1
|
Shen Z, Feng B, Lim WL, Woo T, Liu Y, Vicenzi S, Wang J, Kwon BK, Zou Y. Astrocytic Ryk signaling coordinates scarring and wound healing after spinal cord injury. Proc Natl Acad Sci U S A 2025; 122:e2417400122. [PMID: 40208942 PMCID: PMC12012454 DOI: 10.1073/pnas.2417400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 04/12/2025] Open
Abstract
Wound healing after spinal cord injury involves highly coordinated interactions among multiple cell types, which are poorly understood. Astrocytes play a central role in creating a border against the non-neural lesion core. To do so, astrocytes undergo dramatic morphological changes by first thickening and elongating their processes and then overlapping them to form a physical barrier. We show here that the expression of a cell-surface receptor, Ryk, is induced in astrocytes after injury in both rodent and human spinal cords. Astrocyte-specific knockout of Ryk dramatically elongated the reactive astrocytes, accelerated the formation of the border, and reduced the size of the scar. Astrocyte-specific knockout of Ryk also accelerated the injury responses of multiple cell types. Single-cell transcriptomics analyses revealed a broad range of changes in cell signaling among astrocytes, microglia, fibroblasts, and endothelial cells after astrocyte-specific Ryk knockout, suggesting that Ryk not only regulates injury responses of astrocytes but may also regulate signals emanating from astrocytes and coordinate the responses of these cell types. The elongation of astrocyte processes is mediated by NrCAM, a cell adhesion molecule induced by astrocyte-specific conditional knockout of Ryk after spinal cord injury. Our findings suggest that Ryk is a promising therapeutic target to accelerate wound healing, promote neuronal survival, and enhance functional recovery.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Bo Feng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Wei Ling Lim
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Timothy Woo
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Yanlin Liu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Silvia Vicenzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Jingyi Wang
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Brian K. Kwon
- Department of Orthopaedics, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BCV5Z 1M9, Canada
| | - Yimin Zou
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Du H, Song L, Zhao M, Zhao X, Mu R, Gao S, Zhang B, Wang J. Prenatal Perfluorooctanoic Acid (PFOA) exposure causes reproductive toxicity by disrupting the formation of transzonal projections (TZPs) and down-regulating Wnt4/β-catenin signaling pathway in progeny. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117816. [PMID: 39889476 DOI: 10.1016/j.ecoenv.2025.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Perfluorooctanoic acid (PFOA) has been recognized as a novel persistent organic pollutant, playing a significant role in global environmental contamination. Recent evidence indicates that exposure to PFOA detrimentally affects reproductive function, notably through a progressive decline in ovarian function. However, there is a notable lack of research specifically examining its impact on the reproductive potential of female offspring. In this study, we report that prenatal exposure to PFOA impairs the competence of maturing oocytes and reduces the yield of oocytes in the progeny. Mechanistically, prenatal exposure to PFOA leads to a reduced expression of Wnt4, which subsequently impairs the integrity of the ovarian follicle basement membrane and decreases the expression of proteins related to adherent junctions in granulosa cells. This cascade of events results in a compromised reduction of transzonal projections (TZPs) within ovarian follicles, ultimately leading to mitochondrial dysfunction and diminished ATP synthesis in oocytes. This study offers comprehensive insights into the underlying mechanisms of PFOA-induced reproductive toxicity and furnishes scientific evidence to support initiatives focused on preventing and mitigating reproductive harm associated with perfluorinated compounds.
Collapse
Affiliation(s)
- Hua Du
- Department of Pathology, Basic Medical College/Affifiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lishuang Song
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Min Zhao
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Xiaorong Zhao
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ren Mu
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Shengtao Gao
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China.
