1
|
Yang C, Lee GB, Hao L, Hu F. TMEM106B deficiency leads to alterations in lipid metabolism and obesity in the TDP-43 Q331K knock-in mouse model. Commun Biol 2025; 8:315. [PMID: 40011708 PMCID: PMC11865606 DOI: 10.1038/s42003-025-07752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
The TMEM106B gene, encoding a lysosomal membrane protein, is closely linked with brain aging and neurodegeneration. TMEM106B has been identified as a risk factor for several neurodegenerative diseases characterized by aggregation of the RNA-binding protein TDP-43, including frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). To investigate the role of TMEM106B in TDP-43 proteinopathy, we ablated TMEM106B in the TDP-43Q331K knock-in mouse line, which expresses an ALS-linked TDP-43 mutation at endogenous levels. We found that TMEM106B deficiency leads to glial activation, Purkinje cell loss, and behavioral deficits in TDP-43Q331K mice without inducing typical TDP-43 pathology. Interestingly, ablation of TMEM106B results in significant body weight gain, increased fat deposition, and hepatic triglyceride (TG) accumulation in TDP-43Q331K mice. In addition, lipidomic and transcriptome analysis shows a profound alteration in lipid metabolism in the liver of TDP-43Q331KTmem106b-/- mice. Our studies reveal a novel function of TMEM106B and TDP-43 in lipid metabolism and provide new insights into their roles in neurodegeneration.
Collapse
Affiliation(s)
- Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gwang Bin Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Ling Hao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Wiśniewska K, Wolski J, Żabińska M, Szulc A, Gaffke L, Pierzynowska K, Węgrzyn G. Mucopolysaccharidosis Type IIIE: A Real Human Disease or a Diagnostic Pitfall? Diagnostics (Basel) 2024; 14:1734. [PMID: 39202222 PMCID: PMC11353205 DOI: 10.3390/diagnostics14161734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described only in the context of animal models. However, pathogenic variants in this gene also occur in humans, but are linked to a different disorder, Usher syndrome (USH) type IV, which is sparking increasing debate. This paper gathers, discusses, and summarizes arguments both for and against classifying dysfunctions of arylsulfatase G (due to pathogenic variants in the ARSG gene) in humans as another subtype of MPS, called MPS IIIE. Specific difficulties in diagnostics and the classification of some inherited metabolic diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdansk, Polanki 117, 80-305 Gdansk, Poland;
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Aneta Szulc
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| |
Collapse
|
3
|
Štiavnická M, Chaulot-Talmon A, Perrier JP, Hošek P, Kenny DA, Lonergan P, Kiefer H, Fair S. Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility. BMC Genomics 2022; 23:379. [PMID: 35585482 PMCID: PMC9118845 DOI: 10.1186/s12864-022-08614-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/05/2022] [Indexed: 02/11/2023] Open
Abstract
Background Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA methylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in artificial insemination with contrasting fertility scores. Results The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 high-fertility bulls and 10 low-fertility bulls, having average fertility scores of − 6.6 and + 6.5%, respectively (mean of the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight individual differences. Despite this, using stringent criteria (DNA methylation difference ≥ 35% and a q-value < 0.001), we identified 661 differently methylated cytosines (DMCs). DMCs were preferentially located in intergenic regions, introns, gene downstream regions, repetitive elements, open sea, shores and shelves of CpG islands. We also identified 10 differently methylated regions, covered by 7 unique genes (SFRP1, STXBP4, BCR, PSMG4, ARSG, ATP11A, RXRA), which are involved in spermatogenesis and early embryonic development. Conclusion This study demonstrated that at specific CpG sites, sperm DNA methylation status is related to bull fertility, and identified seven differently methylated genes in sperm of subfertile bulls that may lead to altered gene expression and potentially influence embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08614-5.
Collapse
Affiliation(s)
- Miriama Štiavnická
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Aurélie Chaulot-Talmon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Jean-Philippe Perrier
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Petr Hošek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Meath, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Sean Fair
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
4
|
Velde HM, Reurink J, Held S, Li CHZ, Yzer S, Oostrik J, Weeda J, Haer-Wigman L, Yntema HG, Roosing S, Pauleikhoff L, Lange C, Whelan L, Dockery A, Zhu J, Keegan DJ, Farrar GJ, Kremer H, Lanting CP, Damme M, Pennings RJE. Usher syndrome type IV: clinically and molecularly confirmed by novel ARSG variants. Hum Genet 2022; 141:1723-1738. [PMID: 35226187 PMCID: PMC9556359 DOI: 10.1007/s00439-022-02441-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
AbstractUsher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.
