1
|
Ma YH, Liang ZS, Shao HC, Ren H, Pan XY, Zi MH, Shi LF, Zhang Y, Han S, Wan B, Yuan J, Lin W, He WR. VRK2 inhibits the replication of infectious bursal disease virus by phosphorylating RACK1 and suppressing apoptosis. Int J Biol Macromol 2025; 284:137940. [PMID: 39579830 DOI: 10.1016/j.ijbiomac.2024.137940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by the infectious bursal disease virus (IBDV). Despite significant efforts, the lack of knowledge about host proteins that counteract IBDV replication has hindered progress in preventing and controlling IBD in chickens. This study identifies the mitochondria-associated protein vaccinia virus-related kinase 2 (VRK2) as an inhibitor of IBDV. Overexpression of VRK2 significantly reduced IBDV proliferation in DF-1 cells and chicken embryo fibroblasts (CEFs). Conversely, the absence of VRK2 resulted in higher viral loads in these cells. Additionally, we found that VRK2 interacts with voltage-dependent anion channel 2 (VDAC2) and Receptor for Activated C Kinase 1 (RACK1). Mechanistic studies revealed that VRK2 inhibits IBDV-induced apoptosis by targeting RACK1 phosphorylation, leading to reduced viral growth. This study enhances our understanding of VRK2's role in host anti-apoptotic mechanisms and offers novel insights into IBDV pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Yu-He Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Zhi-Shan Liang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Han-Cheng Shao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Haojie Ren
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Xiao-Ya Pan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Meng-Hui Zi
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Lan-Fang Shi
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China
| | - Jin Yuan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China.
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, PR China.
| | - Wen-Rui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China.
| |
Collapse
|
2
|
Liu T, Lin L, Pan Y, Lin X, Liang M, Shao G, Feng K, Liu Y, Zhang X, Xie Q. Construction and efficacy of recombinant Newcastle disease virus co-expressing VP2 and VP3 proteins of very virulent infectious bursal disease virus. Poult Sci 2025; 104:104388. [PMID: 39644723 PMCID: PMC11665685 DOI: 10.1016/j.psj.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024] Open
Abstract
Infectious bursal disease (IBD), triggered by the infectious bursal disease virus (IBDV), poses a substantial risk to the poultry industry due to its immunosuppressive nature and the emergence of highly virulent strains. Traditional vaccination strategies have limitations, prompting the need for novel approaches. This study aimed to develop a recombinant Newcastle disease virus (NDV) vector vaccine co-expressing IBDV VP2 and VP3 proteins to enhance immunogenicity and protective efficacy against IBDV. The recombinant Newcastle disease virus (rNDV) expressing both VP2 and VP3 (rNDV-VP2-VP3) was generated and compared to rNDV expressing VP2 alone (rNDV-VP2). The genetic stability and growth pattern of rNDV were evaluated and its immunogenicity was assessed in specific pathogen free (SPF) chickens. rNDV-VP2-VP3 vaccines induced higher levels of neutralising antibodies, no damage to immune organs, and significantly lower viral loads in the bursa of the falciparum. rNDV-VP2 group showed partial protection, while the placebo group exhibited severe lesions and higher mortality, suggesting that the vaccine was effective in preventing IBDV-induced damage. These findings suggest that co-expression of VP2 and VP3 in NDV vectors is a viable strategy for the development of an effective IBDV vaccine, providing a safe and effective method for controlling IBD in poultry.
Collapse
Affiliation(s)
- Tongfei Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xiaoling Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Ming Liang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yaxin Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
3
|
Han J, Niu X, Ge C, Wu Z, Wang G, Huang M, Zhang Y, Liu R, Xu M, Yu H, Han J, Wang S, Liu Y, Chen Y, Cui H, Zhang Y, Duan Y, Wang X, Li L, Gao Y, Qi X. Monoclonal antibody development and antigenic epitope identification of infectious bursal disease virus VP5. Vet J 2024; 308:106254. [PMID: 39477081 DOI: 10.1016/j.tvjl.2024.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 10/13/2024] [Indexed: 11/09/2024]
Abstract
Infectious bursal disease (IBD) is an important immunosuppressive disease affecting chickens and is caused by infectious bursal disease virus (IBDV) infection. VP5 is a non-essential protein for IBDV replication but plays a critical role in IBDV pathogenesis. A deeper understanding of the biological functions of VP5 is lacking. This study utilized a prokaryotic system to express and purify soluble VP5 from the dominant epidemic strain of IBDV and developed a hybridoma cell line capable of secreting IBDV VP5 monoclonal antibody (MAb). The VP5 MAb demonstrated strong specificity for IBDV VP5 and could effectively discriminate between IBDV and its VP5-deleted strain. Furthermore, the antigen epitope of 137RRDLPKPE145 from IBDV VP5 was identified, which is the first detailed report of an IBDV VP5 antigen epitope. This antigen epitope, which is located at the C-terminus of VP5, is conserved across various IBDV serotype 1 strains. The findings of this study offer valuable insights for further exploration of gene function and differential detection of VP5.
Collapse
Affiliation(s)
- Jinze Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinxin Niu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chengfei Ge
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ziwen Wu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Guodong Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mengmeng Huang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yulong Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Runhang Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mengmeng Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Hangbo Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingzhe Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China.
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China.
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Shteinfer-Kuzmine A, Verma A, Bornshten R, Ben Chetrit E, Ben-Ya'acov A, Pahima H, Rubin E, Mograbi Y, Shteyer E, Shoshan-Barmatz V. Elevated serum mtDNA in COVID-19 patients is linked to SARS-CoV-2 envelope protein targeting mitochondrial VDAC1, inducing apoptosis and mtDNA release. Apoptosis 2024; 29:2025-2046. [PMID: 39375263 PMCID: PMC11550248 DOI: 10.1007/s10495-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Mitochondria dysfunction is implicated in cell death, inflammation, and autoimmunity. During viral infections, some viruses employ different strategies to disrupt mitochondria-dependent apoptosis, while others, including SARS-CoV-2, induce host cell apoptosis to facilitate replication and immune system modulation. Given mitochondrial DNAs (mtDNA) role as a pro-inflammatory damage-associated molecular pattern in inflammatory diseases, we examined its levels in the serum of COVID-19 patients and found it to be high relative to levels in healthy donors. Furthermore, comparison of serum protein profiles between healthy individuals and SARS-CoV-2-infected patients revealed unique bands in the COVID-19 patients. Using mass spectroscopy, we identified over 15 proteins, whose levels in the serum of COVID-19 patients were 4- to 780-fold higher. As mtDNA release from the mitochondria is mediated by the oligomeric form of the mitochondrial-gatekeeper-the voltage-dependent anion-selective channel 1 (VDAC1)-we investigated whether SARS-CoV-2 protein alters VDAC1 expression. Among the three selected SARS-CoV-2 proteins, small envelope (E), nucleocapsid (N), and accessory 3b proteins, the E-protein induced VDAC1 overexpression, VDAC1 oligomerization, cell death, and mtDNA release. Additionally, this protein led to mitochondrial dysfunction, as evidenced by increased mitochondrial ROS production and cytosolic Ca2+ levels. These findings suggest that SARS-CoV-2 E-protein induces mitochondrial dysfunction, apoptosis, and mtDNA release via VDAC1 modulation. mtDNA that accumulates in the blood activates the cGAS-STING pathway, triggering inflammatory cytokine and chemokine expression that contribute to the cytokine storm and tissue damage seen in cases of severe COVID-19.
Collapse
Affiliation(s)
| | - Ankit Verma
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rut Bornshten
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Eli Ben Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Hadas Pahima
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ethan Rubin
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | | | - Eyal Shteyer
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Gao H, Zhang S, Chang H, Guo Y, Li Z, Wang Y, Gao L, Li X, Cao H, Zheng SJ. Generation of a novel attenuated IBDV vaccine strain by mutation of critical amino acids in IBDV VP5. Vaccine 2024; 42:126081. [PMID: 38944579 DOI: 10.1016/j.vaccine.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Infectious bursal disease virus (IBDV) is an acute and highly infectious RNA virus known for its immunosuppressive capabilities, chiefly inflicting rapid damage to the bursa of Fabricius (BF) of chickens. Current clinical control of IBDV infection relies on vaccination. However, the emergence of novel variant IBDV (nVarIBDV) has posed a threat to the poultry industry across the globe, underscoring the great demand for innovative and effective vaccines. Our previous studies have highlighted the critical role of IBDV VP5 as an apoptosis-inducer in host cells. In this study, we engineered IBDV mutants via a reverse genetic system to introduce amino acid mutations in VP5. We found that the mutant IBDV-VP5/3m strain caused reduced host cell mortality, and that strategic mutations in VP5 reduced IBDV replication early after infection, thereby delaying cell death. Furthermore, inoculation of chickens with IBDV-VP5/3m effectively reduced damage to BF and induced neutralizing antibody production comparable to that of parental IBDV WT strain. Importantly, vaccination with IBDV-VP5/3m protected chickens against challenges with nVarIBDV, an emerging IBDV variant strain in China, reducing nVarIBDV loads in BF while alleviating bursal atrophy and splenomegaly, suggesting that IBDV-VP5/3m might serve as a novel vaccine candidate that could be further developed as an effective vaccine for clinical control of IBD. This study provides a new clue to the development of novel and effective vaccines.