| | - Jiapeng Wang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
da Silva TQM, Barbosa EM, Santos LC, de Oliveira LS, Cunha MCDSG, de Macedo IO, Martins BGC, Oliveira CL, Rodrigues NP, Araújo-Lopes R, Szawka RE, Silva JF. Hypothyroidism Alters Uterine Kisspeptin System and Activity Modulators in Cyclic Rats. Int J Mol Sci 2025; 26:543. [PMID: 39859259 PMCID: PMC11765193 DOI: 10.3390/ijms26020543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Hypothyroidism causes ovarian dysfunction and infertility in women and animals and impairs the hypothalamic expression of kisspeptin (Kp). However, kisspeptin is also expressed in the genital system, and the lack of the Kp receptor (Kiss1r) in the uterus is linked to reduced implantation rates. This study investigated the impact of hypothyroidism on the uterine expression of Kp and Kiss1r in female rats throughout the estrous cycle and the associated changes in uterine activity modulators. Hypothyroidism was induced through daily administration of propylthiouracil (PTU) over a period of 14 days. Plasma levels of LH, E2, and P4, cyclicity, body and uterine weight, uterine histomorphometry, and the gene and/or protein expression of Kiss1, Kiss1r, estrogen receptor α (ERα), progesterone receptor (PR), and thyroid hormone receptor α (TRα) were assessed. Additionally, proliferative activity (CDC-47) and the gene expression of uterine receptivity mediators (SMO, WNT4, BMP2, HAND2, MUC1, and LIF) were evaluated. Hypothyroidism prolonged the diestrus and increased progesterone levels during this phase, while decreasing luteinizing hormone and estradiol on proestrus. In the uterus, hypothyroidism reduced Kp immunostaining on diestrus and KISS1R mRNA levels on proestrus. These changes were accompanied by reduced endometrial glands, reduced uterine proliferative activity, and reduced ERα gene and protein expression. Additionally, hypothyroidism led to reduced uterine gene expression of LIF, BMP2, WNT4, and HAND2. On the other hand, thyroid hypofunction increased uterine PR and TRα immunostaining, while it reduced PGR gene expression on diestrus. These findings demonstrate that hypothyroidism reduces the expression of Kiss1/Kiss1r system in the uterus, which is associated with disrupted uterine estrogen and progesterone signaling and reduced expression of uterine receptivity mediators across the rat estrous cycle.
Collapse
Affiliation(s)
- Thayná Queiroz Menezes da Silva
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Erikles Macêdo Barbosa
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Luciano Cardoso Santos
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Luciana Santos de Oliveira
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Maria Clara da Silva Galrão Cunha
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Isabella Oliveira de Macedo
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Brenda Geovana Campos Martins
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Cibele Luz Oliveira
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Natalia Panhoca Rodrigues
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| | - Roberta Araújo-Lopes
- Endocrinology and Metabolism Laboratory, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.-L.); (R.E.S.)
| | - Raphael Escorsim Szawka
- Endocrinology and Metabolism Laboratory, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.-L.); (R.E.S.)
| | - Juneo Freitas Silva
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Ilheus 45662-900, Brazil; (T.Q.M.d.S.); (E.M.B.); (L.C.S.); (L.S.d.O.); (M.C.d.S.G.C.); (I.O.d.M.); (B.G.C.M.); (C.L.O.); (N.P.R.)
| |
Collapse
|
4
|
Li J, Zhu X, Zhu W, Li L, Wei H, Zhang S. Research Progress on the Impact of Human Chorionic Gonadotropin on Reproductive Performance in Sows. Animals (Basel) 2024; 14:3266. [PMID: 39595318 PMCID: PMC11591456 DOI: 10.3390/ani14223266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Human chorionic gonadotropin is a glycoprotein hormone produced by human or humanoid syncytiotrophoblasts that differentiate during pregnancy. Due to its superior stability and long-lasting effects compared to luteinizing hormone, it is often used to replace luteinizing hormone to regulate reproductive performance in sows. Human chorionic gonadotropin promotes oocyte maturation, follicle development, and luteinization, thereby increasing conception rates and supporting early embryonic development. In sow reproductive management, the application of human chorionic gonadotropin not only enhances ovulation synchrony but also improves the success rate of embryo implantation by regulating endometrial receptivity and immune mechanisms, significantly enhancing overall reproductive performance. This article primarily reviews the application of human chorionic gonadotropin in sow follicle development, luteal maintenance, and embryo implantation, providing theoretical support for its use in improving reproductive performance in sows.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agroanimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (J.L.); (X.Z.); (W.Z.); (L.L.); (H.W.)
