1
|
Kim GY, Kim S, Park K, Lim HJ, Kim WH. Gasoline exhaust particles induce MMP1 expression via Nox4-derived ROS-ATF3-linked pathway in human umbilical vein endothelial cells. Toxicology 2025; 511:154051. [PMID: 39793954 DOI: 10.1016/j.tox.2025.154051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Gasoline exhaust particles (GEP) are risk factors for cardiovascular disease. Activating transcription factor 3 (ATF3) is a transcription factor known to form a heterodimer with AP-1 transcription factors for its target gene expression. However, the involvement of ATF3 in GEP-induced gene expression in human umbilical vein endothelial cells (HUVECs) has not been investigated. In this study, we found that GEP, at IC50 value of 59 μg/ml, induced the expression of ATF3, which led to the expression of matrix metalloproteinase 1 (MMP1) in HUVECs. GEP induce an interaction between c-Jun and ATF3, and c-Jun depletion attenuates GEP-induced MMP1 expression. Depletion of NADPH oxidase 4 (Nox4) suppressed GEP-induced reactive oxygen species (ROS) generation and the subsequent upregulation of ATF3 and MMP1, suggesting that Nox4-derived ROS play a role as upstream regulators of GEP-induced ATF3 expression and MMP1 upregulation. Furthermore, Nox4 depletion attenuated the interaction between ATF3 and c-Jun and their binding to the AP-1 binding site of the MMP1 promoter. Taken together, these findings demonstrate that GEP induce the expression of MMP1 by generating Nox4-dependent ROS, which subsequently increase ATF3 expression and its interaction with c-Jun. This leads to their binding to the promoter region of MMP1 and its transcription. These findings suggest that Nox4-derived ROS and ATF3 are critical for GEP-induced MMP1 expression.
Collapse
Affiliation(s)
- Geun-Young Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Suji Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Kihong Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyun-Joung Lim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Mahalingam S, Bellamkonda R, Kharbanda KK, Arumugam MK, Kumar V, Casey CA, Leggio L, Rasineni K. Role of ghrelin hormone in the development of alcohol-associated liver disease. Biomed Pharmacother 2024; 174:116595. [PMID: 38640709 PMCID: PMC11161137 DOI: 10.1016/j.biopha.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.
Collapse
Affiliation(s)
- Sundararajan Mahalingam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Kumar
- Mass Spectrometry and Proteomic Core Facility, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Chronic Voluntary Alcohol Consumption Alters Promoter Methylation and Expression of Fgf-2 and Fgfr1. Int J Mol Sci 2023; 24:ijms24043336. [PMID: 36834747 PMCID: PMC9963845 DOI: 10.3390/ijms24043336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.
Collapse
|
4
|
Chen Y, Cai K, Du Y, Liu Z, Gong Y. HDAC1 overexpression promoted by METTL3-IGF2BP2 inhibits FGF21 expression in metabolic syndrome-related liver injury. Biochem Cell Biol 2023; 101:52-63. [PMID: 36542845 DOI: 10.1139/bcb-2022-0314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metabolic syndrome (MetS) represents a cluster of diseases that includes diabetes and insulin resistance. A combination of these metabolic disorders damages liver function. We hypothesized here that histone deacetylase 1 (HDAC1) inhibits fibroblast growth factor 21 (FGF21) expression through histone deacetylation, thereby accentuating liver injury in rats with MetS. MetS rats induced by a high-fat diet were monitored weekly for blood pressure and body weight measurement. The changes of hepatic injury parameters were also measured. The pathological changes in the liver were observed by HE staining and oil red O staining. We found that HDAC1 was increased in the liver of rats with MetS, while sh-HDAC1 reduced blood pressure, body weight, and hepatic injury parameters. Improvement of structural pathological alterations and reduction of lipid deposition were observed after HDAC1 inhibition. Notably, HDAC1 inhibited FGF21 expression through histone deacetylation. The hepatoprotective effects of sh-HDAC1 on rats were reversed by adenovirus-mediated knockdown of FGF21. Moreover, methyltransferase-like 3 (METTL3) mediated the N6-methyladenosine (m6A) modification of HDAC1 mRNA and increased its binding to IGF2BP2. Consistently, sh-METTL3 inhibited HDAC1 and increased FGF21 expression, thereby ameliorating liver injury in MetS rats. This study discovered that HDAC1 is capable of managing liver injury in MetS. Targeting HDAC1 may be an optimal treatment for MetS-related liver injury.
Collapse
Affiliation(s)
- Yunjiang Chen
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Public Republic of China
| | - Kaiyu Cai
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Public Republic of China
| | - Yueling Du
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Public Republic of China
| | - Zixiong Liu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Public Republic of China
| | - Yanchun Gong
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Public Republic of China
| |
Collapse
|
5
|
Koo S, Kim JY, Park JH, Roh GS, Lim NK, Park HY, Kim WH. Binge alcohol drinking before pregnancy is closely associated with the development of macrosomia: Korean pregnancy registry cohort. PLoS One 2022; 17:e0271291. [PMID: 35819975 PMCID: PMC9275693 DOI: 10.1371/journal.pone.0271291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Alcohol drinking during pregnancy has been well-known to cause the detrimental effects on fetal development; however, the adverse effects of pre-pregnancy drinking are largely unknown. We investigate whether alcohol drinking status before pregnancy is associated with the risk for macrosomia, an offspring’s adverse outcome, in a Korean pregnancy registry cohort (n = 4,542) enrolled between 2013 and 2017. Methods Binge drinking was defined as consuming ≥5 drinks on one occasion and ≥2 times a week, and a total 2,886 pregnant, included in the final statistical analysis, were divided into 3 groups: never, non-binge, and binge drinking. Results The prevalence of macrosomia was higher in binge drinking before pregnancy than those with never or non-binge drinking (7.5% vs. 3.2% or 2.9%, p = 0.002). Multivariable logistic regression analysis demonstrated an independent association between macrosomia and prepregnancy binge drinking after adjusting for other confounders (adjusted odds ratio = 2.29; 95% CI, 1.08–4.86; p = 0.031). The model added binge drinking before pregnancy led to improvement of 10.6% (95% CI, 2.03–19.07; p = 0.0006) in discrimination from traditional risk prediction models. Conclusion Together, binge drinking before pregnancy might be an independent risk factor for developing macrosomia. Intensified intervention for drinking alcohol in women who are planning a pregnancy is important and may help prevent macrosomia.
Collapse
Affiliation(s)
- Seul Koo
- Division of Cardiovascular Disease Research, Department of Chronic Disease Converengence Research, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Ji Yeon Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Converengence Research, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Ji Hye Park
- Division of Cardiovascular Disease Research, Department of Chronic Disease Converengence Research, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Nam Kyoo Lim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Converengence Research, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Hyun Young Park
- Division of Cardiovascular Disease Research, Department of Chronic Disease Converengence Research, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Converengence Research, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
The potential effects of HECTD4 variants on fasting glucose and triglyceride levels in relation to prevalence of type 2 diabetes based on alcohol intake. Arch Toxicol 2022; 96:2487-2499. [PMID: 35713687 PMCID: PMC9325801 DOI: 10.1007/s00204-022-03325-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Excessive alcohol intake is an important cause of major public health problem in East Asian countries. Growing evidence suggests that genetic factors are associated with alcohol consumption and the risk for alcohol-associated disease, and these factors contribute to the risk of developing chronic diseases, including diabetes. This study aims to investigate the association of type 2 diabetes with genetic polymorphisms within HECTD4 based on alcohol exposure. We performed a genome-wide association study involving the cohorts of the KoGES-HEXA study (n = 50,028) and Ansan and Ansung study (n = 7,980), both of which are prospective cohort studies in Korea. The top three single-nucleotide polymorphisms (SNPs) of the HECTD4 gene, specifically rs77768175, rs2074356 and rs11066280, were found to be significantly associated with alcohol consumption. We found that individuals carrying the variant allele in these SNPs had lower fasting blood glucose, triglyceride, and GGT levels than those with the wild-type allele. Multiple logistic regression showed that statistically significant associations of HECTD4 gene polymorphisms with an increased risk of type 2 diabetes were found in drinkers. Namely, these SNPs were associated with decreased odds of diabetes in the presence of alcohol consumption. As a result of examining the effect of alcohol on the expression of the HECTD4 gene, ethanol increased the expression of HECTD4 in cells, but the level was decreased by NAC treatment. Similar results were obtained from liver samples of mice treated with alcohol. Moreover, a loss of HECTD4 resulted in reduced levels of CYP2E1 and lipogenic gene expression in ethanol-treated cells, while the level of ALDH2 expression increased, indicating a reduction in ethanol-induced hepatotoxicity.
