1
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
2
|
Young PS, Greer AIM, Smith CA, Silverwood RK, Tsimbouri PM, Meek D, Goodyear C, Gadegaard N, Dalby MJ. Titanium Surface Synergy: Strontium Incorporation and Controlled Disorder Nanotopography Optimize Osteoinduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63129-63141. [PMID: 39509174 DOI: 10.1021/acsami.4c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Osteoporotic fractures and arthritis represent a major socioeconomic health burden. Fragility fracture fixation and joint replacement are often undertaken using titanium (Ti) or Ti alloy implants. Ideally these should induce bone formation and reduce osteoclast formation. Nanoscale topographies are potent inducers of osteogenesis, and strontium (Sr) has both osteogenic and antiosteoclastic effects. We incorporated strontium into a titanium surface with an osteogenic disordered nanoscale topography. The surface comprises 120 nm diameter, 100 nm deep pits in a near-square order with deliberate offset from the center pit position up to ±50 nm, providing a pattern with an average center-center pit spacing of 300 nm (called near-square 50, NSQ50). Several surfaces were assessed, including NSQ50 alone, strontium incorporated alone, and combined, compared with control surfaces. We assessed the surfaces using a human bone marrow stromal cell (BMSC)/ bone marrow hematopoietic cell (BHSC) coculture capable of osteogenesis and osteoclastogenesis. The samples eluted Sr over long-term culture, and uptake of Sr was better with eluted Sr than with Sr added to the culture media. The NSQ50 pattern in Ti was osteogenic, and addition of Sr elution increased osteogenesis further for both flat and NSQ50 samples. Interestingly, BMSCs on all Ti samples did not secrete the receptor activator of nuclear factor kappa-Β ligand (RANKL) or macrophage colony-stimulating factor (M-CSF) while secreting osteoprotegrin (OPG) at high levels. This meant that no osteoclast formation was observed on any Ti surface. Therefore, using Sr-incorporated nanotopographical imprinting, we generated highly osteogenic Ti surfaces that inhibited osteoclast formation.
Collapse
Affiliation(s)
- Peter S Young
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- Department of Trauma and Orthopaedics, University Hospital Ayr, Ayr, KA6 6DX, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Andrew I M Greer
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, U.K
| | - Carol-Anne Smith
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Robert K Silverwood
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Dominic Meek
- Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow G51 4TF, Scotland, U.K
| | - Carl Goodyear
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, U.K
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| |
Collapse
|
3
|
Janssen JN, Kalev-Altman R, Shalit T, Sela-Donenfeld D, Monsonego-Ornan E. Differential gene expression in the calvarial and cortical bone of juvenile female mice. Front Endocrinol (Lausanne) 2023; 14:1127536. [PMID: 37378024 PMCID: PMC10291685 DOI: 10.3389/fendo.2023.1127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.
Collapse
Affiliation(s)
- Jerome Nicolas Janssen
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Kalev-Altman
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Shalit
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Li X, Kaur N, Albahrani M, Karpf AR, Black AR, Black JD. Crosstalk between protein kinase C α and transforming growth factor β signaling mediated by Runx2 in intestinal epithelial cells. J Biol Chem 2023; 299:103017. [PMID: 36791912 PMCID: PMC10036670 DOI: 10.1016/j.jbc.2023.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Tight coordination of growth regulatory signaling is required for intestinal epithelial homeostasis. Protein kinase C α (PKCα) and transforming growth factor β (TGFβ) are negative regulators of proliferation with tumor suppressor properties in the intestine. Here, we identify novel crosstalk between PKCα and TGFβ signaling. RNA-Seq analysis of nontransformed intestinal crypt-like cells and colorectal cancer cells identified TGFβ receptor 1 (TGFβR1) as a target of PKCα signaling. RT-PCR and immunoblot analysis confirmed that PKCα positively regulates TGFβR1 mRNA and protein expression in these cells. Effects on TGFβR1 were dependent on Ras-extracellular signal-regulated kinase 1/2 (ERK) signaling. Nascent RNA and promoter-reporter analysis indicated that PKCα induces TGFβR1 transcription, and Runx2 was identified as an essential mediator of the effect. PKCα promoted ERK-mediated activating phosphorylation of Runx2, which preceded transcriptional activation of the TGFβR1 gene and induction of Runx2 expression. Thus, we have identified a novel PKCα→ERK→Runx2→TGFβR1 signaling axis. In further support of a link between PKCα and TGFβ signaling, PKCα knockdown reduced the ability of TGFβ to induce SMAD2 phosphorylation and cell cycle arrest, and inhibition of TGFβR1 decreased PKCα-induced upregulation of p21Cip1 and p27Kip1 in intestinal cells. The physiological relevance of these findings is also supported by The Cancer Genome Atlas data showing correlation between PKCα, Runx2, and TGFβR1 mRNA expression in human colorectal cancer. PKCα also regulated TGFβR1 in endometrial cancer cells, and PKCα, Runx2, and TGFβR1 expression correlates in uterine tumors, indicating that crosstalk between PKCα and TGFβ signaling may be a common mechanism in diverse epithelial tissues.