Collapse
Affiliation(s)
- Hui Gao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - He Chang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuxin Guo
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhonghua Li
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Yan Y, Zhang F, Zou M, Chen H, Xu J, Lu S, Liu H. Identification of RACK1 as a novel regulator of non-structural protein 4 of chikungunya virus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1425-1436. [PMID: 38813597 PMCID: PMC11532265 DOI: 10.3724/abbs.2024073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 05/31/2024] Open
Abstract
Chikungunya virus (CHIKV) is a neglected arthropod-borne and anthropogenic alphavirus. Over the past two decades, the CHIKV distribution has undergone significant changes worldwide, from the original tropics and subtropics regions to temperate regions, which has attracted global attention. However, the interactions between CHIKV and its host remain insufficiently understood, which dampens the need for the development of an anti-CHIKV strategy. In this study, on the basis of the optimal overexpression of non-structural protein 4 (nsP4), we explore host interactions of CHIKV nsP4 using mass spectrometry-based protein-protein interaction approaches. The results reveal that some cellular proteins that interact with nsP4 are enriched in the ubiquitin-proteasome pathway. Specifically, the scaffold protein receptor for activated C kinase 1 (RACK1) is identified as a novel host interactor and regulator of CHIKV nsP4. The inhibition of the interaction between RACK1 and nsP4 by harringtonolide results in the reduction of nsP4, which is caused by the promotion of degradation but not the inhibition of nsP4 translation. Furthermore, the decrease in nsP4 triggered by the RACK1 inhibitor can be reversed by the proteasome inhibitor MG132, suggesting that RACK1 can protect nsP4 from degradation through the ubiquitin-proteasome pathway. This study reveals a novel mechanism by which the host factor RACK1 regulates CHIKV nsP4, which could be a potential target for developing drugs against CHIKV.
Collapse
Affiliation(s)
- Yao Yan
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Fengyuan Zhang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Meng Zou
- National Human Diseases Animal Model Resource CenterNHC Key Laboratory of Human Disease Comparative MedicineNational Center of Technology Innovation for Animal ModelState Key Laboratory of Respiratory Health and Multimorbidityand Key Laboratory of Pathogen Infection Prevention and ControlMinistry of EducationInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021 China
| | - Hongyu Chen
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Jingwen Xu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Shuaiyao Lu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Hongqi Liu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
- National Human Diseases Animal Model Resource CenterNHC Key Laboratory of Human Disease Comparative MedicineNational Center of Technology Innovation for Animal ModelState Key Laboratory of Respiratory Health and Multimorbidityand Key Laboratory of Pathogen Infection Prevention and ControlMinistry of EducationInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021 China
| |
Collapse
|
8
|
Zhang T, Wang S, Liu Y, Qi X, Gao Y. Advances on adaptive immune responses affected by infectious bursal disease virus in chicken. Front Immunol 2024; 14:1330576. [PMID: 38268928 PMCID: PMC10806451 DOI: 10.3389/fimmu.2023.1330576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly infectious, and immunosuppressive disease caused by the infectious bursal disease virus (IBDV), which interferes with the immune system, causes hypoimmunity and seriously threatens the healthy development of the poultry industry. Adaptive immune response, an important defense line of host resistance to pathogen infection, is the host-specific immune response mainly mediated by T and B lymphocytes. As an important immunosuppressive pathogen in poultry, IBDV infection is closely related to the injury of the adaptive immune system. In this review, we focus on recent advances in adaptive immune response influenced by IBDV infection, especially the damage on immune organs, as well as the effect on humoral immune response and cellular immune response, hoping to provide a theoretical basis for further exploration of the molecular mechanism of immunosuppression induced by IBDV infection and the establishment of novel prevention and control measures for IBD.
Collapse
Affiliation(s)
- Tao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- National Poultry Laboratory Animal Resource Center, Harbin, China
| |
Collapse
|
9
|
Cao J, Shi M, Zhu L, Li X, Li A, Wu SY, Chiang CM, Zhang Y. The matrix protein of respiratory syncytial virus suppresses interferon signaling via RACK1 association. J Virol 2023; 97:e0074723. [PMID: 37712706 PMCID: PMC10617408 DOI: 10.1128/jvi.00747-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Respiratory syncytial virus (RSV) matrix (M) protein is indispensable for virion assembly and release. It is localized to the nucleus during early infection to perturb host transcription. However, the function of RSV M protein in other cellular activities remains poorly understood. In this study, several interferon response-associated host factors, including RACK1, were identified by proteomic analysis as RSV M interactors. Knockdown of RACK1 attenuates RSV-restricted IFN signaling leading to enhanced host defense against RSV infection, unraveling a role of M protein in antagonizing IFN response via association with RACK1. Our study uncovers a previously unrecognized mechanism of immune evasion by RSV M protein and identifies RACK1 as a novel host factor recruited by RSV, highlighting RACK1 as a potential new target for RSV therapeutics development.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Menghan Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Lina Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Zhang H, Sheng X, Tang X, Xing J, Chi H, Zhan W. Transcriptome analysis reveals molecular mechanisms of lymphocystis formation caused by lymphocystis disease virus infection in flounder ( Paralichthys olivaceus). Front Immunol 2023; 14:1268851. [PMID: 37868974 PMCID: PMC10585170 DOI: 10.3389/fimmu.2023.1268851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Lymphocystis disease is frequently prevalent and transmissible in various teleost species worldwide due to lymphocystis disease virus (LCDV) infection, causing unsightly growths of benign lymphocystis nodules in fish and resulting in huge economic losses to aquaculture industry. However, the molecular mechanism of lymphocystis formation is unclear. In this study, LCDV was firstly detected in naturally infected flounder (Paralichthys olivaceus) by PCR, histopathological, and immunological techniques. To further understand lymphocystis formation, transcriptome sequencing of skin nodule tissue was performed by using healthy flounder skin as a control. In total, RNA-seq produced 99.36%-99.71% clean reads of raw reads, of which 91.11%-92.89% reads were successfully matched to the flounder genome. The transcriptome data showed good reproducibility between samples, with 3781 up-regulated and 2280 down-regulated differentially expressed genes. GSEA analysis revealed activation of Wnt signaling pathway, Hedgehog signaling pathway, Cell cycle, and Basal cell carcinoma associated with nodule formation. These pathways were analyzed to interact with multiple viral infection and tumor formation pathways. Heat map and protein interaction analysis revealed that these pathways regulated the expression of cell cycle-related genes such as ccnd1 and ccnd2 through key genes including ctnnb1, lef1, tcf3, gli2, and gli3 to promote cell proliferation. Additionally, cGMP-PKG signaling pathway, Calcium signaling pathway, ECM-receptor interaction, and Cytokine-cytokine receptor interaction associated with nodule formation were significantly down-regulated. Among these pathways, tnfsf12, tnfrsf1a, and tnfrsf19, associated with pro-apoptosis, and vdac2, which promotes viral replication by inhibiting apoptosis, were significantly up-regulated. Visual analysis revealed significant down-regulation of cytc, which expresses the pro-apoptotic protein cytochrome C, as well as phb and phb2, which have anti-tumor activity, however, casp3 was significantly up-regulated. Moreover, bcl9, bcl11a, and bcl-xl, which promote cell proliferation and inhibit apoptosis, were significantly upregulated, as were fgfr1, fgfr2, and fgfr3, which are related to tumor formation. Furthermore, RNA-seq data were validated by qRT-PCR, and LCDV copy numbers and expression patterns of focused genes in various tissues were also investigated. These results clarified the pathways and differentially expressed genes associated with lymphocystis nodule development caused by LCDV infection in flounder for the first time, providing a new breakthrough in molecular mechanisms of lymphocystis formation in fish.