Collapse
|
7
|
Sun M, Yan S, Zhao D, Wang L, Feng T, Yang Y, Li X, Hu W, Yao N, Cui W, Li B. Identified lncRNAs functional modules and genes in prediabetes with hypertriglyceridemia by weighted gene co-expression network analysis. Nutr Metab (Lond) 2022; 19:33. [PMID: 35501901 PMCID: PMC9063339 DOI: 10.1186/s12986-022-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hypertriglyceridemia (HTG) is one of the most important comorbidities in abnormal glucose patients. The aim of this study was to identify lncRNAs functional modules and hub genes related to triglyceride (TG) in prediabetes. Methods The study included 12 prediabetic patients: 6 participants with HTG and 6 participants with normal triglyceride (NTG). Whole peripheral blood RNA sequencing was performed for these samples to establish a lncRNA library. WGCNA, KEGG pathways analysis and the PPI network were used to construct co‐expression network, to obtain modules related to blood glucose, and to detect key lncRNAs. Meanwhile, GEO database and qRT-PCR were used to validate above key lncRNAs. Results We found out that the TCONS_00334653 and PVT1, whose target mRNA are MYC and HIST1H2BM, were downregulating in the prediabetes with HTG. Moreover, both of TCONS_00334653 and PVT1 were validated in the GEO database and qRT-PCR. Conclusions Therefore, the TCONS_00334653 and PVT1 were detected the key lncRNAs for the prediabetes with HTG, which might be a potential therapeutic or diagnostic target for the treatment of prediabetes with HTG according to the results of validation in the GEO database, qRT-PCR and ROC curves. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00665-5.
Collapse
Affiliation(s)
- Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Di Zhao
- Department of Physical Examination Central, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Ling Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Tianyu Feng
- Department of Social Medicine and Health Management, School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Wenyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China.
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China.
| |
Collapse
|
8
|
Simon L, Torres D, Saravia A, Levitt DE, Vande Stouwe C, McGarrah H, Coleman L, Dufour JP, Amedee AM, Molina PE. Chronic binge alcohol and ovariectomy-mediated impaired insulin responsiveness in SIV-infected female rhesus macaques. Am J Physiol Regul Integr Comp Physiol 2021; 321:R699-R711. [PMID: 34524906 PMCID: PMC8616623 DOI: 10.1152/ajpregu.00159.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Aging people living with HIV (PLWH), especially postmenopausal women may be at higher risk of comorbidities associated with HIV, antiretroviral therapy (ART), hypogonadism, and at-risk alcohol use. Our studies in simian immunodeficiency virus (SIV)-infected male macaques demonstrated that chronic binge alcohol (CBA) reduced acute insulin response to glucose (AIRG), and at-risk alcohol use decreased HOMA-β in PLWH. The objective of this study was to examine the impact of ovariectomy (OVX) on glucose-insulin dynamics and integrity of pancreatic endocrine function in CBA/SIV-infected female macaques. Female macaques were administered CBA (12-15 g/kg/wk) or isovolumetric water (VEH) intragastrically. Three months after initiation of CBA/VEH administration, all macaques were infected with SIVmac251, and initiated on antiretroviral therapy (ART) 2.5 mo postinfection. After 1 mo of ART, macaques were randomized to OVX or sham surgeries (n = 7 or 8/group), and euthanized 8 mo post-OVX (study endpoint). Frequently sampled intravenous glucose tolerance tests (FSIVGTT) were performed at selected time points. Pancreatic gene expression and islet morphology were determined at study endpoint. There was a main effect of CBA to decrease AIRG at Pre-SIV and study endpoint. There were no statistically significant OVX effects on AIRG (P = 0.06). CBA and OVX decreased the expression of pancreatic markers of insulin docking and release. OVX increased endoplasmic stress markers. CBA but not OVX impaired glucose-insulin expression dynamics in SIV-infected female macaques. Both CBA and OVX altered integrity of pancreatic endocrine function. These findings suggest increased vulnerability of PLWH to overt metabolic dysfunction that may be exacerbated by alcohol use and ovarian hormone loss.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Diego Torres
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Ari Saravia
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Danielle E Levitt
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Heather McGarrah
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Larry Coleman
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jason P Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, Louisiana
| | - Angela M Amedee
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
9
|
Primeaux SD, Simon L, Ferguson TF, Levitt DE, Brashear MM, Yeh A, Molina PE. Alcohol use and dysglycemia among people living with human immunodeficiency virus (HIV) in the Alcohol & Metabolic Comorbidities in PLWH: Evidence Driven Interventions (ALIVE-Ex) study. Alcohol Clin Exp Res 2021; 45:1735-1746. [PMID: 34342022 PMCID: PMC8547613 DOI: 10.1111/acer.14667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND At-risk alcohol use is a common and costly form of substance misuse that is highly prevalent among people living with HIV (PLWH). The goal of the current analysis was to test the hypothesis that PLWH with at-risk alcohol use are more likely to meet the clinical criteria for prediabetes/diabetes than PLWH with low-risk alcohol use. METHODS A cross-sectional analysis was performed on measures of alcohol and glycemic control in adult PLWH (n = 105) enrolled in a prospective, interventional study (the ALIVE-Ex Study (NCT03299205)) that investigated the effects of aerobic exercise on metabolic dysregulation in PLWH with at-risk alcohol use. The Alcohol Use Disorders Identification Test (AUDIT), Timeline Followback, and phosphatidylethanol (PEth) level were used to measure alcohol use. Participants were stratified into low-risk (AUDIT score < 5) and at-risk alcohol use (AUDIT score ≥ 5). All participants underwent an oral glucose tolerance test and measures of glycemic control- the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Matsuda Index - were correlated with alcohol measures and compared by AUDIT score group using mixed-effects linear and logistic regression models, adjusting for age, sex, race, body mass index (BMI), and viral load. RESULTS In response to the glucose challenge, participants with at-risk alcohol use (n = 46) had higher glucose levels and were five times more likely to meet criteria for prediabetes/diabetes (OR: 5.3 (1.8, 15.9)) than participants with an AUDIT score < 5. Two-hour glucose values were positively associated with AUDIT score and PEth level and a higher percentage of PLWH with at-risk alcohol use had glucose values ≥140 mg/dl than those with low-risk alcohol use (34.8% vs. 10.2%, respectively). CONCLUSION In this cohort of PLWH, at-risk alcohol use increased the likelihood of meeting the clinical criteria for prediabetes/diabetes (2-h glucose level ≥140 mg/dl). Established determinants of metabolic dysfunction (e.g., BMI, waist-hip ratio) were not associated with greater alcohol use and dysglycemia, suggesting that other mechanisms may contribute to the impaired glycemic control observed in this cohort.
Collapse
Affiliation(s)
- Stefany D. Primeaux
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| | - Tekeda F. Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
- Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, 70112
| | - Danielle E. Levitt
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| | - Meghan M. Brashear
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| | - Alice Yeh
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| |
Collapse
|
10
|
Wu T, Wang J, Zhang Y, Shao Y, Li X, Guo Y, Dong W, Wang L, Chen F, Han X. Lentinan protects against pancreatic β-cell failure in chronic ethanol consumption-induced diabetic mice via enhancing β-cell antioxidant capacity. J Cell Mol Med 2021; 25:6161-6173. [PMID: 33837638 PMCID: PMC8256364 DOI: 10.1111/jcmm.16529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic ethanol consumption is a well-established independent risk factor for type 2 diabetes mellitus (T2DM). Recently, increasing studies have confirmed that excessive heavy ethanol exerts direct harmful effect on pancreatic β-cell mass and function, which may be a mechanism of pancreatic β-cell failure in T2DM. In this study, we evaluated the effect of Lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β-cell apoptosis and dysfunction caused by ethanol and the possible mechanisms implicated. Functional studies reveal that LNT attenuates chronic ethanol consumption-induced impaired glucose metabolism in vivo. In addition, LNT ameliorates chronic ethanol consumption-induced β-cell dysfunction, which is characterized by reduced insulin synthesis, defected insulin secretion and increased cell apoptosis. Furthermore, mechanistic assays suggest that LNT enhances β-cell antioxidant capacity and ameliorates ethanol-induced oxidative stress by activating Nrf-2 antioxidant pathway. Our results demonstrated that LNT prevents ethanol-induced pancreatic β-cell dysfunction and apoptosis, and therefore may be a potential pharmacological agent for preventing pancreatic β-cell failure associated with T2DM and stress-induced diabetes.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Jiahui Wang
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Yaru Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Yixue Shao
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Xirui Li
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Yuqing Guo
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Wenyu Dong
- Key Laboratory of Oral Diseases of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
- Institute of StomatologyNanjing Medical UniversityNanjingChina
| | - Lin Wang
- Key Laboratory of Oral Diseases of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
- Institute of StomatologyNanjing Medical UniversityNanjingChina
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| |
Collapse
|
11
|
Baliño P, Romero-Cano R, Muriach M. Biochemical and Behavioral Consequences of Ethanol Intake in a Mouse Model of Metabolic Syndrome. Int J Mol Sci 2021; 22:E807. [PMID: 33467410 PMCID: PMC7830398 DOI: 10.3390/ijms22020807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Ethanol abuse is a common issue in individuals with sedentary lifestyles, unbalanced diets, and metabolic syndrome. Both ethanol abuse and metabolic syndrome have negative impacts on the central nervous system, with effects including cognitive impairment and brain oxidative status deterioration. The combined effects of ethanol abuse and metabolic syndrome at a central level have not yet been elucidated in detail. Thus, this work aims to determine the effects of ethanol intake on a mouse model of metabolic syndrome at the behavioral and biochemical levels. Seven-week-old male control (B6.V-Lep ob/+JRj) and leptin-deficient (metabolic syndrome) (B6.V-Lep ob/obJRj) mice were used in the study. Animals were divided into four groups: control, ethanol, obese, and obese-ethanol. Ethanol consumption was monitored for 6 weeks. Basal glycemia, insulin, and glucose overload tests were performed. To assess short- and long-term memory, an object recognition test was used. In order to assess oxidative status in mouse brain samples, antioxidant enzyme activity was analyzed with regard to glutathione peroxidase, glutathione reductase, glutathione, glutathione disulfide, lipid peroxidation products, and malondialdehyde. Ethanol intake modulated the insulin response and impaired the oxidative status in the ob mouse brain.