| |
Collapse
|
5
|
Cheng L, Shi Z, Yue Y, Wang Y, Qin Y, Zhao W, Hu Y, Li Q, Guo M, An L, Wang S, Tian J. Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs. J Anim Sci Biotechnol 2024; 15:148. [PMID: 39501409 PMCID: PMC11539329 DOI: 10.1186/s40104-024-01109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management, such as pig, sheep, bovine and other species. It helps synchronize ovulation or stimulate multiple ovulations. However, a number of evidence indicated an unexpected decrease in pregnancy outcomes following ovarian stimulation. This study aimed to explore the underlying mechanism of the pregnancy defect and develop a practical rescue strategy. RESULTS Compared with those in the control group, gilts that underwent ovarian stimulation showed a decrease in pregnancy rate, farrowing rate, and total number of piglets born. Stimulated gilts also showed an increase in estradiol (E2) levels. The supraphysiological E2 level was correlated with the decrease in the number of piglets born. Furthermore, we found that high levels of E2 impair uterine receptivity, as shown by the overproliferation of endometrial epithelial cells. In vitro mechanistic studies demonstrated that high levels of E2 hyperactivate FGF-FGFR-ERK signaling cascade in the uterine endometrium, and in turn induces overproliferation of endometrial epithelial cells. Of note, N-acetyl-L-cysteine (NAC) supplementation effectively inhibits ERK hyperphosphorylation and ameliorates endometrial epithelial overproliferation. Importantly, in vivo experiments indicated that dietary NAC supplementation, compared with ovarian stimulation group, improves the uterine receptivity in gilts, and significantly increases the pregnancy rate and total number of piglets born. CONCLUSIONS Ovarian stimulation-induced supraphysiological levels of E2 impairs uterine receptivity by hyperactivating FGF-FGFR-ERK signaling cascade, thereby reducing pregnancy rate and litter size. Supplementing NAC to a conventional diet for gilts ameliorates hyperactivated ERK signaling and improves uterine receptivity, thus rescuing adverse pregnancy outcomes following ovarian stimulation.
Collapse
Affiliation(s)
- Linghua Cheng
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhicheng Shi
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Yue
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yue Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yusheng Qin
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yupei Hu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qin Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Min Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei An
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shumin Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianhui Tian
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
6
|
Shen Z, Feng B, Lim WL, Woo T, Liu Y, Vicenzi S, Wang J, Kwon BK, Zou Y. Astrocytic Ryk signaling coordinates scarring and wound healing after spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618727. [PMID: 39463959 PMCID: PMC11507886 DOI: 10.1101/2024.10.16.618727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Wound healing after spinal cord injury involves highly coordinated interactions among multiple cell types, which is poorly understood. Astrocytes play a central role in creating a border against the non-neural lesion core. To do so, astrocytes undergo dramatic morphological changes by first thickening the processes and then elongating and overlap them. We show here show that the expression of a cell-surface receptor, Ryk, is induced in astrocytes after injury in both rodent and human spinal cord. Astrocyte-specific knockout of Ryk dramatically elongated the reactive astrocytes and accelerated the formation of the border and reduced the size of the scar. Astrocyte-specific knockout of Ryk also accelerated the injury responses of multiple cell types, including the resolution of neuroinflammation. Single cell transcriptomics analyses revealed a broad range of changes cell signaling among astrocytes, microglia, fibroblasts, endothelial cell, etc, after astrocyte-specific Ryk knockout, suggesting that Ryk not only regulates the injury response of astrocytes but may also regulate signals which coordinate the responses of multiple cell types. The elongation is mediated by NrCAM, a cell adhesion molecule induced by astrocyte-specific conditional knockout of Ryk after spinal cord injury. Our findings suggest a promising therapeutic target to accelerate wound healing and promote neuronal survival and enhance functional recovery.