Collapse
Affiliation(s)
- Hedwig M. Velde
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Janine Reurink
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Sebastian Held
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Catherina H. Z. Li
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Suzanne Yzer
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Oostrik
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Jack Weeda
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Helger G. Yntema
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Susanne Roosing
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Laurenz Pauleikhoff
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Whelan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Adrian Dockery
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - David J. Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - G. Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Cornelis P. Lanting
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Markus Damme
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Ronald J. E. Pennings
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Verheyen S, Blatterer J, Speicher MR, Bhavani GS, Boons GJ, Ilse MB, Andrae D, Sproß J, Vaz FM, Kircher SG, Posch-Pertl L, Baumgartner D, Lübke T, Shah H, Al Kaissi A, Girisha KM, Plecko B. Novel subtype of mucopolysaccharidosis caused by arylsulfatase K (ARSK) deficiency. J Med Genet 2021; 59:957-964. [PMID: 34916232 PMCID: PMC9554054 DOI: 10.1136/jmedgenet-2021-108061] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/31/2021] [Indexed: 11/07/2022]
Abstract
Background Mucopolysaccharidoses (MPS) are monogenic metabolic disorders that significantly affect the skeleton. Eleven enzyme defects in the lysosomal degradation of glycosaminoglycans (GAGs) have been assigned to the known MPS subtypes (I–IX). Arylsulfatase K (ARSK) is a recently characterised lysosomal hydrolase involved in GAG degradation that removes the 2-O-sulfate group from 2-sulfoglucuronate. Knockout of Arsk in mice was consistent with mild storage pathology, but no human phenotype has yet been described. Methods In this study, we report four affected individuals of two unrelated consanguineous families with homozygous variants c.250C>T, p.(Arg84Cys) and c.560T>A, p.(Leu187Ter) in ARSK, respectively. Functional consequences of the two ARSK variants were assessed by mutation-specific ARSK constructs derived by site-directed mutagenesis, which were ectopically expressed in HT1080 cells. Urinary GAG excretion was analysed by dimethylene blue and electrophoresis, as well as liquid chromatography/mass spectrometry (LC-MS)/MS analysis. Results The phenotypes of the affected individuals include MPS features, such as short stature, coarse facial features and dysostosis multiplex. Reverse phenotyping in two of the four individuals revealed additional cardiac and ophthalmological abnormalities. Mild elevation of dermatan sulfate was detected in the two subjects investigated by LC-MS/MS. Human HT1080 cells expressing the ARSK-Leu187Ter construct exhibited absent protein levels by western blot, and cells with the ARSK-Arg84Cys construct showed markedly reduced enzyme activity in an ARSK-specific enzymatic assay against 2-O-sulfoglucuronate-containing disaccharides as analysed by C18-reversed-phase chromatography followed by MS. Conclusion Our work provides a detailed clinical and molecular characterisation of a novel subtype of mucopolysaccharidosis, which we suggest to designate subtype X.