Collapse
Affiliation(s)
| | | | - María Muriach
- Unitat Predepartamental de Medicina, Universitat Jaume I, 12071 Castelló de la Plana, Spain; (P.B.); (R.R.-C.)
| |
Collapse
|
12
|
Eom T, Ko G, Kim KC, Kim JS, Unno T. Dendropanax morbifera Leaf Extracts Improved Alcohol Liver Injury in Association with Changes in the Gut Microbiota of Rats. Antioxidants (Basel) 2020; 9:antiox9100911. [PMID: 32987739 PMCID: PMC7598590 DOI: 10.3390/antiox9100911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the protective effects of Dendropanax morbifera leaf (DML) extracts in the liver due to excessive ethanol consumption. Our results showed that the ethanol extract had better antioxidant activity than the water extract, likely due to the higher levels of total flavonoid and phenolic compounds in the former. We found that the main phenolic acid was chlorogenic acid and the major flavonoid was rutin. Results from the animal model experiment showed concentration-dependent liver protection with the distilled water extract showing better liver protection than the ethanol extract. Gut microbiota dysbiosis induced by alcohol consumption was significantly shifted by DML extracts through increasing mainly Bacteroides and Allobaculum. Moreover, predicted metabolic activities of biosynthesis of beneficial monounsaturated fatty acids such as oleate and palmitoleate were enhanced. Our results suggest that these hepatoprotective effects are likely due to the increased activities of antioxidant enzymes and partially promoted by intestinal microbiota shifts.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea;
| | - Gwangpyo Ko
- Faculty of Biotechnology, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
| | - Kyeoung Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.C.K.); (J.-S.K.)
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.C.K.); (J.-S.K.)
| | - Tatsuya Unno
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea;
- Faculty of Biotechnology, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-64-754-3354; Fax: +82-64-756-3351
| |
Collapse
|
13
|
Simon L, Ferguson TF, Vande Stouwe C, Brashear MM, Primeaux SD, Theall KP, Welsh DA, Molina PE. Prevalence of Insulin Resistance in Adults Living with HIV: Implications of Alcohol Use. AIDS Res Hum Retroviruses 2020; 36:742-752. [PMID: 32449647 DOI: 10.1089/aid.2020.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unhealthy alcohol use is prevalent among persons living with HIV (PLWH). Aging and increased survival of PLWH on antiretroviral therapy (ART) are complicated by metabolic dysregulation and increased risk of insulin resistance (IR) and diabetes mellitus. The objective of this study was to determine the prevalence and association of IR with unhealthy alcohol use in adult in-care PLWH. A cross-sectional analysis of metabolic parameters and alcohol use characteristics was conducted in adult PLWH enrolled in the New Orleans Alcohol Use in HIV (NOAH) Study. IR was estimated using homeostatic model assessment (HOMA-IR), triglyceride index, and McAuley index and beta cell function (HOMA-β). Alcohol use was assessed using Alcohol Use Disorders Identification Test (AUDIT)-C, 30-day timeline followback (TLFB), lifetime drinking history, and phosphatidylethanol (PEth) measures. A total of 351 participants, with a mean age [±standard deviation (SD)] of 48.1 ± 10.4 years, were included (69.6% male). Of these, 57% had an AUDIT-C score of 4 or greater, indicating unhealthy alcohol use. Mean body mass index (BMI) was 27.2 ± 7.0 kg/m2, 36.4% met criteria for metabolic syndrome, and 14% were diagnosed with diabetes. After adjusting for education, race, BMI, smoking status, viral load, CD4 count, use of protease inhibitors, statins, or metformin; physical activity and diabetes diagnosis, HOMA-IR, and McAuley index were negatively associated with AUDIT-C, and HOMA-β cell function was negatively associated with AUDIT-C, PEth, and TLFB. Cross-sectional analysis of NOAH participants indicates that alcohol use is associated with decreased HOMA-β cell function, suggesting dysregulation of endocrine pancreatic function.
Collapse
Affiliation(s)
- Liz Simon
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tekeda F. Ferguson
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Curtis Vande Stouwe
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Meghan M. Brashear
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Stefany D. Primeaux
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Katherine P. Theall
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - David A. Welsh
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Pulmonary/Critical Care and Allergy/Immunology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
14
|
Lee YJ, Kim JY, Lee DY, Park KJ, Kim GH, Kim JE, Roh GS, Lim JY, Koo S, Lim NK, Park HY, Kim WH. Alcohol consumption before pregnancy causes detrimental fetal development and maternal metabolic disorders. Sci Rep 2020; 10:10054. [PMID: 32572070 PMCID: PMC7308355 DOI: 10.1038/s41598-020-66971-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption before or during pregnancy poses serious health risks to the fetus; however, the underlying mechanisms involved remain obscure. Here, we investigated whether ethanol consumption before pregnancy affects maternal or fetal health and whether pharmacological inhibition of CYP2E1, a major ethanol oxidation enzyme, by 4-methylpyrazole (4-MP) has therapeutic effects. We found that ethanol consumption (5%) 2 weeks before pregnancy resulted in a decrease in the number of viable fetuses and abnormal fetal development, and these effects were accompanied by impaired maternal glucose homeostasis and hepatic steatosis during pregnancy. Neonates of ethanol-fed mice had postnatal macrosomia and significantly decreased growth rates during the lactation period. However, treatment with 4-MP, a CYP2E1 inhibitor, markedly ameliorated the reduction in insulin action and glucose disposal responsiveness in the livers of ethanol-fed mice. Blockage of CYP2E1 significantly reduced the alteration in hepatic lipid deposition, fatty acid oxidation, mitochondrial energy status, and macrophage infiltration observed in ethanol-fed mice. Finally, there was a positive correlation between postnatal macrosomia or growth retardation and increased inflammatory responses. Collectively, our study suggests that even moderate ethanol intake may be detrimental to fetal development and may cause growth retardation through maternal metabolic disorders.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Ji Yeon Kim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Dae Yeon Lee
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Keon Jae Park
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Gyu Hee Kim
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Jeong Eun Kim
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Joong Yeon Lim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Seul Koo
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Nam Kyoo Lim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyun Young Park
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea. .,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
15
|
Fang J, Ji YX, Zhang P, Cheng L, Chen Y, Chen J, Su Y, Cheng X, Zhang Y, Li T, Zhu X, Zhang XJ, Wei X. Hepatic IRF2BP2 Mitigates Nonalcoholic Fatty Liver Disease by Directly Repressing the Transcription of ATF3. Hepatology 2020; 71:1592-1608. [PMID: 31529495 DOI: 10.1002/hep.30950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Although knowledge regarding the pathogenesis of nonalcoholic fatty liver disease (NAFLD) has profoundly grown in recent decades, the internal restrictive mechanisms remain largely unknown. We have recently reported that the transcription repressor interferon regulatory factor-2 binding protein 2 (IRF2BP2) is enriched in cardiomyocytes and inhibits pathological cardiac hypertrophy in mice. Notably, IRF2BP2 is abundantly expressed in hepatocytes and dramatically down-regulated in steatotic livers, whereas the role of IRF2BP2 in NAFLD is unknown. APPROACH AND RESULTS Herein, using gain-of-function and loss-of-function approaches in mice, we demonstrated that while hepatocyte-specific Irf2bp2 knockout exacerbated high-fat diet-induced hepatic steatosis, insulin resistance and inflammation, hepatic Irf2bp2 overexpression protected mice from these metabolic disorders. Moreover, the inhibitory role of IRF2BP2 on hepatosteatosis is conserved in a human hepatic cell line in vitro. Combinational analysis of digital gene expression and chromatin immunoprecipitation sequencing identified activating transcription factor 3 (ATF3) to be negatively regulated by IRF2BP2 in NAFLD. Chromatin immunoprecipitation and luciferase assay substantiated the fact that IRF2BP2 is a bona fide transcription repressor of ATF3 gene expression via binding to its promoter region. Functional studies revealed that ATF3 knockdown significantly relieved IRF2BP2 knockout-exaggerated hepatosteatosis in vitro. CONCLUSION IRF2BP2 is an integrative restrainer in controlling hepatic steatosis, insulin resistance, and inflammation in NAFLD through transcriptionally repressing ATF3 gene expression.