Collapse
|
7
|
Almirón A, Lorenz V, Doná F, Varayoud J, Milesi MM. Epigenetic alteration of uterine Leukemia Inhibitory Factor gene after glyphosate or a glyphosate-based herbicide exposure in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104564. [PMID: 39277068 DOI: 10.1016/j.etap.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (Lif) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9 mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were in silico predicted in regulatory regions of Lif gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased Lif mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of Lif.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Florencia Doná
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina.
| |
Collapse
|
8
|
Kubota K. Molecular approaches to mammalian uterine receptivity for conceptus implantation. J Reprod Dev 2024; 70:207-212. [PMID: 38763760 PMCID: PMC11310385 DOI: 10.1262/jrd.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
- Present: Research Promotion Office, Core Technology Research Headquaters, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8517, Japan
| |
Collapse
|
9
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
10
|
Chen ST, Ran F, Shi WW, Liu CK, Wang PC, Luo HN, Yang ZM. Tryptophan in the mouse diet is essential for embryo implantation and decidualization. Front Endocrinol (Lausanne) 2024; 15:1356914. [PMID: 38752181 PMCID: PMC11094255 DOI: 10.3389/fendo.2024.1356914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Nutritional deficiency occurs frequently during pregnancy and breastfeeding. Tryptophan (Trp), an essential amino acid which is critical for protein synthesis, serves as the precursor for serotonin, melatonin, and kynurenine (Kyn). The imbalance between serotonin and kynurenine pathways in Trp metabolism is closely related to inflammation and depression. This study assessed the effects of Trp deficiency on mouse early pregnancy. Methods Embryo implantation and decidualization were analyzed after female mice had been fed diets containing 0.2% Trp (for the control group), 0.062% Trp (for the low Trp group) and 0% Trp (for the Trp-free group) for two months. The uteri of the mice were collected on days 4, 5, and 8 of pregnancy for further analysis. Results On day 8 of pregnancy, the number of implantation sites were found to be similar between the control and the low Trp groups. However, no implantation sites were detected in the Trp-free group. On day 5 of pregnancy, plane polarity- and decidualization-related molecules showed abnormal expression pattern in the Trp-free group. On day 4 of pregnancy, there was no significant difference in uterine receptivity molecules between the low-Trp group and the control group, but uterine receptivity was abnormal in the Trp-free group. At implantation sites of the Trp-free group, IDO and AHR levels were markedly elevated. This potentially increased levels of Kyn, 2-hydroxy estradiol, and 4-hydroxy estradiol to affect decidualization. Conclusions Trp-free diet may impair decidualization via the IDO-KYN-AHR pathway.
Collapse
Affiliation(s)
- Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Feng Ran
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cheng-Kan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Taghizadeh E, Barati F, Fallah AA, Hemmatzadeh-Dastgerdi M, Nejabati MS. Estrogens improve the pregnancy rate in cattle: A review and meta-analysis. Theriogenology 2024; 220:35-42. [PMID: 38471389 DOI: 10.1016/j.theriogenology.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Estrogens have proven to be effective in bovine estrus induction protocols. Considering the extensive use of these products in large-scale estrus synchronization, the primary objective of the present study was to assess their effects on pregnancy rate (PR) using a meta-analysis approach. A total of 797 papers were screened from three major databases (PubMed, Web of Science, Scopus). Sixty-one studies were eligible for inclusion in the meta-analysis. The pregnancy status (success or failure) at 30 days post-insemination was considered as the effect size data. The odds ratios (OR) of PR were evaluated by considering the effects of estrogens in groups with or without estrogen intervention. The impact of estrogen (including factors such as type, dose, and time of administration) and animal characteristics (such as breed, type, and parity) was taken into account when assessing the effectiveness of estrogen response as PR. The results showed an OR of 1.25 (95% CI: 1.15-1.36; P = 0.000) for PR in animals that received estrogen compared to cattle that did not receive estrogen. Estradiol benzoate (OR = 1.3) and estradiol cypionate (OR = 1.2), with doses ranging from 1 to 3 mg (OR = 1.13-1.7), significantly increased the OR of PR. In terms of PR, beef cattle exhibited a higher odds ratio (OR = 1.4; P = 0.000) compared to dairy cattle (OR = 1.1; P = 0.09). The administration of estrogens in the estrus synchronization protocol significantly improved PR in both artificial insemination (OR = 1.2; P = 0.000) and embryo transfer (OR = 1.3; P = 0.033) programs. In summary, incorporating estrogens into estrus induction protocols led to an enhancement of the OR of PR among cattle.