Collapse
Affiliation(s)
- Honghua Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Trishna S, Lavon A, Shteinfer-Kuzmine A, Dafa-Berger A, Shoshan-Barmatz V. Overexpression of the mitochondrial anti-viral signaling protein, MAVS, in cancers is associated with cell survival and inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:713-732. [PMID: 37662967 PMCID: PMC10468804 DOI: 10.1016/j.omtn.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Mitochondrial anti-viral signaling protein (MAVS) plays an important role in host defense against viral infection via coordinating the activation of NF-κB and interferon regulatory factors. The mitochondrial-bound form of MAVS is essential for its anti-viral innate immunity. Recently, tumor cells were proposed to mimic a viral infection by activating RNA-sensing pattern recognition receptors. Here, we demonstrate that MAVS is overexpressed in a panel of viral non-infected cancer cell lines and patient-derived tumors, including lung, liver, bladder, and cervical cancers, and we studied its role in cancer. Silencing MAVS expression reduced cell proliferation and the expression and nuclear translocation of proteins associated with transcriptional regulation, inflammation, and immunity. MAVS depletion reduced expression of the inflammasome components and inhibited its activation/assembly. Moreover, MAVS directly interacts with the mitochondrial protein VDAC1, decreasing its conductance, and we identified the VDAC1 binding site in MAVS. Our findings suggest that MAVS depletion, by reducing cancer cell proliferation and inflammation, represents a new target for cancer therapy.
Collapse
Affiliation(s)
- Sweta Trishna
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Avia Lavon
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Avis Dafa-Berger
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
12
|
Hu X, Chen Z, Wu X, Fu Q, Chen Z, Huang Y, Wu H. PRMT5 Facilitates Infectious Bursal Disease Virus Replication through Arginine Methylation of VP1. J Virol 2023; 97:e0163722. [PMID: 36786602 PMCID: PMC10062139 DOI: 10.1128/jvi.01637-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 02/15/2023] Open
Abstract
The infectious bursal diseases virus (IBDV) polymerase, VP1 protein, is responsible for transcription, initial translation and viral genomic replication. Knowledge about the new kind of post-translational modification of VP1 supports identification of novel drugs against the virus. Because the arginine residue is known to be methylated by protein arginine methyltransferase (PRMT) enzyme, we investigated whether IBDV VP1 is a substrate for known PRMTs. In this study, we show that VP1 is specifically associated with and methylated by PRMT5 at the arginine 426 (R426) residue. IBDV infection causes the accumulation of PRMT5 in the cytoplasm, which colocalizes with VP1 as a punctate structure. In addition, ectopic expression of PRMT5 significantly enhances the viral replication. In the presence of PMRT5, enzyme inhibitor and knockout of PRMT5 remarkably decreased viral replication. The polymerase activity of VP1 was severely damaged when R426 mutated to alanine, resulting in impaired viral replication. Our study reports a novel form of post-translational modification of VP1, which supports its polymerase function to facilitate the viral replication. IMPORTANCE Post-translational modification of infectious bursal disease virus (IBDV) VP1 is important for the regulation of its polymerase activity. Investigation of the significance of specific modification of VP1 can lead to better understanding of viral replication and can probably also help in identifying novel targets for antiviral compounds. Our work demonstrates the molecular mechanism of VP1 methylation mediated by PRMT5, which is critical for viral polymerase activity, as well as viral replication. Our study expands a novel insight into the function of arginine methylation of VP1, which might be useful for limiting the replication of IBDV.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Zheng Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Xiangdong Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou, People’s Republic of China
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou, People’s Republic of China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou, People’s Republic of China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| |
Collapse
|
13
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
14
|
Wang Y, Qiao X, Li Y, Yang Q, Wang L, Liu X, Wang H, Shen H. Role of the receptor for activated C kinase 1 during viral infection. Arch Virol 2022; 167:1915-1924. [PMID: 35763066 DOI: 10.1007/s00705-022-05484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Viruses can survive only in living cells, where they depend on the host's enzymatic system for survival and reproduction. Virus-host interactions are complex. On the one hand, hosts express host-restricted factors to protect the host cells from viral infections. On the other hand, viruses recruit certain host factors to facilitate their survival and transmission. The identification of host factors critical to viral infection is essential for comprehending the pathogenesis of contagion and developing novel antiviral therapies that specifically target the host. Receptor for activated C kinase 1 (RACK1), an evolutionarily conserved host factor that exists in various eukaryotic organisms, is a promising target for antiviral therapy. This review primarily summarizes the roles of RACK1 in regulating different viral life stages, particularly entry, replication, translation, and release.
Collapse
Affiliation(s)
- Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuhan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingru Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
15
|
Hu X, Chen Z, Wu X, Ding Z, Zeng Q, Wu H. An Improved, Dual-Direction, Promoter-Driven, Reverse Genetics System for the Infectious Bursal Disease Virus (IBDV). Viruses 2022; 14:v14071396. [PMID: 35891377 PMCID: PMC9324645 DOI: 10.3390/v14071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
The infectious bursal disease virus (IBDV), one member of the Birnaviridae family, causes immunosuppression in young chickens by damaging the mature B cells of the bursa of Fabricius (BF), the central immune system of young chickens. The genome of IBDV is a bisegmented, double-strand RNA (dsRNA). Reverse genetics systems for IBDV allow the generation of genetically manipulated infectious virus via transfected plasmid DNA, encoding the two genomic viral RNA segments as well as major viral proteins. For this purpose, the minus-sense of both segment A and segment B are inserted into vectors between the polymerase I promoter and the corresponding terminator I. These plasmids facilitate the transcription of the viral minus-sense genome but copy the plus-sense genome as well viral protein translation depends on the activity of VP1 and VP3, when transfected into 293T cells. To further improve rescue efficiency, dual-direction promoters were generated based on the polymerase II promoter in the reverse direction in the backbone of the pCDNA3.0 vector. Therefore, the polymerase I promoter transcribes the viral minus-sense genome in the forward direction and the polymerase II promoter transcribes viral mRNA, translated into viral proteins that produce infectious IBDV. We also found that the rescue efficiency of transfecting two plasmids is significantly higher than that of transfecting four plasmids. In addition, this dual-direction promoter rescue system was used to generate R186A mutant IBDV since Arg186 is the arginine monomer-methylation site identified by LC–MS. Our data furtherly showed that the Arg186 monomer methylation mutant was due to a reduction in VP1 polymerase activity as well as virus replication, suggesting that the Arg186 methylation site is essential for IBDV replication.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiangdong Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Zeng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
16
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
17
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
18
|
Lee HC, Huang YP, Huang YW, Hu CC, Lee CW, Chang CH, Lin NS, Hsu YH. Voltage-dependent anion channel proteins associate with dynamic Bamboo mosaic virus-induced complexes. PLANT PHYSIOLOGY 2022; 188:1061-1080. [PMID: 34747475 PMCID: PMC8825239 DOI: 10.1093/plphys/kiab519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.
Collapse
Affiliation(s)
- Hsiang-Chi Lee
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Hao Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
19
|
Khan A, Kuriachan G, Mahalakshmi R. Cellular Interactome of Mitochondrial Voltage-Dependent Anion Channels: Oligomerization and Channel (Mis)Regulation. ACS Chem Neurosci 2021; 12:3497-3515. [PMID: 34503333 DOI: 10.1021/acschemneuro.1c00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-dependent anion channels (VDACs) of the outer mitochondrial membrane are known conventionally as metabolite flux proteins. However, research findings in the past decade have revealed the multifaceted regulatory roles of VDACs, from governing cellular physiology and mitochondria-mediated apoptosis to directly regulating debilitating cancers and neurodegenerative diseases. VDACs achieve these diverse functions by establishing isoform-dependent stereospecific interactomes in the cell with the cytosolic constituents and endoplasmic reticulum complexes, and the machinery of the mitochondrial compartments. VDACs are now increasingly recognized as regulatory hubs of the cell. Not surprisingly, even the transient misregulation of VDACs results directly in mitochondrial dysfunction. Additionally, human VDACs are now implicated in interaction with aggregation-prone cytosolic proteins, including Aβ, tau, and α-synuclein, contributing directly to the onset of Alzheimer's and Parkinson's diseases. Deducing the interaction dynamics and mechanisms can lead to VDAC-targeted peptide-based therapeutics that can alleviate neurodegenerative states. This review succinctly presents the latest findings of the VDAC interactome, and the mode(s) of VDAC-dependent regulation of biochemical physiology. We also discuss the relevance of VDACs in pathophysiological states and aggregation-associated diseases and address how VDACs will facilitate the development of next-generation precision medicines.
