Trimethylene N-oxide (TMAO), a proatherogenic molecule, is produced from the metabolism of dietary choline by the gut microbiome. The relation between serum choline and its closely related metabolites with linear growth in children is unknown. OBJECTIVE The aim was to characterize the relation between serum choline and its closely related metabolites, betaine and TMAO, with linear growth and stunting in young children. DESIGN We measured serum choline, betaine, and TMAO concentrations by using liquid chromatography isotopic dilution tandem mass spectrometry in a cross-sectional study in 325 Malawian children, aged 12-59 mo, of whom 62% were stunted. RESULTS Median (25th, 75th percentile) serum choline, betaine, and TMAO concentrations were 6.4 (4.8, 8.3), 12.4 (9.1, 16.3), and 1.2 (0.7, 1.8) μmol/L, respectively. Spearman correlation coefficients of age with serum choline, betaine, and TMAO were -0.57 (P < 0.0001), -0.26 (P < 0.0001), and -0.10 (P = 0.07), respectively. Correlation coefficients of height-for-age z score with serum choline, betaine-to-choline ratio, and TMAO-to-choline ratio were 0.31 (P < 0.0001), -0.24 (P < 0.0001), and -0.29 (P < 0.0001), respectively. Serum choline concentrations were strongly and significantly associated with stunting. Children with and without stunting had median (25th, 75th percentile) serum choline concentrations of 5.6 (4.4, 7.4) and 7.3 (5.9, 9.1) μmol/L (P < 0.0001). CONCLUSIONS Linear growth failure in young children is associated with low serum choline and elevated betaine-to-choline and TMAO-to-choline ratios. Further work is needed to understand whether low dietary choline intake explains low circulating choline among stunted children living in low-income countries and whether increasing choline intake may correct choline deficiency and improve growth and development. This trial was registered in the ISRCTN registry (www.isrctn.com) as ISRCTN14597012.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO; and Departments of Community Health and Pediatrics and Child Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kenneth M Maleta
- Community Health and Pediatrics and Child Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO; and Departments of
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO; and Departments of Community Health and Pediatrics and Child Health, University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
22
|
Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016; 87:147-58. [PMID: 27072517 DOI: 10.1016/j.bone.2016.04.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.
Collapse
Affiliation(s)
- L Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK.
| | - D A Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - C Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - V E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
23
|
Chang CC, Few LL, Konrad M, See Too WC. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition. PLoS One 2016; 11:e0154702. [PMID: 27149373 PMCID: PMC4858151 DOI: 10.1371/journal.pone.0154702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis.
Collapse
Affiliation(s)
- Ching Ching Chang
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, 37077, Goettingen, Germany
- * E-mail: (WCST); (MK)
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- * E-mail: (WCST); (MK)
| |
Collapse
|
24
|
Chan ASM, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD, Collins BM, Pavlos NJ. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol Biol Cell 2016; 27:1367-82. [PMID: 26912788 PMCID: PMC4831889 DOI: 10.1091/mbc.e15-12-0851] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
The parathyroid hormone 1 receptor (PTHR) is central to the process of bone formation and remodeling. PTHR signaling requires receptor internalization into endosomes, which is then terminated by recycling or degradation. Here we show that sorting nexin 27 (SNX27) functions as an adaptor that couples PTHR to the retromer trafficking complex. SNX27 binds directly to the C-terminal PDZ-binding motif of PTHR, wiring it to retromer for endosomal sorting. The structure of SNX27 bound to the PTHR motif reveals a high-affinity interface involving conserved electrostatic interactions. Mechanistically, depletion of SNX27 or retromer augments intracellular PTHR signaling in endosomes. Osteoblasts genetically lacking SNX27 show similar disruptions in PTHR signaling and greatly reduced capacity for bone mineralization, contributing to profound skeletal deficits in SNX27-knockout mice. Taken together, our data support a critical role for SNX27-retromer mediated transport of PTHR in normal bone development.
Collapse
Affiliation(s)
- Audrey S M Chan
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Euphemie Landao-Bassonga
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Genevieve Kinna
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Pei Ying Ng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Li Shen Loo
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Tak Sum Cheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Minghao Zheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Nathan J Pavlos
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
25
|
Semba RD, Shardell M, Sakr Ashour FA, Moaddel R, Trehan I, Maleta KM, Ordiz MI, Kraemer K, Khadeer MA, Ferrucci L, Manary MJ. Child Stunting is Associated with Low Circulating Essential Amino Acids. EBioMedicine 2016; 6:246-252. [PMID: 27211567 PMCID: PMC4856740 DOI: 10.1016/j.ebiom.2016.02.030] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
Background Stunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of children. Methods We used a targeted metabolomics approach to measure serum amino acids, glycerophospholipids, sphingolipids, and other metabolites using liquid chromatography-tandem mass spectrometry in 313 children, aged 12–59 months, from rural Malawi. Children underwent anthropometry. Findings Sixty-two percent of the children were stunted. Children with stunting had lower serum concentrations of all nine essential amino acids (tryptophan, isoleucine, leucine, valine, methionine, threonine, histidine, phenylalanine, lysine) compared with nonstunted children (p < 0.01). In addition, stunted children had significantly lower serum concentrations of conditionally essential amino acids (arginine, glycine, glutamine), non-essential amino acids (asparagine, glutamate, serine), and six different sphingolipids compared with nonstunted children. Stunting was also associated with alterations in serum glycerophospholipid concentrations. Interpretation Our findings support the idea that children with a high risk of stunting may not be receiving an adequate dietary intake of essential amino acids and choline, an essential nutrient for the synthesis of sphingolipids and glycerophospholipids. We used metabolomics and mass spectrometry to gain insight into nutrition of stunted children. Stunted children in rural Africa had low circulating levels of essential amino acids. Children at risk of stunting may not have an adequate dietary intake of essential amino acids.
Worldwide, one-quarter of children under five years are short for their age (stunted), indicative of chronic malnutrition. Lipid-based nutrient supplements containing micronutrients have little to no effect in reducing child stunting. We examined the relationship between circulating metabolites with stunting in young children in Africa. Stunted children had lower serum levels of all nine essential amino acids compared with non-stunted children. These results challenge the widespread assumption that protein intake is adequate among young children in developing countries. The findings support the idea that children at high risk of stunting are not receiving adequate dietary intake of essential amino acids.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Michelle Shardell
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Fayrouz A Sakr Ashour
- Department of Nutrition & Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kenneth M Maleta
- School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mohammed A Khadeer
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|