Collapse
Affiliation(s)
- Sarah Verheyen
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Jasmin Blatterer
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R Speicher
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Mai-Britt Ilse
- Department of Chemistry, Biochemistry, Bielefeld University, Bielefeld, Germany
| | - Dominik Andrae
- Department of Chemistry, Biochemistry, Bielefeld University, Bielefeld, Germany
| | - Jens Sproß
- Faculty of Chemistry, Industrial Organic Chemistry and Biotechnology - Mass Spectrometry, Bielefeld University, Bielefeld, Germany
| | - Frédéric Maxime Vaz
- Laboratory Genetic Metabolic Disease, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Core Facility Metabolomics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands, Amsterdam UMC Locatie Meibergdreef, Amsterdam, North Holland, The Netherlands
| | - Susanne G Kircher
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Laura Posch-Pertl
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Daniela Baumgartner
- Department of Pediatrics and Adolescent Medicine; Division of Pediatric Cardiology, Medical University of Graz, Graz, Austria
| | - Torben Lübke
- Department of Chemistry, Biochemistry, Bielefeld University, Bielefeld, Germany
| | - Hitesh Shah
- Department of Orthopedics, Kasturba Medical College Manipal, Manipal, India
| | - Ali Al Kaissi
- Pediatric Department, Speising Orthopaedic Hospital, Vienna, Austria
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Barbara Plecko
- Department of Pediatrics, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Decoding the consecutive lysosomal degradation of 3-O-sulfate containing heparan sulfate by Arylsulfatase G (ARSG). Biochem J 2021; 478:3221-3237. [PMID: 34405855 DOI: 10.1042/bcj20210415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
The lysosomal degradation of heparan sulfate is mediated by the concerted action of nine different enzymes. Within this degradation pathway, Arylsulfatase G (ARSG) is critical for removing 3-O-sulfate from glucosamine, and mutations in ARSG are causative for Usher syndrome type IV. We developed a specific ARSG enzyme assay using sulfated monosaccharide substrates, which reflect derivatives of its natural substrates. These sulfated compounds were incubated with ARSG, and resulting products were analyzed by reversed-phase HPLC after chemical addition of the fluorescent dyes 2-aminoacridone or 2-aminobenzoic acid, respectively. We applied the assay to further characterize ARSG regarding its hydrolytic specificity against 3-O-sulfated monosaccharides containing additional sulfate-groups and N-acetylation. The application of recombinant ARSG and cells overexpressing ARSG as well as isolated lysosomes from wild-type and Arsg knockout mice validated the utility of our assay. We further exploited the assay to determine the sequential action of the different sulfatases involved in the lysosomal catabolism of 3-O-sulfated glucosamine residues of heparan sulfate. Our results confirm and extend the characterization of the substrate specificity of ARSG and help to determine the sequential order of the lysosomal catabolic breakdown of (3-O-)sulfated heparan sulfate.
Collapse
|
7
|
Peter VG, Quinodoz M, Sadio S, Held S, Rodrigues M, Soares M, Sousa AB, Coutinho Santos L, Damme M, Rivolta C. New clinical and molecular evidence linking mutations in ARSG to Usher syndrome type IV. Hum Mutat 2020; 42:261-271. [PMID: 33300174 DOI: 10.1002/humu.24150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 11/11/2022]
Abstract
In murine and canine animal models, mutations in the Arylsulfatase G gene (ARSG) cause a particular lysosomal storage disorder characterized by neurological phenotypes. Recently, two variants in the same gene were found to be associated with an atypical form of Usher syndrome in humans, leading to visual and auditory impairment without the involvement of the central nervous system. In this study, we identified three novel pathogenic variants in ARSG, which segregated recessively with the disease in two families from Portugal. The probands were affected with retinitis pigmentosa and sensorineural hearing loss, generally with an onset of symptoms in their fourth decade of life. Functional experiments showed that these pathogenic variants abolish the sulfatase activity of the Arylsulfatase G enzyme and impede the appropriate lysosomal localization of the protein product, which appears to be retained in the endoplasmic reticulum. Our data enable to definitely confirm that different biallelic variants in ARSG cause a specific deaf-blindness syndrome, by abolishing the activity of the enzyme it encodes.
Collapse
Affiliation(s)
- Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Institute of Experimental Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Silvia Sadio
- Department of Ophthalmology, Instituto de Oftalmologia Dr. Gama Pinto, Lisbon, Portugal
| | - Sebastian Held
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Márcia Rodrigues
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Center (CAML), Lisbon, Portugal
| | - Marta Soares
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Center (CAML), Lisbon, Portugal
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Center (CAML), Lisbon, Portugal.,Department of Basic Immunology, Medical Faculty, University of Lisbon, Lisbon, Portugal
| | - Luisa Coutinho Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr. Gama Pinto, Lisbon, Portugal
| | - Markus Damme
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Yang YW, Phillips JJ, Jablons DM, Lemjabbar-Alaoui H. Development of novel monoclonal antibodies and immunoassays for sensitive and specific detection of SULF1 endosulfatase. Biochim Biophys Acta Gen Subj 2020; 1865:129802. [PMID: 33276062 DOI: 10.1016/j.bbagen.2020.129802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cell-surface heparan sulfate proteoglycans (HSPGs) function as receptors or co-receptors for ligand binding and mediate the transmission of critical extracellular signals into cells. The complex and dynamic modifications of heparan sulfates on the core proteins are highly regulated to achieve precise signaling transduction. Extracellular endosulfatase Sulf1 catalyzes the removal of 6-O sulfation from HSPGs and thus regulates signaling mediated by 6-O sulfation on HSPGs. The expression of Sulf1 is altered in many cancers. Further studies are needed to clarify Sulf1 role in tumorigenesis, and new tools that can expand our knowledge in this field are required. METHODS We have developed and validated novel SULF1 monoclonal antibodies (mAbs). The isotype and subclass for each of these antibodies were determined. These antibodies provide invaluable reagents to assess SULF1- tissue and blood levels by immunohistochemistry and ELISA assays, respectively. RESULTS This study reports novel mAbs and immunoassays developed for sensitive and specific human Sulf1 protein detection. Using these SULF1 mAbs, we developed an ELISA assay to investigate whether blood-derived SULF1 may be a useful biomarker for detecting cancer early. Furthermore, we have demonstrated the utility of these antibodies for Sulf1 protein detection, localization, and quantification in biospecimens using various immunoassays. CONCLUSIONS This study describes novel Sulf1 mAbs suitable for various immunoassays, including Western blot analysis, ELISA, and immunohistochemistry, which can help understand Sulf1 pathophysiological role. GENERAL SIGNIFICANCE New tools to assess and clarify SULF1 role in tumorigenesis are needed. Our novel Sulf1 mAbs and immunoassays assay may have utility for such application.