Collapse
Affiliation(s)
- Altmash Khan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gifty Kuriachan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
20
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
21
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
22
|
Qu Z, Zhou J, Zhou Y, Xie Y, Jiang Y, Wu J, Luo Z, Liu G, Yin L, Zhang XL. Mycobacterial EST12 activates a RACK1-NLRP3-gasdermin D pyroptosis-IL-1β immune pathway. SCIENCE ADVANCES 2020; 6:6/43/eaba4733. [PMID: 33097533 PMCID: PMC7608829 DOI: 10.1126/sciadv.aba4733] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/11/2020] [Indexed: 05/28/2023]
Abstract
Pyroptosis, an inflammatory form of programmed cell death, has been implicated in eliminating pathogenic infections. However, macrophage pyroptosis-related proteins from Mycobacterium tuberculosis (M.tb) have largely gone unexplored. Here, we identified a cell pyroptosis-inducing protein, Rv1579c, named EST12, secreted from the M.tb H37Rv region of difference 3. EST12 binds to the receptor for activated C kinase 1 (RACK1) in macrophages, and the EST12-RACK1 complex recruits the deubiquitinase UCHL5 to promote the K48-linked deubiquitination of NLRP3, subsequently leading to an NLRP3 inflammasome caspase-1/11-pyroptosis gasdermin D-interleukin-1β immune process. Analysis of the crystal structure of EST12 reveals that the amino acid Y80 acts as a critical binding site for RACK1. An EST12-deficient strain (H37RvΔEST12) displayed higher susceptibility to M.tb infection in vitro and in vivo. These results provide the first proof that RACK1 acts as an endogenous host sensor for pathogens and that EST12-RACK1-induced pyroptosis plays a pivotal role in M.tb-induced immunity.
Collapse
Affiliation(s)
- Zilu Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China
| | - Yidan Zhou
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yanjing Jiang
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China
| | - Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Zuoqin Luo
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China
| | - Guanghui Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Lei Yin
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China.
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
23
|
Zhang SZ, Zhu LB, Yu D, You LL, Wang J, Cao HH, Liu YX, Wang YL, Kong X, Toufeeq S, Xu JP. Identification and Functional Analysis of BmNPV-Interacting Proteins From Bombyx mori (Lepidoptera) Larval Midgut Based on Subcellular Protein Levels. Front Microbiol 2020; 11:1481. [PMID: 32695093 PMCID: PMC7338592 DOI: 10.3389/fmicb.2020.01481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Dong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
24
|
Dulwich KL, Asfor A, Gray A, Giotis ES, Skinner MA, Broadbent AJ. The Stronger Downregulation of in vitro and in vivo Innate Antiviral Responses by a Very Virulent Strain of Infectious Bursal Disease Virus (IBDV), Compared to a Classical Strain, Is Mediated, in Part, by the VP4 Protein. Front Cell Infect Microbiol 2020; 10:315. [PMID: 32582573 PMCID: PMC7296162 DOI: 10.3389/fcimb.2020.00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
IBDV is economically important to the poultry industry. Very virulent (vv) strains cause higher mortality rates than other strains for reasons that remain poorly understood. In order to provide more information on IBDV disease outcome, groups of chickens (n = 18) were inoculated with the vv strain, UK661, or the classical strain, F52/70. Birds infected with UK661 had a lower survival rate (50%) compared to F52/70 (80%). There was no difference in peak viral replication in the bursa of Fabricius (BF), but the expression of chicken IFNα, IFNβ, MX1, and IL-8 was significantly lower in the BF of birds infected with UK661 compared to F52/70 (p < 0.05) as quantified by RTqPCR, and this trend was also observed in DT40 cells infected with UK661 or F52/70 (p < 0.05). The induction of expression of type I IFN in DF-1 cells stimulated with polyI:C (measured by an IFN-β luciferase reporter assay) was significantly reduced in cells expressing ectopic VP4 from UK661 (p < 0.05), but was higher in cells expressing ectopic VP4 from F52/70. Cells infected with a chimeric recombinant IBDV carrying the UK661-VP4 gene in the background of PBG98, an attenuated vaccine strain that induces high levels of innate responses (PBG98-VP4UK661) also showed a reduced level of IFNα and IL-8 compared to cells infected with a chimeric virus carrying the F52/70-VP4 gene (PBG98-VP4F52/70) (p < 0.01), and birds infected with PBG98-VP4UK661 also had a reduced expression of IFNα in the BF compared to birds infected with PBG98-VP4F52/70 (p < 0.05). Taken together, these data demonstrate that UK661 induced the expression of lower levels of anti-viral type I IFN and proinflammatory genes than the classical strain in vitro and in vivo and this was, in part, due to strain-dependent differences in the VP4 protein.
Collapse
Affiliation(s)
- Katherine L. Dulwich
- Birnaviruses Group, The Pirbright Institute, Woking, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Amin Asfor
- Birnaviruses Group, The Pirbright Institute, Woking, United Kingdom
| | - Alice Gray
- Birnaviruses Group, The Pirbright Institute, Woking, United Kingdom
| | - Efstathios S. Giotis
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Michael A. Skinner
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | | |
Collapse
|
25
|
Wang X, Gao L, Yang X, Zuo Q, Lan R, Li M, Yang C, Lin Y, Liu J, Yin G. Porcine RACK1 negatively regulates the infection of classical swine fever virus and the NF-κB activation in PK-15 cells. Vet Microbiol 2020; 246:108711. [PMID: 32605753 DOI: 10.1016/j.vetmic.2020.108711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 11/15/2022]
Abstract
Classical swine fever (CSF) is one of the main viral diseases of swine worldwide. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of the genus Pestivirus. Activation of NF-κB is a hallmark of most viral infections and the viral pathogens frequently kidnap NF-κB pathway for their own advantages, however, it is unclear or even controversial about whether CSFV infection can activate NF-κB signal pathway. RACK1 was shown as an interacting host protein with CSFV NS5A protein, but no studies so far have clearly defined the role of RACK1 during CSFV infection and NF-κB activation. In this study, to properly address these open questions, using RT-qPCR, western blot, indirect fluorescence staining, siRNA knockdown and protein overexpression techniques, we demonstrated that CSFV infection reduced the RACK1 expression at both mRNA and protein levels in PK-15 cells. Downregulation of cellular RACK1 enhanced CSFV infection and subsequent NF-κB activation, while RACK1 overexpression inhibited CSFV infection and the NF-κB activation. In conclusion, RACK1 is a negative cellular regulator for CSFV infection and NF-κB activation in PK-15 cells. Our work addressed a novel aspect concerning the regulation of innate antiviral immune response during CSFV infection. This study may provide some insights into the molecular mechanisms of CSFV infection in swine. However, the elaborate mechanism by which CSFV regulates NF-κB activation and how RACK1 plays its roles in CSFV infection and NF-κB induction require further in-depth studies.
Collapse
Affiliation(s)
- Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Xiaoying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Qingwei Zuo
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Miao Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China.
| |
Collapse
|
26
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P, Pandey GK. VDAC and its interacting partners in plant and animal systems: an overview. Crit Rev Biotechnol 2020; 40:715-732. [PMID: 32338074 DOI: 10.1080/07388551.2020.1756214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular trafficking between different subcellular compartments is the key for normal cellular functioning. Voltage-dependent anion channels (VDACs) are small-sized proteins present in the outer mitochondrial membrane, which mediate molecular trafficking between mitochondria and cytoplasm. The conductivity of VDAC is dependent on the transmembrane voltage, its oligomeric state and membrane lipids. VDAC acts as a convergence point to a diverse variety of mitochondrial functions as well as cell survival. This functional diversity is attained due to their interaction with a plethora of proteins inside the cell. Although, there are hints toward functional conservation/divergence between animals and plants; knowledge about the functional role of the VDACs in plants is still limited. We present here a comparative overview to provide an integrative picture of the interactions of VDAC with different proteins in both animals and plants. Also discussed are their physiological functions from the perspective of cellular movements, signal transduction, cellular fate, disease and development. This in-depth knowledge of the biological importance of VDAC and its interacting partner(s) will assist us to explore their function in the applied context in both plant and animal.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
28
|
Dynamics and Regulations of BimEL Ser65 and Thr112 Phosphorylation in Porcine Granulosa Cells during Follicular Atresia. Cells 2020; 9:cells9020402. [PMID: 32050589 PMCID: PMC7072439 DOI: 10.3390/cells9020402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 01/07/2023] Open
Abstract
BimEL protein is involved in follicular atresia by regulating granulosa cell apoptosis, but the dynamic changes of BimEL phosphorylation during follicular atresia are poorly understood. The aim of this study was to explore the changes of key BimEL phosphorylation sites and their upstream regulatory pathways. First, the levels of BimEL-Ser65 and BimEL-Thr112 phosphorylation (p-BimEL-S65, p-BimEL-T112) in granulosa cells (GC) from healthy (H), slightly-atretic (SA), and atretic (A) follicles and in cultured GC after different treatments were detected by Western blotting. Next, the effects of the corresponding site mutations of BIM on apoptosis of GC were investigated. Finally, the pathways of two phosphorylation sites were investigated by kinase inhibitors. The results revealed that p-BimEL-S65 levels were higher in GC from H than SA and A, whereas p-BimEL-T112 was reversed. The prosurvival factors like FSH and IGF-1 upregulated the level of p-BimEL-S65, while the proapoptotic factor, heat stress, increased the level of p-BimEL-T112 in cultured GC. Compared with the overexpression of wild BimEL, the apoptotic rate of the GC overexpressed BimEL-S65A (replace Ser65 with Ala) mutant was significantly higher, but the apoptotic rate of the cells overexpressing BimEL-T112A did not differ. In addition, inhibition of the ERK1/2 or JNK pathway by specific inhibitors reduced the levels of p-BimEL-S65 and p-BimEL-T112. In conclusion, the levels of p-BimEL-S65 and p-BimEL-T112 were reversed during follicular atresia. Prosurvival factors promote p-BimEL-S65 levels via ERK1/2 to inhibit GC apoptosis, whereas proapoptotic factor upregulates the level of p-BimEL-T112 via JNK to induce GC apoptosis.