Collapse
Affiliation(s)
- Xinyue Li
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Navneet Kaur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mustafa Albahrani
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
5
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
6
|
Heuschkel MA, Babler A, Heyn J, van der Vorst EPC, Steenman M, Gesper M, Kappel BA, Magne D, Gouëffic Y, Kramann R, Jahnen-Dechent W, Marx N, Quillard T, Goettsch C. Distinct role of mitochondrial function and protein kinase C in intimal and medial calcification in vitro. Front Cardiovasc Med 2022; 9:959457. [PMID: 36204585 PMCID: PMC9530266 DOI: 10.3389/fcvm.2022.959457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Vascular calcification (VC) is a major risk factor for cardiovascular morbidity and mortality. Depending on the location of mineral deposition within the arterial wall, VC is classified as intimal and medial calcification. Using in vitro mineralization assays, we developed protocols triggering both types of calcification in vascular smooth muscle cells (SMCs) following diverging molecular pathways. Materials and methods and results Human coronary artery SMCs were cultured in osteogenic medium (OM) or high calcium phosphate medium (CaP) to induce a mineralized extracellular matrix. OM induces osteoblast-like differentiation of SMCs-a key process in intimal calcification during atherosclerotic plaque remodeling. CaP mimics hyperphosphatemia, associated with chronic kidney disease-a risk factor for medial calcification. Transcriptomic analysis revealed distinct gene expression profiles of OM and CaP-calcifying SMCs. OM and CaP-treated SMCs shared 107 differentially regulated genes related to SMC contraction and metabolism. Real-time extracellular efflux analysis demonstrated decreased mitochondrial respiration and glycolysis in CaP-treated SMCs compared to increased mitochondrial respiration without altered glycolysis in OM-treated SMCs. Subsequent kinome and in silico drug repurposing analysis (Connectivity Map) suggested a distinct role of protein kinase C (PKC). In vitro validation experiments demonstrated that the PKC activators prostratin and ingenol reduced calcification triggered by OM and promoted calcification triggered by CaP. Conclusion Our direct comparison results of two in vitro calcification models strengthen previous observations of distinct intracellular mechanisms that trigger OM and CaP-induced SMC calcification in vitro. We found a differential role of PKC in OM and CaP-calcified SMCs providing new potential cellular and molecular targets for pharmacological intervention in VC. Our data suggest that the field should limit the generalization of results found in in vitro studies using different calcification protocols.
Collapse
Affiliation(s)
- Marina A. Heuschkel
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Jonas Heyn
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research, Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja Steenman
- L’institut Du Thorax, Inserm UMR 1087, CNRS, INSERM, France and Nantes Université, Nantes, France
| | - Maren Gesper
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ben A. Kappel
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Magne
- ICBMS UMR CNRS 5246, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Yann Gouëffic
- Department of Vascular Surgery, Vascular Center, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, University Hospital, RWTH Aachen, Aachen, Germany
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thibaut Quillard
- L’institut Du Thorax, Inserm UMR 1087, CNRS, INSERM, France and Nantes Université, Nantes, France
- PHY-OS Laboratory, INSERM UMR 1238, Nantes University of Medicine, Nantes, France
| | - Claudia Goettsch
- Department of Internal Medicine I–Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Kinoshita M, Yamada A, Sasa K, Ikezaki K, Shirota T, Kamijo R. Phorbol-12-myristate 13-acetate inhibits Nephronectin gene expression via Protein kinase C alpha and c-Jun/c-Fos transcription factors. Sci Rep 2021; 11:20360. [PMID: 34645824 PMCID: PMC8514542 DOI: 10.1038/s41598-021-00034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Nephronectin (Npnt) is an extracellular matrix protein and ligand of integrin α8β1 known to promote differentiation of osteoblasts. A search for factors that regulate Npnt gene expression in osteoblasts revealed that phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), had a strong effect to suppress that expression. Research was then conducted to elucidate the signaling pathway responsible for regulation of Npnt gene expression by PMA in osteoblasts. Treatment of MC3T3-E1 cells with PMA suppressed cell differentiation and Npnt gene expression. Effects were noted at a low concentration of PMA, and were time- and dose-dependent. Furthermore, treatment with the PKC signal inhibitor Gö6983 inhibited down-regulation of Npnt expression, while transfection with small interfering RNA (siRNA) of PKCα, c-Jun, and c-Fos suppressed that down-regulation. The present results suggest regulation of Npnt gene expression via the PKCα and c-Jun/c-Fos pathway.