Collapse
Affiliation(s)
- Jing Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Lin Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Su
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuehai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Rasineni K, Kubik JL, Knight KL, Hall L, Casey CA, Kharbanda KK. Ghrelin regulates adipose tissue metabolism: Role in hepatic steatosis. Chem Biol Interact 2020; 322:109059. [PMID: 32171850 PMCID: PMC7716754 DOI: 10.1016/j.cbi.2020.109059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/10/2020] [Indexed: 02/09/2023]
Abstract
Fatty liver is the earliest and most common response of the liver to consumption of excessive alcohol. Steatosis can predispose the fatty liver to develop progressive liver damage. Chief among the many mechanisms involved in development of hepatic steatosis is dysregulation of insulin-mediated adipose tissue metabolism. Particularly, it is the enhanced adipose lipolysis-derived free fatty acids and their delivery to the liver that ultimately results in hepatic steatosis. The adipose-liver axis is modulated by hormones, particularly insulin and adiponectin. In recent studies, we demonstrated that an alcohol-induced increase in serum ghrelin levels impairs insulin secretion from pancreatic β-cells. The consequent reduction in circulating insulin levels promotes adipose lipolysis and mobilization of fatty acids to the liver to ultimately contribute to hepatic steatosis. Because many tissues, including adipose tissue, express ghrelin receptor we hypothesized that ghrelin may directly affect energy metabolism in adipocytes. We have exciting new preliminary data which shows that treatment of premature 3T3-L1 adipocytes with ghrelin impairs adipocyte differentiation and inhibits lipid accumulation in the tissue designed to store energy in the form of fat. We further observed that ghrelin treatment of differentiated adipocytes significantly inhibited secretion of adiponectin, a hepatoprotective hormone that reduces lipid synthesis and promotes lipid oxidation. These results were corroborated by our observations of a significant increase in serum adiponectin levels in ethanol-fed rats treated with a ghrelin receptor antagonist verses the un-treated ethanol-fed rats. Interestingly, in adipocytes, ghrelin also increases secretion of interleukin-6 (IL-6) and CCL2 (chemokine [C-C motif] ligand 2), cytokines which promote hepatic inflammation and progression of liver disease. To summarize, the alcohol-induced increase in serum ghrelin levels dysregulates adipose-liver interaction and promotes hepatic steatosis by increasing the free fatty acid released from adipose for hepatic uptake, and by altering adiponectin and cytokine secretion. Taken together, our data indicates that targeting the activity of ghrelin may be a powerful treatment strategy.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA.
| | - Jacy L Kubik
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Kurt L Knight
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Lukas Hall
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
17
|
Rasineni K, Srinivasan MP, Balamurugan AN, Kaphalia BS, Wang S, Ding WX, Pandol SJ, Lugea A, Simon L, Molina PE, Gao P, Casey CA, Osna NA, Kharbanda KK. Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and Pancreatitis Development. Biomolecules 2020; 10:669. [PMID: 32349207 PMCID: PMC7277520 DOI: 10.3390/biom10050669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic excessive alcohol use is a well-recognized risk factor for pancreatic dysfunction and pancreatitis development. Evidence from in vivo and in vitro studies indicates that the detrimental effects of alcohol on the pancreas are from the direct toxic effects of metabolites and byproducts of ethanol metabolism such as reactive oxygen species. Pancreatic dysfunction and pancreatitis development are now increasingly thought to be multifactorial conditions, where alcohol, genetics, lifestyle, and infectious agents may determine the initiation and course of the disease. In this review, we first highlight the role of nonoxidative ethanol metabolism in the generation and accumulation of fatty acid ethyl esters (FAEEs) that cause multi-organellar dysfunction in the pancreas which ultimately leads to pancreatitis development. Further, we discuss how alcohol-mediated altered autophagy leads to the development of pancreatitis. We also provide insights into how alcohol interactions with other co-morbidities such as smoking or viral infections may negatively affect exocrine and endocrine pancreatic function. Finally, we present potential strategies to ameliorate organellar dysfunction which could attenuate pancreatic dysfunction and pancreatitis severity.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Mukund P. Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Appakalai N. Balamurugan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Bhupendra S. Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Peter Gao
- Program Director, Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-6902, USA;
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
18
|
Luo G, Xiao L, Wang D, Wang N, Luo C, Yang X, Hao L. Resveratrol protects against ethanol-induced impairment of insulin secretion in INS-1 cells through SIRT1-UCP2 axis. Toxicol In Vitro 2020; 65:104808. [PMID: 32087266 DOI: 10.1016/j.tiv.2020.104808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
SIRT1 has been proposed to enhance insulin secretion in β-cell through repressing the expression of uncoupling protein2 (UCP2), but whether ethanol-induced β-cell dysfunction is mediated by the disrupted SIRT1-UCP2 axis remains unknown. This study was conducted to explore the underlying mechanisms by which ethanol resulted in β-cell dysfunction and the potential protective effects of resveratrol in this process. INS-1 cells (rat pancreatic β-cell line) were cultured with ethanol in the presence or absence of resveratrol (2.5, 12.5 μmol/L). The results showed that ethanol exposure reduced glucose-stimulated insulin secretion, ATP production and SIRT1 expression but increased UCP2 expression, while supplementation with resveratrol restored the function of INS-1 cell by upregulating SIRT1 and inhibiting UCP2. Moreover, the critical role of SIRT1-UCP2 axis was further supported by the results that SIRT1 activator SRT1720 reversed ethanol-induced impairment of glucose-stimulated insulin secretion by decreasing UCP2, while SIRT1 inhibitor Ex527 abolished the beneficial effects of resveratrol. Meanwhile, NAD+ booster nicotinamide mononucleotide also counteracted the deleterious effects of ethanol by increasing SIRT1, suggesting the regulation of SIRT1-UCP2 axis may be associated with cellular NAD+/NADH ratio. In conclusion, our observations imply that ethanol induces impaired insulin secretion from INS-1 cell through disrupting SIRT1-UCP2 axis, while resveratrol may reverse this process by augmenting SIRT1 and inhibiting UCP2.
Collapse
Affiliation(s)
- Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Assiri MA, Ali HR, Marentette JO, Yun Y, Liu J, Hirschey MD, Saba LM, Harris PS, Fritz KS. Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Hum Genomics 2019; 13:65. [PMID: 31823815 PMCID: PMC6902345 DOI: 10.1186/s40246-019-0251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic alcohol consumption is a significant cause of liver disease worldwide. Several biochemical mechanisms have been linked to the initiation and progression of alcoholic liver disease (ALD) such as oxidative stress, inflammation, and metabolic dysregulation, including the disruption of NAD+/NADH. Indeed, an ethanol-mediated reduction in hepatic NAD+ levels is thought to be one factor underlying ethanol-induced steatosis, oxidative stress, steatohepatitis, insulin resistance, and inhibition of gluconeogenesis. Therefore, we applied a NAD+ boosting supplement to investigate alterations in the pathogenesis of early-stage ALD. METHODS To examine the impact of NAD+ therapy on the early stages of ALD, we utilized nicotinamide mononucleotide (NMN) at 500 mg/kg intraperitoneal injection every other day, for the duration of a Lieber-DeCarli 6-week chronic ethanol model in mice. Numerous strategies were employed to characterize the effect of NMN therapy, including the integration of RNA-seq, immunoblotting, and metabolomics analysis. RESULTS Our findings reveal that NMN therapy increased hepatic NAD+ levels, prevented an ethanol-induced increase in plasma ALT and AST, and changed the expression of 25% of the genes that were modulated by ethanol metabolism. These genes were associated with a number of pathways including the MAPK pathway. Interestingly, our analysis revealed that NMN treatment normalized Erk1/2 signaling and prevented an induction of Atf3 overexpression. CONCLUSIONS These findings reveal previously unreported mechanisms by which NMN supplementation alters hepatic gene expression and protein pathways to impact ethanol hepatotoxicity in an early-stage murine model of ALD. Overall, our data suggest further research is needed to fully characterize treatment paradigms and biochemical implications of NAD+-based interventions.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hadi R Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Youngho Yun
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Matthew D Hirschey
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, 27710, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
20
|