Collapse
|
29
|
Liu LT, Song YQ, Chen XS, Liu Y, Zhu JJ, Zhou LM, Xu SJ, Wan LH. Morphine-induced RACK1-dependent autophagy in immortalized neuronal cell lines. Br J Pharmacol 2020; 177:1609-1621. [PMID: 31747048 DOI: 10.1111/bph.14922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Autophagy is a critical cellular catabolic process in cell homoeostasis and brain function. Recent studies indicate that receptor for activated C kinase 1 (RACK1) is involved in autophagosome formation in Drosophila and mice, and that it plays an essential role in morphine-associated memory. However, the exact mechanism of the role of RACK1 in morphine-induced autophagy is not fully understood. EXPERIMENTAL APPROACH SH-SY5Y cells were cultured and morphine, rapamycin, 3-methyladenine and RACK1 siRNA were used to evaluate the regulation of RACK1 protein in autophagy. Western blotting and immunofluorescence were used to assess protein expression. KEY RESULTS Activation of autophagy (i.e. autophagosome accumulation and an increase in the LC3-II/LC3-I ratio) induced by morphine contributes to the maintenance of conditioned place preference (CPP) memory in mice. Moreover, morphine treatment significantly increased Beclin-1 expression and decreased the p-mTOR/mTOR and SQSTM1/p62 levels, whereas knockdown of RACK1 prevented morphine-induced autophagy in vitro. Furthermore, we found that in the mouse hippocampus, knockdown of RACK1 also markedly suppressed morphine-induced autophagy (decreased LC3-II/LC3-I ratio and increased p-mTOR/mTOR ratio). Importantly, morphine-induced autophagy in a RACK1-dependent manner. Conversely, morphine-induced RACK1 upregulation in vitro is partially inhibited by autophagy feedback. CONCLUSIONS AND IMPLICATIONS Our findings revealed a critical role for RACK1-dependent autophagy in morphine-promoted maintenance of CPP memory in mice and supported the notion that control of RACK1-dependent autophagic pathways may become an important target for novel therapeutics for morphine-associated memory.
Collapse
Affiliation(s)
- Li-Tao Liu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying-Qi Song
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xue-Shen Chen
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie-Jun Zhu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shi-Jun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Epigenetic Upregulation of Chicken MicroRNA-16-5p Expression in DF-1 Cells following Infection with Infectious Bursal Disease Virus (IBDV) Enhances IBDV-Induced Apoptosis and Viral Replication. J Virol 2020; 94:JVI.01724-19. [PMID: 31694944 DOI: 10.1128/jvi.01724-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets and play important roles in the host response to pathogenic infection. Although infectious bursal disease virus (IBDV)-induced apoptosis in host cells has been established, the underlying molecular mechanism is not completely unraveled. Here, we show that infection of DF-1 cells by IBDV induced gga-miR-16-5p (chicken miR-16-5p) expression via demethylation of the pre-miR-16-2 (gga-miR-16-5p precursor) promoter. We found that ectopic expression of gga-miR-16-5p in DF-1 cells enhanced IBDV-induced apoptosis by directly targeting the cellular antiapoptotic protein B-cell lymphoma 2 (Bcl-2), facilitating IBDV replication in DF-1 cells. In contrast, inhibition of endogenous miR-16-5p markedly suppressed apoptosis associated with enhanced Bcl-2 expression, arresting viral replication in DF-1 cells. Furthermore, infection of DF-1 cells with IBDV reduced Bcl-2 expression, and this reduction could be abolished by inhibition of gga-miR-16-5p expression. Moreover, transfection of DF-1 cells with gga-miR-16-5p mimics enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation, and inhibition of caspase-3 decreased IBDV growth in DF-1 cells. Thus, epigenetic upregulation of gga-miR-16-5p expression by IBDV infection enhances IBDV-induced apoptosis by targeting the cellular antiapoptotic protein Bcl-2, facilitating IBDV replication in host cells.IMPORTANCE Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive disease in young chickens, causing severe economic losses to stakeholders across the globe. Although IBD virus (IBDV)-induced apoptosis in the host has been established, the underlying mechanism is not very clear. Here, we show that infection of DF-1 cells by IBDV upregulated gga-miR-16-5p expression via demethylation of the pre-miR-16-2 promoter. Overexpression of gga-miR-16-5p enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation. Importantly, we found that IBDV infection induced expression of gga-miR-16-5p that triggered apoptosis by targeting Bcl-2, favoring IBDV replication, while inhibition of gga-miR-16-5p in IBDV-infected cells restored Bcl-2 expression, slowing down viral growth, indicating that IBDV induces apoptosis by epigenetic upregulation of gga-miR-16-5p expression. These findings uncover a novel mechanism employed by IBDV for its own benefit, which may be used as a potential target for intervening IBDV infection.
Collapse
|
31
|
Voltage-Dependent Anion Channel Protein 2 (VDAC2) and Receptor of Activated Protein C Kinase 1 (RACK1) Act as Functional Receptors for Lymphocystis Disease Virus Infection. J Virol 2019; 93:JVI.00122-19. [PMID: 30918079 DOI: 10.1128/jvi.00122-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/21/2019] [Indexed: 01/27/2023] Open
Abstract
In previous research, a 27.8-kDa protein in flounder Paralichthys olivaceus gill (FG) cells was identified as a putative cellular receptor (27.8R), which mediated lymphocystis disease virus (LCDV) infection via interaction with a 32-kDa viral attachment protein (VAP) of LCDV, and monoclonal antibodies (MAbs) against 27.8R and 32-kDa VAP were developed. In this study, the 27.8R was identified as voltage-dependent anion channel protein 2 (VDAC2) and receptor of activated protein C kinase 1 (RACK1) of flounder. Recombinant VDAC2 (rVDAC2) and RACK1 (rRACK1) were obtained by prokaryotic expression, and rabbit anti-VDAC2/RACK1 polyclonal antibodies were prepared. The rVDAC2, rRACK1, and 27.8-kDa proteins in FG cells were recognized by anti-27.8R MAbs and anti-VDAC2/RACK1 polyclonal antibodies simultaneously. Preincubation of FG cells with anti-VDAC2/RACK1 polyclonal antibodies significantly decreased the percentages of LCDV-infected cells and LCDV copy numbers, blocked virus infection, and delayed the development of cytopathic effect. The mRNA expressions of VDAC2 and RACK1 in FG cells were upregulated to maximum levels 12 h and 48 h after LCDV infection, respectively. VDAC2/RACK1 knockdown through short interfering RNA (siRNA) significantly reduced VDAC2/RACK1 expression and LCDV copy numbers in FG cells compared with negative controls, while VDAC2/RACK1 expression on LCDV-nonpermissive epithelial papillosum cells (EPCs) conferred susceptibility to LCDV infection, indicating the VDAC2 and RACK1 were sufficient to allow LCDV entry and infection. All these results collectively showed that VDAC2 and RACK1 function as receptors for LCDV entry and infection.IMPORTANCE Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease in fish, which has caused huge economic losses to the aquaculture industry worldwide, but the molecular mechanism underlying the LCDV-host interaction remains unclear. Here, the 27.8-kDa putative cellular receptor for LCDV was identified as voltage-dependent anion channel protein 2 (VDAC2) and receptor of activated protein C kinase 1 (RACK1), and our results revealed that VDAC2 and RACK1 expression was sufficient to allow LCDV entry and that they are functional receptors that initiate LCDV infection for the first time, which leads to a better understanding of the molecular mechanism underlying LCDV infection and virus-host interactions.