Collapse
Affiliation(s)
- Mitsuhiro Kinoshita
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Kiyohito Sasa
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kaori Ikezaki
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
8
|
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Res Ther 2021; 12:242. [PMID: 33853677 PMCID: PMC8048169 DOI: 10.1186/s13287-021-02313-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human dental follicle cells (DFCs) are the precursor cells of the periodontium with a high potential for regenerative therapies of (alveolar) bone. However, the molecular mechanisms of osteogenic differentiation are inadequately understood. Classical isoforms of protein kinase C (PKC) are reported to inhibit osteogenesis of stem/precursor cells. This study evaluated the role of classical PKCs and potential downstream targets on the osteogenic differentiation of DFCs. METHODS DFCs were osteogenic differentiated with dexamethasone or bone morphogenetic protein 2 (BMP2). Expression of PKC and potential upstream/downstream regulators was manipulated using activators, inhibitors, and small interfering ribonucleic acid (siRNA). Expression of proteins was examined by Western blot analysis, while the activation levels of enzymes and transcription factors were examined by their phosphorylation states or by specific activation assays. Expression levels of osteogenic markers were examined by RT-qPCR (reverse transcription-quantitative polymerase chain reaction) analysis. Activity of alkaline phosphatase (ALP) and accumulation of calcium nodules by Alizarin Red staining were measured as indicators of mineralization. RESULTS Classical PKCs like PKCα inhibit the osteogenic differentiation of DFCs, but do not interfere with the induction of differentiation. Inhibition of classical PKCs by Gö6976 enhanced activity of Akt after osteogenic induction. Akt was also regulated during differentiation and especially disturbed BMP2-induced mineralization. The PKC/Akt axis was further shown to regulate the canonical Wnt signaling pathway and eventually nuclear expression of active β-catenin during dexamethasone-induced osteogenesis. Moreover, the nuclear factor "kappa-light-chain-enhancer" of activated B cells (NF-κB) pathway is regulated during osteogenic differentiation of DFCs and via the PKC/Akt axis and disturbs the mineralization. Upstream, parathyroid hormone-related protein (PTHrP) sustained the activity of PKC, while Wnt5a inhibited it. CONCLUSIONS Our results demonstrate that classical PKCs like PKCα and Akt regulate the osteogenic differentiation of DFCs partly via both β-catenin and NF-κB.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Mapping Regional Cortical Bone Responses to Local Changes in Loading and Systemic Stimuli. Methods Mol Biol 2021. [PMID: 32979209 DOI: 10.1007/978-1-0716-0989-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Quantification of cortical bone mass and architecture using μCT is commonplace in osteoporosis and osteoarthritis research. Different groups often report substantially divergent mouse cortical bone responses to nominally comparable interventions. In the case of studies assessing bones' responses to externally applied loading, these differences are commonly associated with methodological differences in the loading regime. This chapter describes a widely published, standardized method of in vivo mouse tibia axial loading to produce lamellar bone formation. Despite uniform application of axial loading, changes in bone mass are highly site-specific within individual bones. For example, the mouse proximal tibia rapidly accrues new bone following axial loading, but this osteogenic response tapers to produce undetectable differences distally. Consequently, the bone sites selected for comparisons substantially influence the magnitude of differences observed. Application of the freely available Site Specificity software allows site-specific responses to be identified by rapidly quantifying cortical bone mass at each 1% site along the bone's length. This high-content screening tool has been informatively applied to study the local effects of changes in loading as well as systemic interventions including hormonal treatment and aging. Automated multisite analyses of cortical mass is increasingly identifying site-specific effects of "systemic" interventions such as global gene deletions. Biological mechanisms underlying this apparent regionalization of cortical responses are largely unknown but may start to be elucidated by increasingly widespread application of Site Specificity methods.
Collapse
|
10
|
Yu F, Xu C, Deng HW, Shen H. A novel computational strategy for DNA methylation imputation using mixture regression model (MRM). BMC Bioinformatics 2020; 21:552. [PMID: 33261550 PMCID: PMC7708217 DOI: 10.1186/s12859-020-03865-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. RESULTS We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. CONCLUSIONS Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
Collapse
Affiliation(s)
- Fangtang Yu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Chao Xu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Tan GH, Li JZ, Zhang YY, You MF, Liao CM, Zhang YG. Association of PRKCA expression and polymorphisms with layer duck eggshell quality. Br Poult Sci 2020; 62:8-16. [PMID: 32893664 DOI: 10.1080/00071668.2020.1817329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. Eggshell quality is important for the poultry industry. Calcium is deposited during eggshell formation, and protein kinase C alpha (PRKCA) is involved in transmembrane transport of calcium ions in cells. However, the biological function of PRKCA in poultry is still not understood. Therefore, the aim of this study was to explore the association of mRNA expression and single nucleotide polymorphisms (SNPs) of the PRKCA gene with eggshell quality in laying ducks. 2. The mRNA expression and SNPs of the PRKCA gene were detected by real-time fluorescence quantitative PCR (qRT-PCR) and sequencing of PCR products in 45-week-old female Sansui ducks, which is a high production layer duck breed in China. The association of mRNA expression and SNPs in the PRKCA gene with layer duck eggshell traits was analysed using SPSS (v18.0) software. 3. The results demonstrated that PRKCA mRNA was widely expressed in all examined tissues, and expression was highest in kidney and lowest in the gizzard. Furthermore, the PRKCA mRNA level in uterus was significantly positively correlated with eggshell strength and eggshell weight (P < 0.05). Three novel SNPs, the synonymous mutations of g.9571770 T > C in exon 5, g.9583222 C > T and g.9583227 G > A in exon 7, were found in the PRKCA gene, giving four haplotypes and 10 diplotypes, which affected the mRNA secondary structure and free energy. The g.9583222 C > T and g.9583227 G > A mutations were significantly associated with eggshell strength (P < 0.05). Diplotype H1H1 was advantageous for increasing the strength and thickness of an eggshell. 4. In conclusion, the study showed that the mRNA transcription and genetic variation in the PRKCA gene could significantly affect the strength of duck eggshell and that the PRKCA gene is an important candidate gene for improving eggshell quality in poultry.