Ghose S, Ghosh S, Tanwar VS, Tolani P, Kutum R, Sharma A, Bhardwaj N, Shamsudheen K, Verma A, Jayarajan R, Dash D, Sivasubbu S, Scaria V, Seth S, Sengupta S. Investigating Coronary Artery Disease methylome through targeted bisulfite sequencing. Gene 2019; 721:144107. [DOI: 10.1016/j.gene.2019.144107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023]
|
21
|
Rasineni K, Kubik JL, Casey CA, Kharbanda KK. Inhibition of Ghrelin Activity by Receptor Antagonist [d-Lys-3] GHRP-6 Attenuates Alcohol-Induced Hepatic Steatosis by Regulating Hepatic Lipid Metabolism. Biomolecules 2019; 9:517. [PMID: 31546643 PMCID: PMC6843513 DOI: 10.3390/biom9100517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023] Open
Abstract
Alcoholic steatosis, characterized by an accumulation of triglycerides in hepatocytes, is one of the earliest pathological changes in the progression of alcoholic liver disease. In our previous study, we showed that alcohol-induced increase in serum ghrelin levels impair insulin secretion from pancreatic β-cells. The consequent reduction in the circulating insulin levels promote adipose-derived fatty acid mobilization to ultimately contribute to hepatic steatosis. In this study, we determined whether inhibition of ghrelin activity in chronic alcohol-fed rats could improve hepatic lipid homeostasis at the pancreas-adipose-liver axis. Adult Wistar rats were fed Lieber-DeCarli control or an ethanol liquid diet for 7 weeks. At 6 weeks, a subset of rats in each group were injected with either saline or ghrelin receptor antagonist, [d-Lys-3] GHRP-6 (DLys; 9 mg/kg body weight) for 5 days and all rats were sacrificed 2 days later. DLys treatment of ethanol rats improved pancreatic insulin secretion, normalized serum insulin levels, and the adipose lipid metabolism, as evidenced by the decreased serum free fatty acids (FFA). DLys treatment of ethanol rats also significantly decreased the circulating FFA uptake, de novo hepatic fatty acid synthesis ultimately attenuating alcoholic steatosis. To summarize, inhibition of ghrelin activity reduced alcoholic steatosis by improving insulin secretion, normalizing serum insulin levels, inhibiting adipose lipolysis, and preventing fatty acid uptake and synthesis in the liver. Our studies provided new insights on the important role of ghrelin in modulating the pancreas-adipose-liver, and promoting adipocyte lipolysis and hepatic steatosis. The findings offer a therapeutic approach of not only preventing alcoholic liver injury but also treating it.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | - Jacy L Kubik
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| |
Collapse
|
22
|
Rasineni K, Thomes PG, Kubik JL, Harris EN, Kharbanda KK, Casey CA. Chronic alcohol exposure alters circulating insulin and ghrelin levels: role of ghrelin in hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G453-G461. [PMID: 30702902 PMCID: PMC6483023 DOI: 10.1152/ajpgi.00334.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 01/31/2023]
Abstract
Fatty liver is the earliest response of the liver to excessive ethanol consumption. Central in the development of alcoholic steatosis is increased mobilization of nonesterified free fatty acids (NEFAs) to the liver from the adipose tissue. In this study, we hypothesized that ethanol-induced increase in ghrelin by impairing insulin secretion, could be responsible for the altered lipid metabolism observed in adipose and liver tissue. Male Wistar rats were fed for 5-8 wk with control or ethanol Lieber-DeCarli diet, followed by biochemical analyses in serum and liver tissues. In addition, in vitro studies were conducted on pancreatic islets isolated from experimental rats. We found that ethanol increased serum ghrelin and decreased serum insulin levels in both fed and fasting conditions. These results were corroborated by our observations of a significant accumulation of insulin in pancreatic islets of ethanol-fed rats, indicating that its secretion was impaired. Furthermore, ethanol-induced reduction in circulating insulin was associated with lower adipose weight and increased NEFA levels observed in these rats. Additionally, we found that increased concentration of serum ghrelin was due to increased synthesis and maturation in the stomach of the ethanol-fed rats. We also report that in addition to its effect on the pancreas, ghrelin can also directly act on hepatocytes via the ghrelin receptors and promote fat accumulation. In conclusion, alcohol-induced elevation of circulating ghrelin levels impairs insulin secretion. Consequently, reduced circulating insulin levels likely contribute to increased free fatty acid mobilization from adipose tissue to liver, thereby contributing to hepatic steatosis. NEW & NOTEWORTHY Our studies are the first to report that ethanol-induced increases in ghrelin contribute to impaired insulin secretion, which results in the altered lipid metabolism observed in adipose and liver tissue in the setting of alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Paul G Thomes
- Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Jacy L Kubik
- Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
23
|
Peng M, Zhang J, Zeng T, Hu X, Min J, Tian S, Wang Y, Liu G, Wan L, Huang Q, Hu S, Chen L. Alcohol consumption and diabetes risk in a Chinese population: a Mendelian randomization analysis. Addiction 2019; 114:436-449. [PMID: 30326548 DOI: 10.1111/add.14475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/03/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
AIM To assess the causality between alcohol intake, diabetes risk and related traits. DESIGN Mendelian randomization (MR) study. Subgroup analysis, standard instrumental variable analysis and local average treatment effect (LATE) methods were applied to assess linear and non-linear causality. SETTING China. PARTICIPANTS A total of 4536 participants, including 721 diabetes cases. FINDINGS Carriage of an ALDH2 rs671 A allele reduced alcohol consumption by 44.63% [95% confidence interval (CI) = -49.44%, -39.37%]. In males, additional carriage of an A allele was significantly connected to decreased diabetes risk for the overall population [odds ratio (OR) = 0.716, 95% CI = 0.567-0.904, P = 0.005] or moderate drinkers (OR = 0.564, 95% CI = 0.355-0.894, P = 0.015). In instrumental variable (IV) analysis, increasing alcohol consumption by 1.7-fold was associated with an incidence-rate ratio of 1.32 (95% CI = 1.06-1.67, P = 0.014) for diabetes risk, and elevated alcohol intake was causally connected to natural log-transformed fasting, 2-hour post-load plasma glucose (β = 0.036, 95% CI = 0.018-0.054; β = 0.072, 95% CI = 0.035-0.108) and insulin resistance [homeostatic model assessment for IR (HOMA-IR] (β = 0.104, 95% CI = 0.039-0.169), but was not associated with beta-cell function (HOMA-beta). In addition, the LATE method did not identify significant U-shaped causality between alcohol consumption and diabetes-related traits. In females, the effects of alcohol intake on all the outcomes were non-significant. CONCLUSION Among men in China, higher alcohol intake appears to be causally associated with increased diabetes risk and worsened related traits, even for moderate drinkers. This study found no significant U-shaped causality between alcohol consumption and diabetes-related traits.
Collapse
Affiliation(s)
- Miaomiao Peng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghua Tian
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Wan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulan Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Endocrinology, Bao'an People's Hospital, Shenzhen, China
| | - Shengqing Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Nie Y, Li J, Jin Y, Nyomba BLG, Cattini PA, Vakili H. Negative Effects of Cyclic Palmitate Treatment on Glucose Responsiveness and Insulin Production in Mouse Insulinoma Min6 Cells Are Reversible. DNA Cell Biol 2019; 38:395-403. [PMID: 30702352 DOI: 10.1089/dna.2018.4558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pancreatic β-cell failure is characterized by compromised insulin secretion in response to glucose, which ultimately results in hyperglycemia, the clinical hallmark of type 2 diabetes mellitus (T2DM). Acute exposure to plasma free fatty acids (FFAs) potentiates glucose stimulated insulin secretion (GSIS), while chronic exposure impairs GSIS, and the latter has been associated with the mechanism of β cell failure in obesity linked T2DM. By contrast, growth hormone (GH) signaling has been linked positively to GSIS in β cells. Numerous studies have examined chronic exposure of β cells to elevated FFAs both with in vivo cohorts and in vitro models. Little attention, however, has been given to the fluctuation of plasma FFA levels due to rhythmic effects that are affected by daily diet and fat intake. Mouse insulinoma Min6 cells were exposed to cyclic/daily palmitate treatment over 2 and 3 days to assess effects on GSIS. Cyclic/daily palmitate treatment with a period of recovery negatively affected GSIS in a dose-dependent manner. Removal of palmitate after two cycles/day resulted in reversal of the effect on GSIS, which was also reflected by relative gene expression involved in insulin biosynthesis (Ins1, Ins2, Pdx1, and MafA) and GSIS (glucose 2 transporter and glucokinase). Modest positive effects on GSIS and glucokinase transcript levels were also observed when Min6 cells were cotreated with human GH and palmitate. These observations indicate that like continuous palmitate treatment, cyclic exposure to palmitate can acutely impair GSIS over 48 and 72 h. However, they also suggest that the negative effects of short periods of exposure to FFAs on β cell function remain reversible.