Collapse
|
32
|
Overexpression of RACK1 enhanced the replication of porcine reproductive and respiratory syndrome virus in Marc-145 cells and promoted the NF-κB activation via upregulating the expression and phosphorylation of TRAF2. Gene 2019; 709:75-83. [PMID: 31129249 DOI: 10.1016/j.gene.2019.05.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/07/2019] [Accepted: 05/22/2019] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative pathogen for porcine reproductive and respiratory syndrome (PRRS), which lead to huge loss to porcine industry. RACK1 (receptor of activated protein C kinase 1) was first identified as a receptor for protein kinase C. Mounting evidence demonstrated that RACK1 played diverse roles in NF-κB activation and virus infections. We previously reported that siRNA knockdown of RACK1 inhibited PRRSV replication in Marc-145 cells, abrogated NF-κB activation induced by PRRSV infection and reduced the viral titer. Here we established a Marc-145 cell line which could stably overexpress RACK1 to consolidate our findings. Based on the data from RT-qPCR, western blot, immunofluorescence staining, cytopathic effects and viral titer analysis, we concluded that overexpression of RACK1 could enhance the replication of PRRSV in Marc-145 cells and promote the NF-κB activation via upregulating TRAF2 expression and its phosphorylation. Marc-145 cells overexpressing RACK1exhibited severe cytopathic effects post infection with PRRSV and elevated the viral titer. Taken together, RACK1 plays an essential role for PRRSV replication in Marc-145 cells and NF-κB activation. The results presented here shed more light on the understanding of the molecular mechanisms underlying PRRSV infection and its subsequent NF-κB activation. Therefore, we anticipate RACK1 as a promising target for PRRS control.
Collapse
|
33
|
Ubiquitination Is Essential for Avibirnavirus Replication by Supporting VP1 Polymerase Activity. J Virol 2019; 93:JVI.01899-18. [PMID: 30429342 PMCID: PMC6340032 DOI: 10.1128/jvi.01899-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication. Ubiquitination is critical for several cellular physical processes. However, ubiquitin modification in virus replication is poorly understood. Therefore, the present study aimed to determine the presence and effect of ubiquitination on polymerase activity of viral protein 1 (VP1) of avibirnavirus. We report that the replication of avibirnavirus is regulated by ubiquitination of its VP1 protein, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV). In vivo detection revealed the ubiquitination of VP1 protein in IBDV-infected target organs and different cells but not in purified IBDV particles. Further analysis of ubiquitination confirms that VP1 is modified by K63-linked ubiquitin chain. Point mutation screening showed that the ubiquitination site of VP1 was at the K751 residue in the C terminus. The K751 ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. Polymerase activity assays indicated that the K751 ubiquitination at the C terminus of VP1 enhanced its polymerase activity. The K751-to-R mutation of VP1 protein did not block the rescue of IBDV but decreased the replication ability of IBDV. Our data demonstrate that the ubiquitination of VP1 is crucial to regulate its polymerase activity and IBDV replication. IMPORTANCE Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication.
Collapse
|
34
|
Hyodo K, Suzuki N, Okuno T. Hijacking a host scaffold protein, RACK1, for replication of a plant RNA virus. THE NEW PHYTOLOGIST 2019; 221:935-945. [PMID: 30169907 DOI: 10.1111/nph.15412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
Receptor for activated C kinase 1 (RACK1) is strictly conserved across eukaryotes and acts as a versatile scaffold protein involved in various signaling pathways. Plant RACK1 is known to exert important functions in innate immunity against fungal and bacterial pathogens. However, the role of the RACK1 in plant-virus interactions remains unknown. Here, we addressed the role of RACK1 of Nicotiana benthamiana during infection by red clover necrotic mosaic virus (RCNMV), a plant positive-stranded RNA virus. NbRACK1 was shown to be recruited by the p27 viral replication protein into endoplasmic reticulum-derived aggregated structures (possible replication sites). Downregulation of NbRACK1 by virus-induced gene silencing inhibited viral cap-independent translation and p27-mediated reactive oxygen species (ROS) accumulation, which are prerequisite for RCNMV replication. We also found that NbRACK1 interacted with a host calcium-dependent protein kinase (NbCDPKiso2) that activated a ROS-generating enzyme. Interestingly, NbRACK1 was required for the interaction of p27 with NbCDPKiso2, suggesting that NbRACK1 acts as a bridge between the p27 viral replication protein and NbCDPKiso2. Collectively, our findings provide an example of a viral strategy in which a host multifaceted scaffold protein RACK1 is highjacked for promoting viral protein-triggered ROS production necessary for robust viral replication.
Collapse
Grants
- 15H04456 JSPS KAKENHI
- 17K15229 JSPS KAKENHI
- 16H06429 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 16K21723 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 16H06436 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 17H05818 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
35
|
Caterino M, Ruoppolo M, Mandola A, Costanzo M, Orrù S, Imperlini E. Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. MOLECULAR BIOSYSTEMS 2018; 13:2466-2476. [PMID: 29028058 DOI: 10.1039/c7mb00434f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Voltage-dependent anion channels (VDACs) are a family of three mitochondrial porins and the most abundant integral membrane proteins of the mitochondrial outer membrane (MOM). VDACs are known to be involved in metabolite/ion transport across the MOM and in many cellular processes ranging from mitochondria-mediated apoptosis to the control of energy metabolism, by interacting with cytosolic, mitochondrial and cytoskeletal proteins and other membrane channels. Despite redundancy and compensatory mechanisms among VDAC isoforms, they display not only different channel properties and protein expression levels, but also distinct protein partners. Here, we review the known protein interactions for each VDAC isoform in order to shed light on their peculiar roles in physiological and pathological conditions. As proteins associated with the MOM, VDAC opening/closure as a metabolic checkpoint is regulated by protein-protein interactions, and is of pharmacological interest in pathological conditions such as cancer. The interactions involving VDAC1 have been characterized more in depth than those involving VDAC2 and VDAC3. Nevertheless, the so far explored VDAC-protein interactions for each isoform show that VDAC1 is mainly involved in the maintenance of cellular homeostasis and in pro-apoptotic processes, whereas VDAC2 displays an anti-apoptotic role. Despite there being limited information on VDAC3, this isoform could contribute to mitochondrial protein quality control and act as a marker of oxidative status. In pathological conditions, namely neurodegenerative and cardiovascular diseases, both VDAC1 and VDAC2 establish abnormal interactions aimed to counteract the mitochondrial dysfunction which contributes to end-organ damage.
Collapse
Affiliation(s)
- Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Bi J, Zhao Q, Zhu L, Li X, Yang G, Liu J, Yin G. RACK1 is indispensable for porcine reproductive and respiratory syndrome virus replication and NF-κB activation in Marc-145 cells. Sci Rep 2018; 8:2985. [PMID: 29445214 PMCID: PMC5813008 DOI: 10.1038/s41598-018-21460-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is currently insufficiently controlled. RACK1 (receptor of activated protein C kinase 1) was first identified as a receptor for protein kinase C, with increasing evidence showing that the functionally conserved RACK1 plays important roles in cancer development, NF-κB activation and various virus infections. However, the roles of RACK1 during PRRSV infection in Marc-145 cells have not been described yet. Here we demonstrated that infection of Marc-145 cells with the highly pathogenic PRRSV strain YN-1 from our lab led to activation of NF-κB and upregulation of RACK1 expression. The siRNA knockdown of RACK1 inhibited PRRSV replication in Marc-145 cells, abrogated NF-κB activation induced by PRRSV infection and reduced the viral titer. Furthermore, knockdown of RACK1 could inhibit an ongoing PRRSV infection. We found that RACK1 is highly conserved across different species based on the phylogenetic analysis of mRNA and deduced amino acid sequences. Taken together, RACK1 plays an indispensable role for PRRSV replication in Marc-145 cells and NF-κB activation. The results would advance our further understanding of the molecular mechanisms underlying PRRSV infection in swine and indicate RACK1 as a promising potential therapeutic target.