Collapse
Affiliation(s)
- Ebrahim Taghizadeh
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Farid Barati
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, 8818634141, Shahrekord, Iran
| | | | - Mohammad-Saleh Nejabati
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
12
|
Pavlovic ZJ, Hsin-Yu Pai A, Hsiao TT, Yen CF, Alhasan H, Ozmen A, New EP, Guo X, Imudia AN, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA. Dysregulated expression of GATA2 and GATA6 transcription factors in adenomyosis: implications for impaired endometrial receptivity. F&S SCIENCE 2024; 5:92-103. [PMID: 37972693 DOI: 10.1016/j.xfss.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN Laboratory based experimental study. SETTING Academic hospital and laboratory. PATIENTS Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.
Collapse
Affiliation(s)
- Zoran Jason Pavlovic
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| | - Angel Hsin-Yu Pai
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Tzu-Ti Hsiao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chih-Feng Yen
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hasan Alhasan
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Erika P New
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Anthony N Imudia
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida; Shady Grove Fertility, Tampa, Florida
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
13
|
Xu Y, Wu F, Qin C, Lin Y. Paradoxical role of phosphorylated STAT3 in normal fertility and the pathogenesis of adenomyosis and endometriosis†. Biol Reprod 2024; 110:5-13. [PMID: 37930185 DOI: 10.1093/biolre/ioad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), when phosphorylated at tyrosine 705, plays an important role in endometrial stromal cell decidualization and the receptivity of the endometrial epithelium during embryo implantation. However, the function of phosphorylated STAT3 (p-STAT3) in normal uterine receptivity is distinct from that in adenomyosis and endometriosis. In normal pregnancy, STAT3 phosphorylation in the endometrial epithelium determines the success of embryo implantation by regulating uterine receptivity. Additionally, p-STAT3 promotes cellular proliferation and differentiation during endometrial decidualization, which is crucial for embryonic development. In contrast, excessive STAT3 phosphorylation occurs in adenomyosis and endometriosis, which may lead to disease progression. Therefore, achieving a delicate balance in STAT3 activation is crucial. This review aimed to focus on the current understanding and knowledge gaps regarding the control of p-STAT3 activity in normal and pathological endometrial processes. This topic is important because precise control of p-STAT3 production could alleviate the symptoms of adenomyosis and endometriosis, improve endometrial receptivity, and potentially mitigate infertility without compromising normal fertility processes.
Collapse
Affiliation(s)
- Yichi Xu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanmei Qin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Xu F, Lu S, Jia X, Zhou Y. Bromodomain protein 4 mediates the roles of TGFβ1-induced Stat3 signaling in mouse liver fibrogenesis. Toxicol Lett 2023; 385:42-50. [PMID: 37634812 DOI: 10.1016/j.toxlet.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Epigenetic reader Bromodomain protein 4 (BrD4) functions as a global genomic regulator to direct hepatic stellate cell (HSC) activation (a key step in liver fibrogenesis) and liver fibrosis. The pivotal pro-fibrotic cytokine transforming growth factor-β1 (TGFβ1) signals through both Smad and Stat3 to elicit a wide array of biological effects. Stat3 is widely acknowledged as a regulator of gene transcription and is involved in fibrosis of multiple tissues. The present study focused on BrD4 function implication in the roles of TGFβ1-induced Stat3 signaling in HSC activation and liver fibrosis by using heterozygous TGFβ1 knockout mice and HSC culture. Results showed that Stat3 was required for TGFβ1-induced BrD4 expression in HSCs. BrD4 expression paralleled Stat3 activation in activated HSCs in human cirrhotic livers. BrD4 was involved in the roles of TGFβ1-induced Stat3 in HSC activation and liver fibrogenesis. Smad3 bound to phosphorylated-Stat3 and contributed to TGFβ1-induced Stat3 signaling. BrD4 expression induced by Stat3 signaling required the early-immediate gene Egr1. Egr1 had a positive feedback on Stat3 activation. In conclusion, a network consisting of Stat3 signaling, Smad3 signaling, Egr1, and BrD4 was involved in the effects of TGFβ1 on liver fibrosis, providing new toxicological mechanisms for TGFβ1 in liver fibrogenesis.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), 500 Yonghe Road, Nantong 226011, Jiangsu, China
| | - Sidan Lu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Chen ST, Shi WW, Lin YQ, Yang ZS, Wang Y, Li MY, Li Y, Liu AX, Hu Y, Yang ZM. Embryo-derive TNF promotes decidualization via fibroblast activation. eLife 2023; 12:e82970. [PMID: 37458359 PMCID: PMC10374279 DOI: 10.7554/elife.82970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
Decidualization is a process in which endometrial stromal fibroblasts differentiate into specialized secretory decidual cells and essential for the successful establishment of pregnancy. The underlying mechanism during decidualization still remains poorly defined. Because decidualization and fibroblast activation share similar characteristics, this study was to examine whether fibroblast activation is involved in decidualization. In our study, fibroblast activation-related markers are obviously detected in pregnant decidua and under in vitro decidualization. ACTIVIN A secreted under fibroblast activation promotes in vitro decidualization. We showed that arachidonic acid released from uterine luminal epithelium can induce fibroblast activation and decidualization through PGI2 and its nuclear receptor PPARδ. Based on the significant difference of fibroblast activation-related markers between pregnant and pseudopregnant mice, we found that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium. Fibroblast activation is also detected under human in vitro decidualization. Similar arachidonic acid-PGI2-PPARδ-ACTIVIN A pathway is conserved in human endometrium. Collectively, our data indicate that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium to induce fibroblast activation and decidualization.