Collapse
Affiliation(s)
- Yi-Wei Yang
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hassan Lemjabbar-Alaoui
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Lysosomal sulfatases: a growing family. Biochem J 2020; 477:3963-3983. [PMID: 33120425 DOI: 10.1042/bcj20200586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.
Collapse
|
10
|
A Possible Role for Arylsulfatase G in Dermatan Sulfate Metabolism. Int J Mol Sci 2020; 21:ijms21144913. [PMID: 32664626 PMCID: PMC7404199 DOI: 10.3390/ijms21144913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
Perturbations of glycosaminoglycan metabolism lead to mucopolysaccharidoses (MPS)—lysosomal storage diseases. One type of MPS (type VI) is associated with a deficiency of arylsulfatase B (ARSB), for which we previously established a cellular model using pulmonary artery endothelial cells with a silenced ARSB gene. Here, we explored the effects of silencing the ARSB gene on the growth of human pulmonary artery smooth muscle cells in the presence of different concentrations of dermatan sulfate (DS). The viability of pulmonary artery smooth muscle cells with a silenced ARSB gene was stimulated by the dermatan sulfate. In contrast, the growth of pulmonary artery endothelial cells was not affected. As shown by microarray analysis, the expression of the arylsulfatase G (ARSG) in pulmonary artery smooth muscle cells increased after silencing the arylsulfatase B gene, but the expression of genes encoding other enzymes involved in the degradation of dermatan sulfate did not. The active site of arylsulfatase G closely resembles that of arylsulfatase B, as shown by molecular modeling. Together, these results lead us to propose that arylsulfatase G can take part in DS degradation; therefore, it can affect the functioning of the cells with a silenced arylsulfatase B gene.
Collapse
|
11
|
Walker NS, Fernández R, Sneed JM, Paul VJ, Giribet G, Combosch DJ. Differential gene expression during substrate probing in larvae of the Caribbean coral Porites astreoides. Mol Ecol 2019; 28:4899-4913. [PMID: 31596993 PMCID: PMC6900098 DOI: 10.1111/mec.15265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
The transition from larva to adult is a critical step in the life history strategy of most marine animals. However, the genetic basis of this life history change remains poorly understood in many taxa, including most coral species. Recent evidence suggests that coral planula larvae undergo significant changes at the physiological and molecular levels throughout the development. To investigate this, we characterized differential gene expression (DGE) during the transition from planula to adult polyp in the abundant Caribbean reef-building coral Porites astreoides, that is from nonprobing to actively substrate-probing larva, a stage required for colony initiation. This period is crucial for the coral, because it demonstrates preparedness to locate appropriate substrata for settlement based on vital environmental cues. Through RNA-Seq, we identified 860 differentially expressed holobiont genes between probing and nonprobing larvae (p ≤ .01), the majority of which were upregulated in probing larvae. Surprisingly, differentially expressed genes of endosymbiotic dinoflagellate origin greatly outnumbered coral genes, compared with a nearly 1:1 ratio of coral-to-dinoflagellate gene representation in the holobiont transcriptome. This unanticipated result suggests that dinoflagellate endosymbionts may play a significant role in the transition from nonprobing to probing behaviour in dinoflagellate-rich larvae. Putative holobiont genes were largely involved in protein and nucleotide binding, metabolism and transport. Genes were also linked to environmental sensing and response and integral signalling pathways. Our results thus provide detailed insight into molecular changes prior to larval settlement and highlight the complex physiological and biochemical changes that occur in early transition stages from pelagic to benthic stages in corals, and perhaps more importantly, in their endosymbionts.