Collapse
Affiliation(s)
- Junlong Bi
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan province, China.,Center for Animal Disease Control and Prevention, Chuxiong City, 675000, Yunnan province, China
| | - Qian Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan province, China
| | - Lingyun Zhu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan province, China.,Yunnan Province Veterinary Biological Products Development Center, Baoshan, 678000, Yunnan Province, China
| | - Xidan Li
- Karolinska Institute, Integrated Cardio Metabolic Centre (ICMC), Stockholm, SE-14157, Sweden
| | - Guishu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan province, China
| | - Jianping Liu
- Karolinska Institute, Integrated Cardio Metabolic Centre (ICMC), Stockholm, SE-14157, Sweden.
| | - Gefen Yin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan province, China.
| |
Collapse
|
37
|
Subramani C, Nair VP, Anang S, Mandal SD, Pareek M, Kaushik N, Srivastava A, Saha S, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Host-Virus Protein Interaction Network Reveals the Involvement of Multiple Host Processes in the Life Cycle of Hepatitis E Virus. mSystems 2018; 3:e00135-17. [PMID: 29404423 PMCID: PMC5781259 DOI: 10.1128/msystems.00135-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Comprehensive knowledge of host-pathogen interactions is central to understand the life cycle of a pathogen and devise specific therapeutic strategies. Protein-protein interactions (PPIs) are key mediators of host-pathogen interactions. Hepatitis E virus (HEV) is a major cause of viral hepatitis in humans. Recent reports also demonstrate its extrahepatic manifestations in the brain. Toward understanding the molecular details of HEV life cycle, we screened human liver and fetal brain cDNA libraries to identify the host interaction partners of proteins encoded by genotype 1 HEV and constructed the virus-host PPI network. Analysis of the network indicated a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed the presence of multiple host translation regulatory factors in the viral translation/replication complex. Depletion of host translation factors such as eIF4A2, eIF3A, and RACK1 significantly reduced the viral replication, whereas eIF2AK4 depletion had no effect. These findings highlight the ingenuity of the pathogen in manipulating the host machinery to its own benefit, a clear understanding of which is essential for the identification of strategic targets and development of specific antivirals against HEV. IMPORTANCE Hepatitis E virus (HEV) is a pathogen that is transmitted by the fecal-oral route. Owing to the lack of an efficient laboratory model, the life cycle of the virus is poorly understood. During the course of infection, interactions between the viral and host proteins play essential roles, a clear understanding of which is essential to decode the life cycle of the virus. In this study, we identified the direct host interaction partners of all HEV proteins and generated a PPI network. Our functional analysis of the HEV-human PPI network reveals a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed an essential role of several host factors in HEV replication. Collectively, the results from our study provide a vast resource of PPI data from HEV and its human host and identify the molecular components of the viral translation/replication machinery.
Collapse
Affiliation(s)
- Chandru Subramani
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Vidya P. Nair
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saumya Anang
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | | | - Madhu Pareek
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Nidhi Kaushik
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Akriti Srivastava
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - C. T. Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
38
|
Wang B, Duan X, Fu M, Liu Y, Wang Y, Li X, Cao H, Zheng SJ. The association of ribosomal protein L18 (RPL18) with infectious bursal disease virus viral protein VP3 enhances viral replication. Virus Res 2017; 245:69-79. [PMID: 29273342 DOI: 10.1016/j.virusres.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). IBDV VP3 is a multifunctional protein playing a key role in virus assembly and pathogenesis. To investigate the role of VP3 in pathogenesis, we transfected DF-1 cells with pRK5-FLAG-vp3 and found that VP3 enhanced type I interferon expression and suppressed IBDV replication. Furthermore we found that VP3 interacted with chicken Ribosomal Protein L18 (chRPL18) in host cells and knockdown of chRPL18 by RNAi significantly promoted Type I interferon expression and inhibited IBDV replication. Moreover, our data show that chicken double-stranded RNA-activated protein kinase (chPKR) interacted with both VP3 and chRPL18. Thus chRPL18 in association with VP3 and chPKR affects viral replication.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
39
|
Zhang L, Li H, Chen Y, Gao X, Lu Z, Gao L, Wang Y, Gao Y, Gao H, Liu C, Cui H, Zhang Y, Pan Q, Qi X, Wang X. The down-regulation of casein kinase 1 alpha as a host defense response against infectious bursal disease virus infection. Virology 2017; 512:211-221. [PMID: 28988058 DOI: 10.1016/j.virol.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/25/2023]
Abstract
Infectious bursal disease virus (IBDV) is an important immunosuppressive virus of chickens. Although the gene functions of IBDV have been well characterized, the host responses during IBDV infection remain much poor. In the present study, casein kinase 1 alpha (CK1α), a novel VP2-associated protein, was down-regulated during IBDV replication in DF1 cells. Further experiments showed that siRNA-mediated knockdown of CK1α inhibited IBDV replication, while overexpression of CK1α promoted IBDV growth. Finally, we revealed that the effects of CK1α expression level on IBDV replication were involved in the negative regulation of CK1α on type I interferon receptor (IFNAR1), because ubiquitination assay analyses demonstrated that CK1α could promote the ubiquitination of IFNAR1, thereby affecting the stability of this receptor. In conclusion, down-regulation of CK1α during IBDV infection as a host defense response increased abundance of IFNAR1, which in turn enhanced an inhibitory effect on IBDV replication.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hui Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yuming Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiang Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Zhen Lu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
40
|
Voltage-Dependent Anion Channel 1 Interacts with Ribonucleoprotein Complexes To Enhance Infectious Bursal Disease Virus Polymerase Activity. J Virol 2017; 91:JVI.00584-17. [PMID: 28592532 DOI: 10.1128/jvi.00584-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/28/2017] [Indexed: 02/05/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus. Segment A contains two overlapping open reading frames (ORFs), which encode viral proteins VP2, VP3, VP4, and VP5. Segment B contains one ORF and encodes the viral RNA-dependent RNA polymerase, VP1. IBDV ribonucleoprotein complexes are composed of VP1, VP3, and dsRNA and play a critical role in mediating viral replication and transcription during the virus life cycle. In the present study, we identified a cellular factor, VDAC1, which was upregulated during IBDV infection and found to mediate IBDV polymerase activity. VDAC1 senses IBDV infection by interacting with viral proteins VP1 and VP3. This association is caused by RNA bridging, and all three proteins colocalize in the cytoplasm. Furthermore, small interfering RNA (siRNA)-mediated downregulation of VDAC1 resulted in a reduction in viral polymerase activity and a subsequent decrease in viral yield. Moreover, overexpression of VDAC1 enhanced IBDV polymerase activity. We also found that the viral protein VP3 can replace segment A to execute polymerase activity. A previous study showed that mutations in the C terminus of VP3 directly influence the formation of VP1-VP3 complexes. Our immunoprecipitation experiments demonstrated that protein-protein interactions between VDAC1 and VP3 and between VDAC1 and VP1 play a role in stabilizing the interaction between VP3 and VP1, further promoting IBDV polymerase activity.IMPORTANCE The cellular factor VDAC1 controls the entry and exit of mitochondrial metabolites and plays a pivotal role during intrinsic apoptosis by mediating the release of many apoptogenic molecules. Here we identify a novel role of VDAC1, showing that VDAC1 interacts with IBDV ribonucleoproteins (RNPs) and facilitates IBDV replication by enhancing IBDV polymerase activity through its ability to stabilize interactions in RNP complexes. To our knowledge, this is the first report that VDAC1 is specifically involved in regulating IBDV RNA polymerase activity, providing novel insight into virus-host interactions.