Collapse
Affiliation(s)
- G H Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - J Z Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - Y Y Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - M F You
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - C M Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - Y G Zhang
- Tiantang Town Agricultural Technology Management Station , Tongren City, People's Republic of China
| |
Collapse
|
12
|
Shang N, Bhullar KS, Wu J. Ovotransferrin Exhibits Osteogenic Activity Partially via Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Activation in MC3T3-E1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9427-9435. [PMID: 32786820 DOI: 10.1021/acs.jafc.0c04064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ovotransferrin, a major protein in egg white, induces osteoblast proliferation and survival in vitro. However, it is unclear which receptor(s) drive the beneficial activities of this bioactive glycoprotein. We examined the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the actions of ovotransferrin on osteoblasts. Here, we showed that LRP1 in part regulates osteogenic action of ovotransferrin. Mouse osteoblasts, MC3T3-E1, with LRP1 deletion displayed diminished osteogenic activity. Our findings indicate that the bone-stimulatory impact of ovotransferrin on RUNX2, COL1A2, and Ca2+ signaling is LRP1-dependent. This shows that LRP1 not only acts as a scavenger receptor but also participates in ovotransferrin-mediated gene transcription. However, some of the key bone formatting factors such as ALP synthesis and serine residue phosphorylation of Akt by ovotransferrin remained independent of LRP1. Overall, this study shows that LRP1-ovotransferrin interaction might underline in part the ability of ovotransferrin to promote bone formation.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
13
|
Xiao B, Wang G, Li W. Weighted gene correlation network analysis reveals novel biomarkers associated with mesenchymal stromal cell differentiation in early phase. PeerJ 2020; 8:e8907. [PMID: 32280568 PMCID: PMC7134052 DOI: 10.7717/peerj.8907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a major public health problem that is associated with high morbidity and mortality, and its prevalence is increasing as the world’s population ages. Therefore, understanding the molecular basis of the disease is becoming a high priority. In this regard, studies have shown that an imbalance in adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) is associated with osteoporosis. In this study, we conducted a Weighted Gene Co-Expression Network Analysis to identify gene modules associated with the differentiation of bone marrow MSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis showed that the most significant module, the brown module, was enriched with genes involved in cell cycle regulation, which is in line with the initial results published using these data. In addition, the Cytoscape platform was used to identify important hub genes and lncRNAs correlated with the gene modules. Furthermore, differential gene expression analysis identified 157 and 40 genes that were upregulated and downregulated, respectively, after 3 h of MSCs differentiation. Interestingly, regulatory network analysis, and comparison of the differentially expressed genes with those in the brown module identified potential novel biomarker genes, including two transcription factors (ZNF740, FOS) and two hub genes (FOXQ1, SGK1), which were further validated for differential expression in another data set of differentiation of MSCs. Finally, Gene Set Enrichment Analysis suggested that the two most important candidate hub genes are involved in regulatory pathways, such as the JAK-STAT and RAS signaling pathways. In summary, we have revealed new molecular mechanisms of MSCs differentiation and identified novel genes that could be used as potential therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Guozhu Wang
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Weiwei Li
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
14
|
Galea GL, Delisser PJ, Meakin L, Price JS, Windahl SH. Bone gain following loading is site-specifically enhanced by prior and concurrent disuse in aged male mice. Bone 2020; 133:115255. [PMID: 31991251 PMCID: PMC7057260 DOI: 10.1016/j.bone.2020.115255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
The primary aim of osteoanabolic therapies is to strategically increase bone mass in skeletal regions likely to experience high strains. In the young healthy skeleton, this is primarily achieved by bone's adaptation to loading. This adaptation appears to fail with age, resulting in osteoporosis and fractures. We previously demonstrated that prior and concurrent disuse enhances bone gain following loading in old female mice. Here, we applied site specificity micro-computed tomography analysis to map regional differences in bone anabolic responses to axial loading of the tibia between young (19-week-old) and aged (19-month-old), male and female mice. Loading increased bone mass specifically in the proximal tibia in both sexes and ages. Young female mice gained more cortical bone than young males in specific regions of the tibia. However, these site-specific sex differences were lost with age such that bone gain following loading was not significantly different between old males and females. To test whether disuse enhances functional adaption in old male mice as it does in females, old males were subjected to sciatic neurectomy or sham surgery, and loading was initiated four days after surgery. Disuse augmented tibial cortical bone gain in response to loading in old males, but only in regions which were load-responsive in the young. Prior and concurrent disuse also increased loading-induced trabecular thickening in the proximal tibia of old males. Understanding how diminished background loading rejuvenates the osteogenic loading response in the old may improve osteogenic exercise regimes and lead to novel osteoanabolic therapies.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK; Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Peter J Delisser
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Veterinary Specialist Services, Brisbane, Australia.