Collapse
Affiliation(s)
- Si-Ting Chen
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, Guizhou University; College of Animal Science, Guizhou University, Guiyang, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu-Qian Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ai-Xia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zeng-Ming Yang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, Guizhou University; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Wan S, Sun Y, Zong J, Meng W, Yan J, Chen K, Wang S, Guo D, Xiao Z, Zhou Q, Yin Z, Yang M. METTL3-dependent m 6A methylation facilitates uterine receptivity and female fertility via balancing estrogen and progesterone signaling. Cell Death Dis 2023; 14:349. [PMID: 37270544 DOI: 10.1038/s41419-023-05866-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
Infertility is a worldwide reproductive health problem and there are still many unknown etiologies of infertility. In recent years, increasing evidence emerged and confirmed that epigenetic regulation played a leading role in reproduction. However, the function of m6A modification in infertility remains unknown. Here we report that METTL3-dependent m6A methylation plays an essential role in female fertility via balancing the estrogen and progesterone signaling. Analysis of GEO datasets reveal a significant downregulation of METTL3 expression in the uterus of infertile women with endometriosis or recurrent implantation failure. Conditional deletion of Mettl3 in female reproductive tract by using a Pgr-Cre driver results in infertility due to compromised uterine endometrium receptivity and decidualization. m6A-seq analysis of the uterus identifies the 3'UTR of several estrogen-responsive genes with METTL3-dependent m6A modification, like Elf3 and Celsr2, whose mRNAs become more stable upon Mettl3 depletion. However, the decreased expression levels of PR and its target genes, including Myc, in the endometrium of Mettl3 cKO mice indicate a deficiency in progesterone responsiveness. In vitro, Myc overexpression could partially compensate for uterine decidualization failure caused by Mettl3 deficiency. Collectively, this study reveals the role of METTL3-dependent m6A modification in female fertility and provides insight into the pathology of infertility and pregnancy management.