Collapse
|
41
|
Qin Y, Xu Z, Wang Y, Li X, Cao H, Zheng SJ. VP2 of Infectious Bursal Disease Virus Induces Apoptosis via Triggering Oral Cancer Overexpressed 1 (ORAOV1) Protein Degradation. Front Microbiol 2017; 8:1351. [PMID: 28769911 PMCID: PMC5515827 DOI: 10.3389/fmicb.2017.01351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/04/2017] [Indexed: 01/30/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by IBD virus (IBDV). Cell apoptosis triggered by IBDV contributes to the dysfunction of immune system in host. VP2 of IBDV is known to induce cell death but the underlying mechanism remains unclear. Here we demonstrate that VP2 interacts with the oral cancer overexpressed 1 (ORAOV1), a potential oncoprotein. Infection by IBDV or ectopic expression of VP2 causes a reduction of cellular ORAOV1 and induction of apoptosis, so does knockdown of ORAOV1. In contrast, over-expression of ORAOV1 leads to the inhibition of VP2- or IBDV-induced apoptosis, accompanied with the decreased viral release (p < 0.05). Thus, VP2-induced apoptosis during IBDV infection is mediated by interacting with and reducing ORAOV1, a protein that appears to act as an antiapoptotic molecule and restricts viral release early during IBDV infection.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Zhichao Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
42
|
Méndez F, Romero N, Cubas LL, Delgui LR, Rodríguez D, Rodríguez JF. Non-Lytic Egression of Infectious Bursal Disease Virus (IBDV) Particles from Infected Cells. PLoS One 2017; 12:e0170080. [PMID: 28095450 PMCID: PMC5240931 DOI: 10.1371/journal.pone.0170080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/28/2016] [Indexed: 11/30/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is responsible for a devastating immunosuppressive disease affecting juvenile domestic chickens. IBDV particles are naked icosahedrons enclosing a bipartite double-stranded RNA genome harboring three open reading frames (ORF). One of these ORFs codes for VP5, a non-structural polypeptide dispensable for virus replication in tissue culture but essential for IBDV pathogenesis. Using two previously described recombinant viruses, whose genomes differ in a single nucleotide, expressing or not the VP5 polypeptide, we have analyzed the role of this polypeptide during the IBDV replication process. Here, we show that VP5 is not involved in house-keeping steps of the virus replication cycle; i.e. genome transcription/replication, protein translation and virus assembly. Although infection with the VP5 expressing and non-expressing viruses rendered similar intracellular infective progeny yields, striking differences were detected on the ability of their progenies to exiting infected cells. Experimental data shows that the bulk of the VP5-expressing virus progeny efficiently egresses infected cells during the early phase of the infection, when viral metabolism is peaking and virus-induced cell death rates are as yet minimal, as determined by qPCR, radioactive protein labeling and quantitative real-time cell death analyses. In contrast, the release of the VP5-deficient virus progeny is significantly abridged and associated to cell death. Taken together, data presented in this report show that IBDV uses a previously undescribed VP5-dependent non-lytic egress mechanism significantly enhancing the virus dissemination speed. Ultrastructural analyses revealed that newly assembled IBDV virions associate to a vesicular network apparently facilitating their trafficking from virus assembly factories to the extracellular milieu, and that this association requires the expression of the VP5 polypeptide.
Collapse
Affiliation(s)
- Fernando Méndez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Nicolás Romero
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Liliana L. Cubas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Laura R. Delgui
- Instituto de Histología y Embriología de Mendoza - CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Dolores Rodríguez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - José F. Rodríguez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
43
|
Qin Y, Zheng SJ. Infectious Bursal Disease Virus-Host Interactions: Multifunctional Viral Proteins that Perform Multiple and Differing Jobs. Int J Mol Sci 2017; 18:E161. [PMID: 28098808 PMCID: PMC5297794 DOI: 10.3390/ijms18010161] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease caused by IBD virus (IBDV). The consequent immunosuppression increases susceptibility to other infectious diseases and the risk of subsequent vaccination failure as well. Since the genome of IBDV is relatively small, it has a limited number of proteins inhibiting the cellular antiviral responses and acting as destroyers to the host defense system. Thus, these virulence factors must be multifunctional in order to complete the viral replication cycle in a host cell. Insights into the roles of these viral proteins along with their multiple cellular targets in different pathways will give rise to a rational design for safer and effective vaccines. Here we summarize the recent findings that focus on the virus-cell interactions during IBDV infection at the protein level.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
VDAC2-specific cellular functions and the underlying structure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2503-14. [PMID: 27116927 DOI: 10.1016/j.bbamcr.2016.04.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 01/30/2023]
Abstract
Voltage Dependent Anion-selective Channel 2 (VDAC2) contributes to oxidative metabolism by sharing a role in solute transport across the outer mitochondrial membrane (OMM) with other isoforms of the VDAC family, VDAC1 and VDAC3. Recent studies revealed that VDAC2 also has a distinctive role in mediating sarcoplasmic reticulum to mitochondria local Ca(2+) transport at least in cardiomyocytes, which is unlikely to be explained simply by the expression level of VDAC2. Furthermore, a strictly isoform-dependent VDAC2 function was revealed in the mitochondrial import and OMM-permeabilizing function of pro-apoptotic Bcl-2 family proteins, primarily Bak in many cell types. In addition, emerging evidence indicates a variety of other isoform-specific engagements for VDAC2. Since VDAC isoforms display 75% sequence similarity, the distinctive structure underlying VDAC2-specific functions is an intriguing problem. In this paper we summarize studies of VDAC2 structure and functions, which suggest a fundamental and exclusive role for VDAC2 in health and disease. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
45
|
Maurya SR, Mahalakshmi R. VDAC-2: Mitochondrial outer membrane regulator masquerading as a channel? FEBS J 2016; 283:1831-6. [PMID: 26709731 DOI: 10.1111/febs.13637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/30/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023]
Abstract
The voltage-dependent anion channels (VDACs) are the workforce of mitochondrial transport and as such are required for cellular metabolism. The elaborate interplay between mitochondria and the apoptotic pathway supports a role for VDACs as a major regulator of cell death. Although VDAC-1 has an established role in apoptosis and cell homeostasis, the role of VDAC-2 has been controversial. In humans, VDAC-2 is best known for its anti-apoptotic properties. In this Viewpoint, we associate the various functional studies on VDAC-2 with structural reports, to decode its unique behavior. The well-structured N-terminus, compact barrel form, differences in the loop regions, specific transmembrane segments and the abundance of thiols in VDAC-2 enable this isoform to perform a different subset of regulatory functions, establish anti-apoptotic features and contribute to gametogenesis. VDAC-2 structural features that demarcate it from VDAC-1 suggest that this particular isoform is better suited for regulating reactive oxygen species, steroidogenesis and mitochondria-associated endoplasmic reticulum membrane regulatory pathways, with ion transport forming a secondary role. A better understanding of the unique structural features of the VDAC family will aid in the design of inhibitors that could alleviate irregularities in VDAC-controlled pathways.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
46
|
Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proc Natl Acad Sci U S A 2015; 112:E5590-9. [PMID: 26417093 DOI: 10.1073/pnas.1510574112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent anion channel (VDAC) proteins are major components of the outer mitochondrial membrane. VDAC has three isoforms with >70% sequence similarity and redundant roles in metabolite and ion transport. However, only Vdac2(-/-) (V2(-/-)) mice are embryonic lethal, indicating a unique and fundamental function of VDAC2 (V2). Recently, a specific V2 requirement was demonstrated for mitochondrial Bak import and truncated Bid (tBid)-induced apoptosis. To determine the relevant domain(s) of V2 involved, VDAC1 (V1) and V2 chimeric constructs were created and used to rescue V2(-/-) fibroblasts. Surprisingly, the commonly cited V2-specific N-terminal extension and cysteines were found to be dispensable for Bak import and high tBid sensitivity. In gain-of-function studies, V2 (123-179) was the minimal sequence sufficient to render V1 competent to support Bak insertion. Furthermore, in loss-of-function experiments, T168 and D170 were identified as critical residues. These motifs are conserved in zebrafish V2 (zfV2) that also rescued V2-deficient fibroblasts. Because high-resolution structures of zfV2 and mammalian V1 have become available, we could superimpose these structures and recognized that the critical V2-specific residues help to create a distinctive open "pocket" on the cytoplasmic surface that could facilitate Bak recruitment.
Collapse
|
47
|
Cyclophilin A Interacts with Viral VP4 and Inhibits the Replication of Infectious Bursal Disease Virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:719454. [PMID: 26090438 PMCID: PMC4458279 DOI: 10.1155/2015/719454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023]
Abstract
Nonstructural protein VP4, a serine protease of infectious bursal disease virus (IBDV) that catalyzes the hydrolysis of polyprotein pVP2-VP4-VP3 to form the viral proteins VP2, VP4, and VP3, is essential to the replication of IBDV. However, the interacting partners of VP4 in host cells and the effects of the interaction on the IBDV lifecycle remain incompletely elucidated. In this study, using the yeast two-hybrid system, the putative VP4-interacting partner cyclophilin A (CypA) was obtained from a chicken embryo fibroblast (CEF) expression library. CypA was further confirmed to interact with VP4 of IBDV using co-immunoprecipitation (CO-IP), GST pull-down, and confocal microscopy assays. Moreover, we found that the overexpression of CypA suppressed IBDV replication, whereas the knock-down of CypA by small interfering RNAs promoted the replication of IBDV. Taken together, our findings indicate that the host cell protein CypA interacts with viral VP4 and inhibits the replication of IBDV.
Collapse
|