Collapse
Affiliation(s)
- Nia S Walker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Rosa Fernández
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | | | | | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - David J Combosch
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,Marine Laboratory, University of Guam, Mangilao, GU, USA
| |
Collapse
|
12
|
A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet Med 2018; 20:1004-1012. [PMID: 29300381 DOI: 10.1038/gim.2017.227] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE We aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome. METHODS Whole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells. RESULTS We identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y. CONCLUSION Homozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.
Collapse
|
13
|
Katz ML, Rustad E, Robinson GO, Whiting REH, Student JT, Coates JR, Narfstrom K. Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions. Neurobiol Dis 2017; 108:277-287. [PMID: 28860089 DOI: 10.1016/j.nbd.2017.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Eline Rustad
- Blue Star Animal Hospital, Göteborg 417 07, Sweden
| | - Grace O Robinson
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rebecca E H Whiting
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jeffrey T Student
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristina Narfstrom
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Dhamale OP, Lawrence R, Wiegmann EM, Shah BA, Al-Mafraji K, Lamanna WC, Lübke T, Dierks T, Boons GJ, Esko JD. Arylsulfatase K is the Lysosomal 2-Sulfoglucuronate Sulfatase. ACS Chem Biol 2017; 12:367-373. [PMID: 28055182 DOI: 10.1021/acschembio.6b01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The degradation of glycosaminoglycans (GAGs) involves a series of exolytic glycosidases and sulfatases that act sequentially on the nonreducing end of the polysaccharide chain. Enzymes have been cloned that catalyze all of the known linkages with the exception of the removal of the 2-O-sulfate group from 2-sulfoglucuronate, which is found in heparan sulfate and dermatan sulfate. Here, we show using synthetic disaccharide substrates that arylsulfatase K is the glucuronate-2-sulfatase. Arylsulfatase K acts selectively on 2-sulfoglucuronate and lacks activity against 2-sulfoiduronate, whereas iduronate-2-sulfatase (IDS) desulfates synthetic disaccharides containing 2-sulfoiduronate but not 2-sulfoglucuronate. As arylsulfatase K has all of the properties expected of a lysosomal enzyme, we conclude that arylsulfatase K is the long sought lysosomal glucuronate-2-sulfatase, which we designate GDS.
Collapse
Affiliation(s)
- Omkar P. Dhamale
- Complex
Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
| | - Roger Lawrence
- Department
of Cellular and Molecular Medicine, Glycobiology Research and Training
Center, University of California, San Diego, La Jolla, California, United States
| | - Elena M. Wiegmann
- Department
of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Bhahwal A. Shah
- Complex
Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
| | - Kanar Al-Mafraji
- Complex
Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
| | - William C. Lamanna
- Department
of Cellular and Molecular Medicine, Glycobiology Research and Training
Center, University of California, San Diego, La Jolla, California, United States
| | - Torben Lübke
- Department
of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Thomas Dierks
- Department
of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Geert-Jan Boons
- Complex
Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg
99, 3584 CG Utrecht, The Netherlands
| | - Jeffrey D. Esko
- Department
of Cellular and Molecular Medicine, Glycobiology Research and Training
Center, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
15
|
Kissing S, Rudnik S, Damme M, Lüllmann-Rauch R, Ichihara A, Kornak U, Eskelinen EL, Jabs S, Heeren J, De Brabander JK, Haas A, Saftig P. Disruption of the vacuolar-type H +-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy 2017; 13:670-685. [PMID: 28129027 DOI: 10.1080/15548627.2017.1280216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The vacuolar-type H+-translocating ATPase (v-H+-ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H+-ATPase and MTORC1, we destablilized v-H+-ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H+-ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H+-ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H+-ATPase-mediated regulation of MTORC1.