| | - Lee Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom.
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Royal Agricultural University Cirencester, Cirencester, United Kingdom.
| | - Sara H Windahl
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
15
|
Galea GL, Paradise CR, Meakin LB, Camilleri ET, Taipaleenmaki H, Stein GS, Lanyon LE, Price JS, van Wijnen AJ, Dudakovic A. Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2. Gene 2020; 763S:100027. [PMID: 32550554 PMCID: PMC7285908 DOI: 10.1016/j.gene.2020.100027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 01/08/2023]
Abstract
Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2. Subjecting human osteoblastic Saos-2 cells to strain by four point bending down-regulates their expression of SOST and RANKL without altering RUNX2 expression. RUNX2 knockdown increases basal SOST expression, but does not alter SOST down-regulation following strain. Conversely, RUNX2 knockdown does not alter basal RANKL expression, but prevents its down-regulation by strain. Chromatin immunoprecipitation revealed RUNX2 occupies a region of the RANKL promoter containing a consensus RUNX2 binding site and its occupancy of this site decreases following strain. The expression of epigenetic acetyl and methyl writers and readers was quantified by RT-qPCR to investigate potential epigenetic bases for this change. Strain and RUNX2 knockdown both down-regulate expression of the bromodomain acetyl reader BRD2. BRD2 and RUNX2 co-immunoprecipitate, suggesting interaction within regulatory complexes, and BRD2 was confirmed to interact with the RUNX2 promoter. BRD2 also occupies the RANKL promoter and its occupancy was reduced following exposure to strain. Thus, RUNX2 may contribute to bone remodeling by suppressing basal SOST expression, while facilitating the acute strain-induced down-regulation of RANKL through a mechanosensitive epigenetic loop involving BRD2.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ActD, Actinomycin D
- AzadC, 5-Aza-2′-deoxycytidine
- BRD2
- BRD2, Bromodomain-containing protein 2
- CO2, Carbon Dioxide
- ChIP, Chromatin immunoprecipitation
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's Modified Eagle Medium
- DNA, Deoxyribonucleic Acid
- Epigenetics
- FACS, Fluorescence-activated cell sorting
- FCS, Fetal calf serum
- GAPDH, Glyceraldehyde 3-Phosphate Dehydrogenase
- HDAC, Histone deacetylase
- HPRT, Hypoxanthine Phosphoribosyltransferase 1
- IU, International unit
- IgG, Immunoglobulin G
- Ki-67, Antigen KI-67
- Mechanical strain
- OPG, Osteoprotegerin/tumour necrosis factor receptor superfamily member 11B
- PBS, Phosphate-Buffered Saline
- PCR, polymerase chain reaction
- PGE2, Prostaglandin E2
- RANKL/TNFSF11, receptor activator of nuclear factor-κB ligand
- RNA, Ribonucleic Acid
- RT-qPCR, Quantitative reverse transcription polymerase chain reaction
- RUNX2
- RUNX2, Runt-related transcription factor 2
- Receptor activator of nuclear factor-κB ligand
- SOST, Sclerostin
- Sclerostin
- eGFP, enhanced green fluorescent protein
- sh, Short hairpin
- β2MG, Beta-2-Microglobulin
Collapse
Affiliation(s)
- Gabriel L Galea
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lee B Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - Hanna Taipaleenmaki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Abstract
Osteoporosis is a condition where bone resorption exceeds bone formation leading to degeneration. With an aging population, the prevalence of osteoporosis is on the rise. Although advances in the field have made progress in targeting the mechanisms of the disease, the efficacy of current treatments remains limited and is complicated by unexpected side effects. Therefore, to overcome this treatment gap, new approaches are needed to identify and elucidate the cellular mechanisms mediating the pathogenesis of osteoporosis, which requires a strong understanding of bone biology. This chapter will focus on bone cells (osteoclasts, osteoblasts, and osteocytes) and their role in the bone turnover process in normal physiology and in pathology. With regard to osteoclast function, the regulators and underpinning signaling pathways leading to bone resorption will be discussed. Decreased osteoblastogenesis also contributes to bone deterioration with aging and osteoporosis; hence the factors and signaling pathways mediating osteoblast formation and function will be examined. Osteocytes are mature osteoblasts embedded in bone matrix and act as endocrine cells; their role in bone health and pathology will also be reviewed. In addition, this chapter will explore the emerging role of adipocytes in bone biology and the implications of increased bone marrow fat infiltration with aging on bone degeneration. In conclusion, a greater understanding of the pathogenesis of osteoporosis is of utmost importance in order to develop more effective treatments for osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine, Melbourne Medical School - Western Precinct, The University of Melbourne, St. Albans, VIC, Australia
| | - Nicole Stupka
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine, Melbourne Medical School - Western Precinct, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia.