Collapse
Affiliation(s)
- Yuanyuan Nie
- 1 Stem Cell and Cancer Center, Jilin University, Changchun, Jilin, China
| | - Jiaxuan Li
- 1 Stem Cell and Cancer Center, Jilin University, Changchun, Jilin, China
| | - Yan Jin
- 2 Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - B L Grégoire Nyomba
- 3 Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- 2 Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hana Vakili
- 4 Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE Hexokinases are key enzymes that are responsible for the first reaction of glycolysis, but they also moonlight other cellular processes, including mitochondrial redox signaling regulation. Modulation of hexokinase activity and spatiotemporal location by reactive oxygen and nitrogen species as well as other gasotransmitters serves as the basis for a unique, underexplored method of tight and flexible regulation of these fundamental enzymes. Recent Advances: Redox modifications of thiols serve as a molecular code that enables the precise and complex regulation of hexokinases. Redox regulation of hexokinases is also used by multiple parasites to cause widespread and severe diseases, including malaria, Chagas disease, and sleeping sickness. Redox-active molecules affect each other, and the moonlighting activity of hexokinases provides another feedback loop that affects the cellular redox status and is hijacked in malignantly transformed cells. CRITICAL ISSUES Several compounds affect the redox status of hexokinases in vivo. These include the dehydroascorbic acid (oxidized form of vitamin C), pyrrolidinium porrolidine-1-carbodithioate (contraceptive), peroxynitrite (product of ethanol metabolism), alloxan (a glucose analog), and isobenzothiazolinone ebselen. However, very limited information is available regarding which amino acid residues in hexokinases are affected by redox signaling. Except in cases of monogenic diabetes, direct evidence is absent for disease phenotypes that are associated with variations within motifs that are susceptible to redox signaling. FUTURE DIRECTIONS Further studies should address the propensity of hexokinases and their disease-associated variants to participate in redox regulation. Robust and straightforward proteomic methods are needed to understand the context and consequences of hexokinase-mediated redox regulation in health and disease.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
26
|
Beddow SA, Gattu AK, Vatner DF, Paolella L, Alqarzaee A, Tashkandi N, Popov VB, Church CD, Rodeheffer MS, Cline GW, Geisler JG, Bhanot S, Samuel VT. PEPCK1 Antisense Oligonucleotide Prevents Adiposity and Impairs Hepatic Glycogen Synthesis in High-Fat Male Fed Rats. Endocrinology 2019; 160:205-219. [PMID: 30445425 PMCID: PMC6307100 DOI: 10.1210/en.2018-00630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022]
Abstract
The increased hepatic gluconeogenesis in type 2 diabetes mellitus has often been ascribed to increased transcription of phosphoenolpyruvate carboxykinase 1, cystolic form (PEPCK1), although recent evidence has questioned this attribution. To assess the metabolic role of PEPCK1, we treated regular chow fed and high-fat fed (HFF) male Sprague-Dawley rats with a 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO) against PEPCK1 and compared them with control ASO-treated rats. PEPCK1 ASO effectively decreased PEPCK1 expression in the liver and white adipose tissue. In chow fed rats, PEPCK1 ASO did not alter adiposity, plasma glucose, or insulin. In contrast, PEPCK1 ASO decreased the white adipose tissue mass in HFF rats but without altering basal rates of lipolysis, de novo lipogenesis, or glyceroneogenesis in vivo. Despite the protection from adiposity, hepatic insulin sensitivity was impaired in HFF PEPCK1 ASO-treated rats. PEPCK1 ASO worsened hepatic steatosis, although without additional impairments in hepatic insulin signaling or activation of inflammatory signals in the liver. Instead, the development of hepatic insulin resistance and the decrease in hepatic glycogen synthesis during a hyperglycemic clamp was attributed to a decrease in hepatic glucokinase (GCK) expression and decreased synthesis of glycogen via the direct pathway. The decrease in GCK expression was associated with increased expression of activating transcription factor 3, a negative regulator of GCK transcription. These studies have demonstrated that PEPCK1 is integral to coordinating cellular metabolism in the liver and adipose tissue, although it does not directly effect hepatic glucose production or adipose glyceroneogenesis.
Collapse
Affiliation(s)
- Sara A Beddow
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Arijeet K Gattu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Daniel F Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lauren Paolella
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | | | - Nedda Tashkandi
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Violeta B Popov
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher D Church
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| |
Collapse
|
27
|
Park S, Liu M, Kang S. Alcohol Intake Interacts with CDKAL1, HHEX, and OAS3 Genetic Variants, Associated with the Risk of Type 2 Diabetes by Lowering Insulin Secretion in Korean Adults. Alcohol Clin Exp Res 2018; 42:2326-2336. [PMID: 30207601 DOI: 10.1111/acer.13888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since alcohol intake increases the prevalence of type 2 diabetes (T2DM) in Koreans, we tested the hypothesis that the interactions of genetic variants involved in β-cell function and mass with alcohol intake increase the T2DM risk. METHODS The single nucleotide polymorphisms (SNPs) were selected by genome-wide association study for insulin secretion after adjusting for age, gender, area of residence, body mass index, and alcohol intake (p < 1 × 10-4 ) in 8,842 middle-aged adults in the Ansan/Ansung cohort. Genetic risk scores (GRSs) were calculated by summing the risk alleles of 4 selected SNPs, CDKAL1 rs7754840 and rs9460546, HHEX rs5015480, and OAS3 rs2072134. The GRSs were categorized into 3 groups by tertiles, and the association between GRS and insulin secretion was measured using logistic regression after adjusting for confounding factors in the Ansan/Ansung cohort. The results were confirmed by the Rural cohort. RESULTS HOMA-IR was higher and HOMA-B was much lower in the High-GRS than the Low-GRS in both cohorts. T2DM risk was higher by approximately 1.5-fold in the High-GRS than in the Low-GRS in both cohorts. In the High-GRS group, HOMA-B decreased by 0.89- and 0.62-fold in comparison with the Low-GRS in the Ansan/Ansung cohort and Rural cohort. The GRS interacted with alcohol intake to increase the risk of developing T2DM in the Ansan/Ansung cohort (p = 0.036) and Rural cohort (p = 0.071). The risk of T2DM increased in the High-GRS group with high alcohol intake and it was associated with decreased HOMA-B. High alcohol intake decreased HOMA-B regardless of GRS, and HOMA-B was lower in the descending order of Medium-GRS, Low-GRS, and High-GRS. However, HOMA-IR was not altered by alcohol intake, but was elevated in the High-GRS more than in the other groups. CONCLUSIONS Subjects with a High-GRS had an elevated risk of T2DM even with moderate alcohol intakes due to lower HOMA-B. High alcohol intake appears to be a risk factor for all Asians regardless of alcohol intake.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Meiling Liu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
28
|
Atf3 induction is a therapeutic target for obesity and metabolic diseases. Biochem Biophys Res Commun 2018; 504:903-908. [PMID: 30224057 DOI: 10.1016/j.bbrc.2018.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Activating transcription factor 3 (Atf3) has been previously demonstrated to impact obesity and metabolism. However, a metabolic role of Atf3 in mice remains debatable. We investigated the role of Atf3 in mice and further investigated Atf3 expression as a therapeutic target for obesity and metabolic diseases. Atf3 knockout (KO) mice fed with a high fat diet (HFD) aggravated weight gain and impaired glucose metabolism compared to littermate control wild type (WT) mice. Atf3 KO aged mice fed with a chow diet (CD) for longer than 10 months also displayed increased body weight and fat mass compared to WT aged mice. We also assessed requirements of Atf3 in a phytochemical mediated anti-obese effect. Effect of sulfuretin, a previously known phytochemical Atf3 inducer, in counteracting weight gain and improving glucose tolerance was almost completely abolished in the absence of Atf3, indicating that Atf3 induction can be a molecular target for preventing obesity and metabolic diseases. We further identified other Atf3 small molecule inducers that exhibit inhibitory effects on lipid accumulation in adipocytes. These data highlight the role of Atf3 in obesity and further suggest the use of chemical Atf3 inducers for prevention of obesity and metabolic diseases.
Collapse
|
29
|
Leem J, Shim HM, Cho H, Park JH. Octanoic acid potentiates glucose-stimulated insulin secretion and expression of glucokinase through the olfactory receptor in pancreatic β-cells. Biochem Biophys Res Commun 2018; 503:278-284. [PMID: 29885841 DOI: 10.1016/j.bbrc.2018.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 12/30/2022]
Abstract
Olfactory receptors (ORs) are G protein-coupled receptors that mediate olfactory chemosensation, leading to the perception of smell. ORs are expressed in many tissues, but their functions are largely unknown. Here, we show that the olfactory receptor Olfr15 is highly and selectively expressed in both mouse pancreatic β-cells and MIN6 cells. In addition, octanoic acid (OA), a medium-chain fatty acid, potentiates glucose-stimulated insulin secretion (GSIS). The OA-induced enhancement of GSIS was inhibited by Olfr15 knockdown. Treatment with a PLC inhibitor or an Ins(1,4,5)P3 receptor (IP3R) antagonist also blocked the OA-induced enhancement of GSIS. These results suggest that OA potentiates GSIS via Olfr15 though the PLC-IP3 pathway. Furthermore, long-term treatment with OA increased cellular glucose uptake in MIN6 cells by up-regulating the expression of glucokinase (GK). Moreover, this process was blocked by an IP3R antagonist and a Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor. Similarly, OA stimulated GK promoter activity, while either Olfr15 or CaMKIV knockdown blocked the stimulatory effect of OA on GK promoter activity. These results suggest that long-term treatment of OA induces GK promoter activity via Olfr15 through the IP3-CaMKK/CaMKIV pathway. In islets from type 2 diabetic mice, the expression level of Olfr15 and the OA-induced enhancement of GSIS were strongly reduced. Collectively, our results highlight the crucial role of the olfactory receptor Olfr15 in potentiating GSIS in pancreatic β-cells, suggesting that Olfr15 may be an important therapeutic target in type 2 diabetes.