Collapse
Affiliation(s)
- Sandra Kissing
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| | - Sönke Rudnik
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| | - Markus Damme
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| | | | - Atsuhiro Ichihara
- c Department of Medicine II , Tokyo Women´s Medical University , Japan
| | - Uwe Kornak
- d Institut für Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin , Berlin , Germany
| | - Eeva-Liisa Eskelinen
- e Department of Biosciences , Division of Biochemistry and Biotechnology, University of Helsinki , Finland
| | - Sabrina Jabs
- f Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC) , Berlin , Germany
| | - Jörg Heeren
- g Institut für Biochemie und Molekulare Zellbiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf , Germany
| | - Jef K De Brabander
- h Department of Biochemistry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Albert Haas
- i Institut für Zellbiologie, Friedrich-Wilhelms Universität Bonn , Germany
| | - Paul Saftig
- a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Germany
| |
Collapse
|
16
|
Markmann S, Krambeck S, Hughes CJ, Mirzaian M, Aerts JMFG, Saftig P, Schweizer M, Vissers JPC, Braulke T, Damme M. Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II. Mol Cell Proteomics 2017; 16:438-450. [PMID: 28062798 DOI: 10.1074/mcp.m116.063636] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/24/2016] [Indexed: 01/01/2023] Open
Abstract
The efficient receptor-mediated targeting of soluble lysosomal proteins to lysosomes requires the modification with mannose 6-phosphate (M6P) residues. Although the absence of M6P results in misrouting and hypersecretion of lysosomal enzymes in many cells, normal levels of lysosomal enzymes have been reported in liver of patients lacking the M6P-generating phosphotransferase (PT). The identity of lysosomal proteins depending on M6P has not yet been comprehensively analyzed. In this study we purified lysosomes from liver of PT-defective mice and 67 known soluble lysosomal proteins were identified that illustrated quantitative changes using an ion mobility-assisted data-independent label-free LC-MS approach. After validation of various differentially expressed lysosomal components by Western blotting and enzyme activity assays, the data revealed a small number of lysosomal proteins depending on M6P, including neuraminidase 1, cathepsin F, Npc2, and cathepsin L, whereas the majority reach lysosomes by alternative pathways. These data were compared with findings on cultured hepatocytes and liver sinusoid endothelial cells isolated from the liver of wild-type and PT-defective mice. Our findings show that the relative expression, targeting efficiency and lysosomal localization of lysosomal proteins tested in cultured hepatic cells resemble their proportion in isolated liver lysosomes. Hypersecretion of newly synthesized nonphosphorylated lysosomal proteins suggest that secretion-recapture mechanisms contribute to maintain major lysosomal functions in liver.
Collapse
Affiliation(s)
- Sandra Markmann
- From the ‡Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,§Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | - Svenja Krambeck
- From the ‡Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,§Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | | | - Mina Mirzaian
- ¶Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Johannes M F G Aerts
- ¶Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Paul Saftig
- ‖Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Michaela Schweizer
- **Morphology Unit, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas Braulke
- From the ‡Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;
| | - Markus Damme
- ‖Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany;
| |
Collapse
|
17
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|
18
|
Fedele AO. Sanfilippo syndrome: causes, consequences, and treatments. APPLICATION OF CLINICAL GENETICS 2015; 8:269-81. [PMID: 26648750 PMCID: PMC4664539 DOI: 10.2147/tacg.s57672] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis (MPS) type III, refers to one of five autosomal recessive, neurodegenerative lysosomal storage disorders (MPS IIIA to MPS IIIE) whose symptoms are caused by the deficiency of enzymes involved exclusively in heparan sulfate degradation. The primary characteristic of MPS III is the degeneration of the central nervous system, resulting in mental retardation and hyperactivity, typically commencing during childhood. The significance of the order of events leading from heparan sulfate accumulation through to downstream changes in the levels of biomolecules within the cell and ultimately the (predominantly neuropathological) clinical symptoms is not well understood. The genes whose deficiencies cause the MPS III subtypes have been identified, and their gene products, as well as a selection of disease-causing mutations, have been characterized to varying degrees with respect to both frequency and direct biochemical consequences. A number of genetic and biochemical diagnostic methods have been developed and adopted by diagnostic laboratories. However, there is no effective therapy available for any form of MPS III, with treatment currently limited to clinical management of neurological symptoms. The availability of animal models for all forms of MPS III, whether spontaneous or generated via gene targeting, has contributed to improved understanding of the MPS III subtypes, and has provided and will deliver invaluable tools to appraise emerging therapies. Indeed, clinical trials to evaluate intrathecally-delivered enzyme replacement therapy in MPS IIIA patients, and gene therapy for MPS IIIA and MPS IIIB patients are planned or underway.