- Department of Medicine, Melbourne Medical School - Western Precinct, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
17
|
Bär L, Hase P, Föller M. PKC regulates the production of fibroblast growth factor 23 (FGF23). PLoS One 2019; 14:e0211309. [PMID: 30921339 PMCID: PMC6438472 DOI: 10.1371/journal.pone.0211309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Serine/threonine protein kinase C (PKC) is activated by diacylglycerol that is released from membrane lipids by phospholipase C in response to activation of G protein-coupled receptors or receptor tyrosine kinases. PKC isoforms are particularly relevant for proliferation and differentiation of cells including osteoblasts. Osteoblasts/osteocytes produce fibroblast growth factor 23 (FGF23), a hormone regulating renal phosphate and vitamin D handling. PKC activates NFκB, a transcription factor complex controlling FGF23 expression. Here, we analyzed the impact of PKC on FGF23 synthesis. Fgf23 expression was analyzed by qRT-PCR in UMR106 osteoblast-like cells and in IDG-SW3 osteocytes, and FGF23 protein was measured by ELISA. Phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA), a PKC activator, up-regulated FGF23 production. In contrast, PKC inhibitors calphostin C, Gö6976, sotrastaurin and ruboxistaurin suppressed FGF23 formation. NFκB inhibitor withaferin A abolished the stimulatory effect of PMA on Fgf23. PKC is a powerful regulator of FGF23 synthesis, an effect which is at least partly mediated by NFκB.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Philipp Hase
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
18
|
Liu Y, Lin F, Fu Y, Chen W, Liu W, Chi J, Zhang X, Yin X. Cortistatin inhibits arterial calcification in rats via GSK3β/β-catenin and protein kinase C signalling but not c-Jun N-terminal kinase signalling. Acta Physiol (Oxf) 2018; 223:e13055. [PMID: 29436118 DOI: 10.1111/apha.13055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022]
Abstract
AIM Cortistatin (CST) is a newly discovered endogenous active peptide that exerts protective effects on the cardiovascular system. However, the relationship between CST and aortic calcification and the underlying mechanism remain obscure. Therefore, we investigated effects of CST on aortic calcification and its signalling pathways. METHODS Calcium content and alkaline phosphatase (ALP) activity were measured using the o-cresolphthalein colorimetric method and ALP assay kit respectively. Protein expression of smooth muscle (SM)-ɑ-actin, osteocalcin (OCN), β-catenin, glycogen synthase kinase 3β (GSK3β), p-GSK3β, protein kinase C (PKC), p-PKC, c-Jun N-terminal kinase (JNK) and p-JNK was determined using Western blotting. RESULTS In aorta from a rat vitamin D3 calcification model, CST abrogated calcium deposition and pathological damage, decreased the protein expression of OCN and β-catenin and increased SM-ɑ-actin expression. In a rat cultured vascular smooth muscular cell (VSMC) calcification model induced by β-glycerophosphate (β-GP), CST inhibited the increase in ALP activity, calcium content and OCN protein and the decrease in SM-α-actin expression. CST also inhibited the β-GP-induced increase in p-GSK3β and β-catenin protein (both P < .05). The inhibitory effects of CST on ALP activity, calcium deposition and β-catenin protein were abolished by pretreatment with lithium chloride, a GSK3β inhibitor. CST promoted the protein expression of p-PKC by 68.5% (P < .01), but not p-JNK. The ability of CST to attenuate β-GP-induced increase in ALP activity, calcium content and OCN expression in the VSMC model was abolished by pretreatment with the PKC inhibitor Go6976. CONCLUSION These results indicate that CST inhibits aortic calcification and osteogenic differentiation of VSMCs likely via the GSK3β/β-catenin and PKC signalling pathways, but not JNK signalling pathway.