Collapse
Affiliation(s)
- Shuo Wan
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Sun
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinbao Zong
- Clinical Laboratory and Central Laboratory, the Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 266033, China
| | - Wanqing Meng
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiacong Yan
- Reproductive Medical Center, The First People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Kexin Chen
- Reproductive Medical Center, The First People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Sanfeng Wang
- Guangdong Women and Children Hospital, Guangzhou, 510010, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, 510123, Guangzhou, China
| | - Zhiqiang Xiao
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qinghua Zhou
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Meixiang Yang
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| |
Collapse
|
17
|
Gonzalez-Plaza A, Cambra JM, Garcia-Canovas M, Parrilla I, Gil MA, Martinez EA, Rodriguez-Martinez H, Martinez CA, Cuello C. Cryotop vitrification of large batches of pig embryos simultaneously provides excellent postwarming survival rates and minimal interference with gene expression. Theriogenology 2023; 206:1-10. [PMID: 37148716 DOI: 10.1016/j.theriogenology.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
The most commonly used technique to vitrify pig embryos is the super open pulled straw (SOPS), where a maximum of 6 embryos can be vitrified simultaneously per device without compromising the minimum volume necessary for optimal preservation. Since optimal embryo transfer (ET) demands a transfer of 20-40 embryos per recipient, the customary use of SOPS complicates embryo warming and ET in field conditions. Such complications could be avoided when using the Cryotop® (OC) system, which has been proven to be an effective option for vitrifying at least 20 porcine embryos simultaneously. This study aimed to investigate the changes in the transcriptome of blastocysts caused by vitrification using both systems. In vivo-derived blastocysts were OC- (n = 60; 20 embryos/device) and SOPS- (n = 60; 4-6 embryos/device) vitrified and cultured for 24 h after warming. Nonvitrified blastocysts (n = 60) cultured for 24 h postcollection acted as controls. At the end of culture, 48 viable embryos from each group (6 pools of 8 embryos) were selected for microarray (GeneChip® Porcine Genome Array, P/N 900624, Affymetrix) analysis of differentially expressed genes (DEGs). The survival rate of embryos vitrified with the OC and SOPS systems (>97%) was similar to that of the control embryos (100%). Microarray analysis of each vitrification system compared to the control group showed 245 DEGs (89 downregulated and 156 upregulated) for the OC system and 210 (44 downregulated and 166 upregulated) for the SOPS system. Two pathways were enriched for the DEGs specifically altered in each vitrification system compared to the control (glycolysis/gluconeogenesis and carbon metabolism pathways for the OC system and amino sugar and nucleotide sugar metabolism and lysosome pathways in the SOPS group). The OC group showed 31 downregulated and 24 upregulated genes and two enriched pathways (mineral absorption and amino sugar and nucleotide sugar metabolism pathways) when compared to the SOPS group. In summary, vitrification with the OC system altered fewer genes related to apoptosis and activated genes related to cell proliferation. We conclude that vitrification with either the OC or SOPS system has a moderate to low effect on the transcriptome of in vivo-derived porcine blastocysts. Further investigation is needed to elucidate how the differences in the transcriptome of embryos vitrified with these systems affect their subsequent developmental ability after ET.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Plaza
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Josep M Cambra
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Manuela Garcia-Canovas
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Maria A Gil
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cristina A Martinez
- Department of Animal Reproduction. National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Madrid, Spain.
| | - Cristina Cuello
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
18
|
Mohamed OS, Abdel Baky NA, Sayed-Ahmed MM, Al-Najjar AH. Lactoferrin alleviates cyclophosphamide induced-nephropathy through suppressing the orchestration between Wnt4/β-catenin and ERK1/2/NF-κB signaling and modulating klotho and Nrf2/HO-1 pathway. Life Sci 2023; 319:121528. [PMID: 36828132 DOI: 10.1016/j.lfs.2023.121528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS Cyclophosphamide is an alkylating agent with vast arrays of therapeutic activity. Currently, its medical use is limited due to its numerous adverse events, including nephrotoxicity. This study aimed to follow the molecular mechanisms behind the potential renoprotective action of lactoferrin (LF) against cyclophosphamide (CP)-induced renal injury. MATERIALS AND METHODS For fulfillment of our aim, Spragw-Dwaly rats were orally administrated LF (300 mg/kg) for seven consecutive days, followed by a single intraperitoneal injection of CP (150 mg/kg). KEY FINDINGS Treatment of CP-injured rats with LF significantly reduced the elevated creatinine and blood urea nitrogen (BUN), markedly upregulated Nrf2/HO-1 signaling with consequent increase in renal total antioxidant capacity (TAC) and decrease in renal malondialdehyde (MDA) level. Furthermore, LF treatment significantly reduced the elevated renal p-ERK1/2 expression, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB) levels