Collapse
Affiliation(s)
- Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu, 42472, South Korea
| | - Hae-Min Shim
- Department of Physiology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Hochan Cho
- Division of Endocrinology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, 41931, South Korea
| | - Jae-Hyung Park
- Department of Physiology, School of Medicine, Keimyung University, Daegu, 42601, South Korea; Institute for Medical Science, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
30
|
Pai CS, Sharma PK, Huang HT, Loganathan S, Lin H, Hsu YL, Phasuk S, Liu IY. The Activating Transcription Factor 3 ( Atf3) Homozygous Knockout Mice Exhibit Enhanced Conditioned Fear and Down Regulation of Hippocampal GELSOLIN. Front Mol Neurosci 2018. [PMID: 29515366 PMCID: PMC5826182 DOI: 10.3389/fnmol.2018.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genetic and molecular basis underlying fear memory formation is a key theme in anxiety disorder research. Because activating transcription factor 3 (ATF3) is induced under stress conditions and is highly expressed in the hippocampus, we hypothesize that ATF3 plays a role in fear memory formation. We used fear conditioning and various other paradigms to test Atf3 knockout mice and study the role of ATF3 in processing fear memory. The results demonstrated that the lack of ATF3 specifically enhanced the expression of fear memory, which was indicated by a higher incidence of the freeze response after fear conditioning, whereas the occurrence of spatial memory including Morris Water Maze and radial arm maze remained unchanged. The enhanced freezing behavior and normal spatial memory of the Atf3 knockout mice resembles the fear response and numbing symptoms often exhibited by patients affected with posttraumatic stress disorder. Additionally, we determined that after fear conditioning, dendritic spine density was increased, and expression of Gelsolin, the gene encoding a severing protein for actin polymerization, was down-regulated in the bilateral hippocampi of the Atf3 knockout mice. Taken together, our results suggest that ATF3 may suppress fear memory formation in mice directly or indirectly through mechanisms involving modulation of actin polymerization.
Collapse
Affiliation(s)
- Chia-Sheng Pai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Pranao K Sharma
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsien-Ting Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | | | - Heng Lin
- Department of Physiology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Luan Hsu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ingrid Y Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
31
|
Inhibition of Y1 receptor signaling improves islet transplant outcome. Nat Commun 2017; 8:490. [PMID: 28887564 PMCID: PMC5591241 DOI: 10.1038/s41467-017-00624-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 02/08/2023] Open
Abstract
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.
Collapse
|
32
|
Luo G, Huang B, Qiu X, Xiao L, Wang N, Gao Q, Yang W, Hao L. Resveratrol attenuates excessive ethanol exposure induced insulin resistance in rats via improving NAD + /NADH ratio. Mol Nutr Food Res 2017; 61. [PMID: 28688179 DOI: 10.1002/mnfr.201700087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/14/2022]
Abstract
SCOPE Resveratrol has been shown to improve insulin resistance via activating the NAD+ -dependent deacetylase SIRT1, but the effects of resveratrol on ethanol-induced insulin resistance remain unclear. This study was designed to explore the potential mechanism by which resveratrol ameliorated ethanol-induced insulin resistance, focusing on its regulations on the ratio of NAD+ /NADH and SIRT1 expression. METHODS AND RESULTS Male Sprague-Dawley rats were fed either control or ethanol liquid diets containing 0.8, 1.6 and 2.4 g/kg·bw ethanol with or without 100 mg/kg·bw resveratrol for 22 weeks. Resveratrol improved ethanol (2.4 g/kg·bw) induced reductions in insulin sensitivity, SIRT1 expression (51%, P < 0.05), NAD+ /NADH ratio (196%, P < 0.01) as well as the expression and activity of ALDH2 while decreased the augmentations in the expression and activity of ADH and CYP2E1. In primary rat hepatocytes, ethanol exposure (25 mmol/L, 24 h) similarly decreased SIRT1 expression and NAD+ /NADH ratio (33%, P < 0.05; 32%, P < 0.01), and 0.1 μmol/L resveratrol treatment reversed these decreases and inhibited the expressions of ADH and CYP2E1. CONCLUSION Resveratrol exhibits benefits against ethanol-induced insulin resistance via improving the ratio of NAD+ /NADH to regulate SIRT1, which is associated with the modulation of ethanol metabolism enzymes.
Collapse
Affiliation(s)
- Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingqing Huang
- Department of Medical Affairs, the Second People's Hospital of Hefei, Hefei, China
| | - Xiang Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Cheng X, Liu J, Shan H, Sun L, Huang C, Yan Q, Jiang R, Ding L, Jiang Y, Zhou J, Yan G, Sun H. Activating transcription factor 3 promotes embryo attachment via up-regulation of leukemia inhibitory factor in vitro. Reprod Biol Endocrinol 2017; 15:42. [PMID: 28577574 PMCID: PMC5457579 DOI: 10.1186/s12958-017-0260-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 05/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A receptive endometrium is essential for maternal-embryonic molecular communication during implantation. However, the specific molecular regulatory mechanisms of the endometrial capacity remain poorly understood. Here, we examined activating transcription factor 3 (ATF3) expression in human endometria and the functional effect of ATF3 on embryo attachment in vitro. METHODS Immunohistochemistry (IHC) was used to assess the ATF3 expression patterns in human endometria. Quantitative real-time PCR (qRT-PCR), western blotting and immunofluorescence (IF) studies were applied to explore ATF3 expression in Ishikawa cells upon estrogen (E2) and medroxyprogesterone acetate (MPA) treatment. qRT-PCR and western blotting were performed to inspect LIF (leukemia inhibitory factor) expression after enhancement or inhibition of ATF3, and a luciferase reporter assay and ChIP-PCR were used to confirm the regulatory mechanism of ATF3 to LIF. Endometrial epithelial capacity was assessed by an in vitro model of attachment of BeWo spheroids to Ishikawa cells. Western blotting was performed to compare the expression of ATF3 in endometrial samples of recurrent implantation failure (RIF) patients with that in samples from fertile women (FER) who had undergone no less than one successful embryo transplantation. RESULTS ATF3 was located in human endometrial epithelial cells and stromal cells and was significantly induced by E2 and MPA in Ishikawa cells. Adenovirus-mediated overexpression of ATF3 in Ishikawa cells activated LIF promoter activity and enhanced its expression. Accordingly, the stimulation of BeWo spheroid adhesion promoted by ATF3 was inhibited by pretreatment with a specific antibody against LIF via the antibody-blocking assay. Moreover, ATF3 was aberrantly decreased in the endometria of RIF patients. CONCLUSIONS Our findings suggest that ATF3 plays a significant role in regulating human endometrial receptivity and embryo attachment in vitro via up-regulation of leukemia inhibitory factor. TRIAL REGISTRATION Construction and management of the Nanjing multi-center biobank. No. 2013-081-01 . Registered 10 Dec. 2013.
Collapse
Affiliation(s)
- Xi Cheng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
- Center of Reproductive Medicine, Nanjing Jinling Hospital, the Medical School of Nanjing University, Nanjing, 210002 China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Huizhi Shan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Lihua Sun
- Reproductive Medicine Center, Shanghai Ninth People’s Hospital Affiliated Shanghai JiaTong University School of Medicine, Shanghai, 200011 People’s Republic of China
| | - Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Qiang Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
- Collaborative Innovation Platform for Reproductive Biology and Technology of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
- Collaborative Innovation Platform for Reproductive Biology and Technology of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| |
Collapse
|
34
|
Activated Transcription Factor 3 in Association with Histone Deacetylase 6 Negatively Regulates MicroRNA 199a2 Transcription by Chromatin Remodeling and Reduces Endothelin-1 Expression. Mol Cell Biol 2016; 36:2838-2854. [PMID: 27573019 DOI: 10.1128/mcb.00345-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/25/2016] [Indexed: 01/18/2023] Open
Abstract
Previous studies showed that high levels of placenta growth factor (PlGF) correlated with increased plasma levels of endothelin-1 (ET-1), a potent vasoconstrictor, in sickle cell disease (SCD). PlGF-mediated transcription of the ET-1 gene occurs by activation of hypoxia inducible factor 1α (HIF-1α) and posttranscriptionally by microRNA 199a2 (miR-199a2), which targets the 3' untranslated region (UTR) of HIF-1α mRNA. However, relatively less is known about how PlGF represses the expression of miR-199a2 located in the DNM3 opposite strand (DNM3os) transcription unit. Here, we show that PlGF induces the expression of activated transcription factor 3 (ATF3), which, in association with accessory proteins (c-Jun dimerization protein 2 [JDP2], ATF2, and histone deacetylase 6 [HDAC6]), as determined by proteomic analysis, binds to the DNM3os promoter. Furthermore, we show that association of HDAC6 with ATF3 at its binding site in this promoter was correlated with repression of miR-199a2 transcription, as shown by DNM3os transcription reporter and chromatin immunoprecipitation (ChIP) assays. Tubacin, an inhibitor of HDAC6, antagonized PlGF-mediated repression of DNM3os/pre-miR-199a2 transcription with a concomitant reduction in ET-1 levels in cultured endothelial cells. Analysis of lung tissues from Berkeley sickle (BK-SS) mice showed increased levels of ATF3 and increased expression of ET-1. Delivery of tubacin to BK-SS mice significantly attenuated plasma ET-1 and PlGF levels. Our studies demonstrated that ATF3 in conjunction with HDAC6 acts as a transcriptional repressor of the DNM3os/miR-199a2 locus.