Collapse
Affiliation(s)
- Y. Liu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - F. Lin
- Department of Comprehensive Geriatric; Mianyang Central Hospital; Mianyang China
| | - Y. Fu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - W. Chen
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - W. Liu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - J. Chi
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - X. Zhang
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - X. Yin
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| |
Collapse
|
19
|
Borland SJ, Morris TG, Borland SC, Morgan MR, Francis SE, Merry CL, Canfield AE. Regulation of vascular smooth muscle cell calcification by syndecan-4/FGF-2/PKCα signalling and cross-talk with TGFβ. Cardiovasc Res 2017; 113:1639-1652. [PMID: 29016732 PMCID: PMC5852548 DOI: 10.1093/cvr/cvx178] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 02/01/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
AIMS Vascular calcification is a major cause of morbidity and mortality. Fibroblast growth factor-2 (FGF-2) plays an instructive role in osteogenesis and bone development, but its role in vascular calcification was unknown. Therefore, we investigated the involvement of FGF-2 in vascular calcification and determined the mechanism by which it regulates this process. METHODS AND RESULTS We demonstrate that FGF-2 expression is increased in vascular smooth muscle cells (VSMCs) induced to deposit a mineralized matrix by incubation with β-glycerophosphate. FGF-2 is also localized to sites of calcification within human atherosclerotic plaques. The expression of syndecan-4, a heparan sulfate proteoglycan which regulates FGF-2 signalling, is also increased in mineralizing VSMCs and co-localizes with FGF-2 in human calcified atherosclerotic plaques. Exogenous FGF-2 inhibits VSMC mineralization, and this inhibition is reduced when syndecan-4 expression is knocked-down using siRNA. Biochemical inhibition of FGFR signalling using a pan FGFR inhibitor (BGJ398) or knocking-down syndecan-4 expression in VSMCs using siRNA increases VSMC mineralization. These increases are prevented by inhibiting transforming growth factor-β (TGFβ) signalling with SB431542, suggesting cross-talk between FGF-2 and TGFβ signalling is crucial for the regulation of VSMC mineralization. Syndecan-4 can also regulate FGF-2 signalling directly via protein kinase Cα (PKCα) activation. Biochemical inhibition of PKCα activity using Gö6976, or siRNA-mediated suppression of PKCα expression increases VSMC mineralization; this increase is also prevented with SB431542. Finally, the ability of FGF-2 to inhibit VSMC mineralization is reduced when PKCα expression is knocked-down. CONCLUSION This is the first demonstration that syndecan-4 promotes FGF-2 signalling, and in turn, suppresses VSMC mineralization by down-regulating TGFβ signalling. Our discoveries that FGF-2 and syndecan-4 expression is increased in mineralizing VSMCs and that PKCα regulates FGF-2 and TGFβ signalling in VSMCs suggests that the syndecan-4/FGF-2/TGFβ signalling axis could represent a new therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Samantha J. Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Stem Cell Glycobiology Group, School of Materials, University of Manchester, Manchester, UK
| | - Thomas G. Morris
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shona C. Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark R. Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sheila E. Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Catherine L.R. Merry
- Stem Cell Glycobiology Group, School of Materials, University of Manchester, Manchester, UK
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ann E. Canfield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
20
|
Li L, Zhang L, Binkley PF, Sadee W, Wang D. Regulatory Variants Modulate Protein Kinase C α (PRKCA) Gene Expression in Human Heart. Pharm Res 2017; 34:1648-1657. [PMID: 28120175 PMCID: PMC7315374 DOI: 10.1007/s11095-017-2102-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Protein kinase C α (PRKCA) is involved in multiple functions and has been implicated in heart failure risks and treatment outcomes. This study aims to identify regulatory variants affecting PRKCA expression in human heart, and evaluate attributable risk of heart disease. METHODS mRNA expression quantitative trait loci (eQTLs) were extracted from the Genotype and Tissue Expression Project (GTEx). Allelic mRNA ratios were measured in 51 human heart tissues to identify cis-acting regulatory variants. Potential regulatory regions were tested with luciferase reporter gene assays and further evaluated in GTEx and genome-wide association studies. RESULTS Located in a region with robust enhancer activity in luciferase reporter assays, rs9909004 (T > C, minor allele frequency =0.47) resides in a haplotype displaying strong eQTLs for PRKCA in heart (p = 1.2 × 10-23). The minor C allele is associated with both decreased PRKCA mRNA expression and decreased risk of phenotypes characteristic of heart failure in GWAS analyses (QT interval p = 3.0 × 10-14). While rs9909004 is the likely regulatory variant, other variants in high linkage disequilibrium cannot be excluded. Distinct regulatory variants appear to affect expression in other tissues. CONCLUSIONS The haplotype carrying rs9909004 influences PRKCA expression in the heart and is associated with traits linked to heart failure, potentially affecting therapy of heart failure.
Collapse
Affiliation(s)
- Liang Li
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Lizhi Zhang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Philip F Binkley
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Danxin Wang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA.
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 W 12th Avenue, Columbus, Ohio, 43210, USA.
| |
Collapse
|
21
|
Galea GL, Meakin LB, Harris MA, Delisser PJ, Lanyon LE, Harris SE, Price JS. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle. Gene 2017; 599:36-52. [PMID: 27840164 PMCID: PMC5139832 DOI: 10.1016/j.gene.2016.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/06/2016] [Indexed: 02/08/2023]
Abstract
In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished.