Collapse
Affiliation(s)
- Anthony O Fedele
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
19
|
Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M. Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2. Traffic 2015; 16:1127-36. [PMID: 26219725 DOI: 10.1111/tra.12313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
The lysosomal integral membrane protein type 2 (LIMP-2/SCARB2) has been described as a mannose 6-phosphate (M6P)-independent trafficking receptor for β-glucocerebrosidase (GC). Recently, a putative M6P residue in a crystal structure of a recombinantly expressed LIMP-2 ectodomain has been reported. Based on surface plasmon resonance and fluorescence lifetime imaging analyses, it was suggested that the interaction of soluble LIMP-2 with the cation-independent M6P receptor (MPR) results in M6P-dependent targeting of LIMP-2 to lysosomes. As the physiological relevance of this observation was not addressed, we investigated M6P-dependent delivery of LIMP-2 to lysosomes in murine liver and mouse embryonic fibroblasts. We demonstrate that LIMP-2 and GC reach lysosomes independent of the M6P pathway. In fibroblasts lacking either MPRs or the M6P-forming N-acetylglucosamine (GlcNAc)-1-phosphotransferase, LIMP-2 still localizes to lysosomes. Immunoblot analyses also revealed comparable LIMP-2 levels within lysosomes purified from liver of wild-type (wt) and GlcNAc-1-phosphotransferase-defective mice. Heterologous expression of the luminal domain of LIMP-2 in wild-type, LIMP-2-deficient and GlcNAc-1-phosphotransferase-defective cells further established that the M6P modification is dispensable for lysosomal sorting of LIMP-2. Finally, cathepsin Z, a known GlcNAc-1-phosphotransferase substrate, but not LIMP-2, could be precipitated with M6P-specific antibodies. These data prove M6P-independent lysosomal sorting of LIMP-2 and subsequently GC in vivo.
Collapse
Affiliation(s)
- Judith Blanz
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Friederike Zunke
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Sandra Markmann
- Arbeitsbereich Molekularbiologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Damme
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Thomas Braulke
- Arbeitsbereich Molekularbiologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Michael Schwake
- Biochemie III/ Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
20
|
Gilliam D, Kolicheski A, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Katz ML. Golden Retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5. Mol Genet Metab 2015; 115:101-9. [PMID: 25934231 DOI: 10.1016/j.ymgme.2015.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
We studied a recessive, progressive neurodegenerative disease occurring in Golden Retriever siblings with an onset of signs at 15 months of age. As the disease progressed these signs included ataxia, anxiety, pacing and circling, tremors, aggression, visual impairment and localized and generalized seizures. A whole genome sequence, generated with DNA from one affected dog, contained a plausibly causal homozygous mutation: CLN5:c.934_935delAG. This mutation was predicted to produce a frameshift and premature termination codon and encode a protein variant, CLN5:p.E312Vfs*6, which would lack 39 C-terminal amino acids. Eighteen DNA samples from the Golden Retriever family members were genotyped at CLN5:c.934_935delAG. Three clinically affected dogs were homozygous for the deletion allele; whereas, the clinically normal family members were either heterozygotes (n = 11) or homozygous for the reference allele (n = 4). Among archived Golden Retrievers DNA samples with incomplete clinical records that were also genotyped at the CLN5:c.934_935delAG variant, 1053 of 1062 were homozygous for the reference allele, 8 were heterozygotes and one was a deletion-allele homozygote. When contacted, the owner of this homozygote indicated that their dog had been euthanized because of a neurologic disease that progressed similarly to that of the affected Golden Retriever siblings. We have collected and stored semen from a heterozygous Golden Retriever, thereby preserving an opportunity for us or others to establish a colony of CLN5-deficient dogs.
Collapse
Affiliation(s)
- D Gilliam
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - T Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - J F Taylor
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - R D Schnabel
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - M L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
21
|
Qin Y, Zhong Y, Yang G, Ma T, Jia L, Huang C, Li Z. Profiling of concanavalin A-binding glycoproteins in human hepatic stellate cells activated with transforming growth factor-β1. Molecules 2014; 19:19845-67. [PMID: 25460309 PMCID: PMC6270946 DOI: 10.3390/molecules191219845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA) was increased in human hepatic stellate cells (HSCs) following activation by transforming growth factor-β1 (TGF-β1); however, little is known about the ConA-binding glycoproteins (CBGs) of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin) and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2]) were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an 710061, Shaanxi, China.
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Ganglong Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Chen Huang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an 710061, Shaanxi, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|