Collapse
|
35
|
Osna NA, Feng D, Ganesan M, Maillacheruvu PF, Orlicky DJ, French SW, Tuma DJ, Kharbanda KK. Prolonged feeding with guanidinoacetate, a methyl group consumer, exacerbates ethanol-induced liver injury. World J Gastroenterol 2016; 22:8497-8508. [PMID: 27784962 PMCID: PMC5064031 DOI: 10.3748/wjg.v22.i38.8497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/27/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hypothesis that exposure to guanidinoacetate (GAA, a potent methyl-group consumer) either alone or combined with ethanol intake for a prolonged period of time would cause more advanced liver pathology thus identifying methylation defects as the initiator and stimulator for progressive liver damage. METHODS Adult male Wistar rats were fed the control or ethanol Lieber DeCarli diet in the absence or presence of GAA supplementation. At the end of 6 wk of the feeding regimen, various biochemical and histological analyses were conducted. RESULTS Contrary to our expectations, we observed that GAA treatment alone resulted in a histologically normal liver without evidence of hepatosteatosis despite persistence of some abnormal biochemical parameters. This protection could result from the generation of creatine from the ingested GAA. Ethanol treatment for 6 wk exhibited changes in liver methionine metabolism and persistence of histological and biochemical defects as reported before. Further, when the rats were fed the GAA-supplemented ethanol diet, similar histological and biochemical changes as observed after 2 wk of combined treatment, including inflammation, macro- and micro-vesicular steatosis and a marked decrease in the methylation index were noted. In addition, rats on the combined treatment exhibited increased liver toxicity and even early fibrotic changes in a subset of animals in this group. The worsening liver pathology could be related to the profound reduction in the hepatic methylation index, an increased accumulation of GAA and the inability of creatine generated to exert its hepato-protective effects in the setting of ethanol. CONCLUSION To conclude, prolonged exposure to a methyl consumer superimposed on chronic ethanol consumption causes persistent and pronounced liver damage.
Collapse
|
36
|
Kahl KG, Hillemacher T. The metabolic syndrome in patients with alcohol dependency: Current research and clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:49-56. [PMID: 27174541 DOI: 10.1016/j.pnpbp.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
The relationship between alcohol dependency and disorders such as liver disease and cancer has been thoroughly researched. However, the effects of alcohol on cardiometabolic health remain controversial. Several reports found low to moderate alcohol consumption to be associated with a lower risk for cardiometabolic disorders. In contrast, excessive alcohol consumption has been related to an increased risk. Most of these studies were performed in non-clinical populations, therefore limiting the explanatory power to non-dependent patients. Only a few studies examined cardiovascular disorders and cardiovascular risk factors, in particular the metabolic syndrome (MetS), in alcohol dependent patients. We here present a narrative review of studies performed so far on the MetS in alcohol dependency, and provide current hypotheses on the association of alcohol dependency, appetite regulation and the development of the MetS.
Collapse
Affiliation(s)
- Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany.
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| |
Collapse
|
37
|
Liu YF, Wei JY, Shi MH, Jiang H, Zhou J. Glucocorticoid Induces Hepatic Steatosis by Inhibiting Activating Transcription Factor 3 (ATF3)/S100A9 Protein Signaling in Granulocytic Myeloid-derived Suppressor Cells. J Biol Chem 2016; 291:21771-21785. [PMID: 27573240 DOI: 10.1074/jbc.m116.726364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) used as inflammation suppressors have harmful side effects, including induction of hepatic steatosis. The underlying mechanisms of GC-promoted dysregulation of lipid metabolism, however, are not fully understood. GCs could facilitate the accumulation of myeloid-derived suppressor cells (MDSC) in the liver of animals, and the potential role of MDSCs in GC-induced hepatic steatosis was therefore investigated in this study. We demonstrated that granulocytic (G)-MDSC accumulation mediated the effects of GCs on the fatty liver, in which activating transcription factor 3 (ATF3)/S100A9 signaling plays an important role. ATF3-deficient mice developed hepatic steatosis and displayed expansion of G-MDSCs in the liver and multiple immune organs, which shared high similarity with the phenotype observed in GC-treated wild-type littermates. Adoptive transfer of GC-induced or ATF3-deficient G-MDSCs promoted lipid accumulation in the liver, whereas depletion of G-MDSCs alleviated these effects. Mechanistic studies showed that in MDSCs, ATF3 was transrepressed by the GC receptor GR through direct binding to the negative GR-response element. S100A9 is the major transcriptional target of ATF3 in G-MDSCs. Silencing S100A9 clearly alleviated G-MDSCs expansion and hepatic steatosis caused by ATF3 deficiency or GC treatment. Our study uncovers an important role of G-MDSCs in GC-induced hepatic steatosis, in which ATF3 may have potential therapeutic implications.
Collapse
Affiliation(s)
- Yu-Feng Liu
- From the Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, 9th Jin Sui Road, Guangzhou 510623, and.,Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080.,the Department of Hematology Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jin Sui Road, Guangzhou 510623, China
| | - Jian-Yang Wei
- Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080
| | - Mao-Hua Shi
- Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080
| | - Hua Jiang
- From the Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, 9th Jin Sui Road, Guangzhou 510623, and.,the Department of Hematology Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jin Sui Road, Guangzhou 510623, China
| | - Jie Zhou
- From the Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, 9th Jin Sui Road, Guangzhou 510623, and .,Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080.,the Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Chinese Ministry of Education, 74 Zhongshan 2nd Road, Guangzhou 510080, and
| |
Collapse
|
38
|
Abstract
New-onset diabetes is a frequent complication after solid organ transplantation. Although a number of common factors are associated with the disease, including recipient age, body mass index, hepatitis C infection, and use of immunosuppressive drugs, new-onset diabetes after liver transplantation (NODALT) has the following unique aspects and thus needs to be considered its own entity. First, a liver graft becomes the patient's primary metabolic regulator after liver transplantation, but this would not be the case for kidney or other grafts. The metabolic states, as well as the genetics of the graft, play crucial roles in the development of NODALT. Second, dysfunction of the islets of Langerhans is common in cirrhotic patients and would be exacerbated by immunosuppressive agents, particularly calcineurin inhibitors. On the other hand, minimized immunosuppressive protocols have been widely advocated in liver transplantation because of liver tolerance (immune privilege). Third and last, through the "gut-liver axis," graft function is closely linked to gut microbiota, which is now considered an important metabolic organ and known to independently influence the host's metabolic homeostasis. Liver transplant recipients present with specific gut microbiota that may be prone to trigger metabolic disorders. In this review, we proposed 3 possible sites for the origin of NODALT, which are liver, islets, and gut, to help elucidate the underlying mechanism of NODALT.
Collapse
|
39
|
Alcoholic Beverage Consumption and Chronic Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060522. [PMID: 27231920 PMCID: PMC4923979 DOI: 10.3390/ijerph13060522] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Epidemiological and experimental studies have consistently linked alcoholic beverage consumption with the development of several chronic disorders, such as cancer, cardiovascular diseases, diabetes mellitus and obesity. The impact of drinking is usually dose-dependent, and light to moderate drinking tends to lower risks of certain diseases, while heavy drinking tends to increase the risks. Besides, other factors such as drinking frequency, genetic susceptibility, smoking, diet, and hormone status can modify the association. The amount of ethanol in alcoholic beverages is the determining factor in most cases, and beverage types could also make an influence. This review summarizes recent studies on alcoholic beverage consumption and several chronic diseases, trying to assess the effects of different drinking patterns, beverage types, interaction with other risk factors, and provide mechanistic explanations.
Collapse
|
40
|
Steiner JL, Crowell KT, Lang CH. Impact of Alcohol on Glycemic Control and Insulin Action. Biomolecules 2015; 5:2223-46. [PMID: 26426068 PMCID: PMC4693236 DOI: 10.3390/biom5042223] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/24/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
Alcohol has profound effects on tissue and whole-body fuel metabolism which contribute to the increased morbidity and mortality in individuals with alcohol use disorder. This review focuses on the glucose metabolic effects of alcohol, primarily in the muscle, liver and adipose tissue, under basal postabsorptive conditions and in response to insulin stimulation. While there is a relatively extensive literature in this area, results are often discordant and extrapolating between models and tissues is fraught with uncertainty. Comparisons between data generated in experimental cell and animals systems will be contrasted with that obtained from human subjects as often times results differ. Further, the nutritional status is also an important component of the sometimes divergent findings pertaining to the effects of alcohol on the regulation of insulin and glucose metabolism. This work is relevant as the contribution of alcohol intake to the development or exacerbation of type 2 diabetes remains ill-defined and a multi-systems approach is likely needed as both alcohol and diabetes affect multiple targets within the body.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Kristen T Crowell
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|