Collapse
Affiliation(s)
- Gabriel L Galea
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lee B Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK.
| | - Marie A Harris
- Department of Periodontics & Cellular and Structural Biology, University of Texas Health Science Centre, San Antonio, USA
| | - Peter J Delisser
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Stephen E Harris
- Department of Periodontics & Cellular and Structural Biology, University of Texas Health Science Centre, San Antonio, USA
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Camelo Júnior JS, Dragosky M, Drelichman G. DOENÇA DE GAUCHER TIPO 1 NO ESQUELETO: REVISÃO DA AMÉRICA LATINA. COLUNA/COLUMNA 2016. [DOI: 10.1590/s1808-185120161504166050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
RESUMO A doença de Gaucher (DG) é a doença de depósito lisossômico mais prevalente, que se caracteriza pelo acúmulo de glicosilceramida e glucosilesfingosina em todos os tecidos do corpo. Com o advento da terapia de reposição de enzimas, o prognóstico dos pacientes com DG melhorou acentuadamente. Ainda assim, as manifestações esqueléticas associadas à DG respondem lentamente à terapia de reposição de enzimas e são as que contribuem de forma mais significativa para a morbidade do paciente. Esta revisão das manifestações ósseas da DG apresenta as mais recentes teorias sobre a sua fisiopatologia e uma revisão sistemática de estudos com pacientes latino-americanos que relataram a frequência das manifestações ósseas e os efeitos da terapia de reposição de enzimas sobre seu tratamento. Concluímos, destacando a importância da identificação precoce e do manejo adequado das doses apropriadas da terapia de reposição de enzimas para reduzir a morbidade causada pela DG.
Collapse
|
23
|
Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L, Cosgrove C, Yee BK, Lionikaite V, McIntyre RE, Remme CA, Lodder EM, Gregory JS, Hough T, Joynson R, Phelps H, Nell B, Rowe C, Wood J, Walling A, Bopp N, Bhomra A, Hernandez-Pliego P, Callebert J, Aspden RM, Talbot NP, Robbins PA, Harrison M, Fray M, Launay JM, Pinto YM, Blizard DA, Bezzina CR, Adams DJ, Franken P, Weaver T, Wells S, Brown SDM, Potter PK, Klenerman P, Lionikas A, Mott R, Flint J. Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat Genet 2016; 48:912-8. [PMID: 27376238 PMCID: PMC4966644 DOI: 10.1038/ng.3595] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations.
Collapse
Affiliation(s)
- Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | - Na Cai
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Carl Hassett
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Leo Goodstadt
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Cormac Cosgrove
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Vikte Lionikaite
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
| | | | - Carol Ann Remme
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Elisabeth M Lodder
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jennifer S Gregory
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
| | - Tertius Hough
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Russell Joynson
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Hayley Phelps
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Barbara Nell
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Clare Rowe
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Joe Wood
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Alison Walling
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Nasrin Bopp
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | | | - Jacques Callebert
- Department of Biochemistry, AP-HP, Hôpital Lariboisière, INSERM U942, Paris, France
| | - Richard M Aspden
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
| | - Nick P Talbot
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Mark Harrison
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Martin Fray
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Jean-Marie Launay
- Department of Biochemistry, AP-HP, Hôpital Lariboisière, INSERM U942, Paris, France
| | - Yigal M Pinto
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - David A Blizard
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Connie R Bezzina
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Tom Weaver
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Paul K Potter
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- UCL Genetics Institute, University College London, London, UK
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016; 8:216. [PMID: 27077882 PMCID: PMC4848685 DOI: 10.3390/nu8040216] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.
Collapse
Affiliation(s)
- Kevin B Hadley
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL 33473, USA.
| | - Stewart Forsyth
- School of Medicine, Dentistry & Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sheila Gautier
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Norman Salem
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|
25
|
Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone. PLoS One 2015; 10:e0140260. [PMID: 26451596 PMCID: PMC4599960 DOI: 10.1371/journal.pone.0140260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to regulation of bone mass per se, it potentially plays a role in influencing pathways associated with regulation of bone mass during ageing and estrogen withdrawal.
Collapse
|
26
|
Galea GL, Hannuna S, Meakin LB, Delisser PJ, Lanyon LE, Price JS. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading. Front Endocrinol (Lausanne) 2015; 6:52. [PMID: 25954246 PMCID: PMC4407614 DOI: 10.3389/fendo.2015.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones' structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (μCT) images. Resulting measures are directly comparable to those obtained through μCT analysis (R (2) > 0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same bone.
Collapse
Affiliation(s)
- Gabriel L. Galea
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Gabriel L. Galea, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Sion Hannuna
- Faculty of Engineering, University of Bristol, Bristol, UK
| | - Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|