in CP-treated animals. Interestingly, LF treatment downregulated Wnt4/β-catenin signaling and increased both renal klotho gene expression and serum klotho level. Furthermore, LF treatment reduced apoptosis in kidney tissue via suppressing GSK-3β expression and modulating caspase-3 and Bcl2 levels. Histopathological examination of kidney tissue confirmed the protective effect of LF against CP-induced renal injury. SIGNIFICANCE The present findings document the renoprotective effect of LF against CP-induced nephropathy, which may be mediated via suppressing ERK1/2/ NF-κB and Wnt4/β-catenin trajectories and enhancing klotho expression and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ola S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Lu L, Chen Y, Yang Z, Liang S, Zhu S, Liang X. Expression and Regulation of a Novel Decidual Cells-Derived Estrogen Target during Decidualization. Int J Mol Sci 2022; 24:ijms24010302. [PMID: 36613747 PMCID: PMC9820648 DOI: 10.3390/ijms24010302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
During decidualization in rodents, uterine stromal cells undergo extensive reprogramming to differentiate into distinct cell types, forming primary decidual zones (PDZs), secondary decidual zones (SDZs), and layers of undifferentiated stromal cells. The formation of secondary decidual zones is accompanied by extensive angiogenesis. During early pregnancy, besides ovarian estrogen, de novo synthesis of estrogen in the uterus is essential for the progress of decidualization. However, the molecular mechanisms are not fully understood. Studies have shown that Cystatin B (Cstb) is highly expressed in the decidual tissue of the uterus, but the regulation and mechanism of Cstb in the process of decidualization have not been reported. Our results showed that Cstb was highly expressed in mouse decidua and artificially induced deciduoma via in situ hybridization and immunofluorescence. Estrogen stimulates the expression of Cstb through the Estrogen receptor (ER)α. Moreover, in situ synthesis of estrogen in the uterus during decidualization regulates the expression of Cstb. Silencing the expression of Cstb affects the migration ability of stromal cells. Knockdown Cstb by siRNA significantly inhibits the expression of Dtprp, a marker for mouse decidualization. Our study identifies a novel estrogen target, Cstb, during decidualization and reveals that Cstb may play a pivotal role in angiogenesis during mouse decidualization via the Angptl7.
Collapse
|
20
|
Shi L, Li H, Huang X, Shu Z, Li J, Wang L, Yan H, Wang L. Integrated analysis of transcriptome and metabolome revealed biological basis of sows from estrus to lactation. iScience 2022; 26:105825. [PMID: 36636351 PMCID: PMC9830223 DOI: 10.1016/j.isci.2022.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Characterization of molecular mechanisms underlying pregnancy development of sows is important for the genetic improvement of pig breeding traits, and also provides resources for biomedical research on human pregnancy diseases. However, the transcriptome and metabolome across multiple developmental stages of sow pregnancy were still lacking. In this study, we obtained 84 distinct RNA sequencing and 42 metabolome datasets of pig blood across six development stages from estrus to lactation. We confirmed the initial sequence and exonic structural features, stage-specific molecules, expression or accumulation pattern of molecules, the regulatory mechanism of transcriptome and metabolome, and important pregnancy-related metabolites both in pigs and humans. In conclusion, we proposed the key differences among the stages of sows from estrus to lactation in RNAs and metabolites and put forward key markers. These data results were expected to provide essential resources for pig breeding and biomedical research on human pregnancy disease.
Collapse
Affiliation(s)
- Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China,Corresponding author
| | - Huihui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaoyu Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ze Shu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China,Corresponding author
| |
Collapse
|
21
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Zhu S, Yu XZ, Liu C, O’Sullivan TE, Xie P, Feng Z, Hu W. Leukemia inhibitory factor protects against graft-versus-host disease while preserving graft-versus-leukemia activity. Blood 2022; 140:2076-2090. [PMID: 35981499 PMCID: PMC9837439 DOI: 10.1182/blood.2022015677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/29/2022] [Indexed: 01/21/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation, a widely used therapy for hematologic malignancies and blood disorders. Here, we report an unexpected role of cytokine leukemia inhibitory factor (LIF) in protecting against GVHD development. Administrating recombinant LIF protein (rLIF) protects mice from GVHD-induced tissue damage and lethality without compromising the graft-versus-leukemia activity, which is crucial to prevent tumor relapse. We found that rLIF decreases the infiltration and activation of donor immune cells and protects intestinal stem cells to ameliorate GVHD. Mechanistically, rLIF downregulates IL-12-p40 expression in recipient dendritic cells after irradiation through activating STAT1 signaling, which results in decreased major histocompatibility complex II levels on intestinal epithelial cells and decreased donor T-cell activation and infiltration. This study reveals a previously unidentified protective role of LIF for GVHD-induced tissue pathology and provides a potential effective therapeutic strategy to limit tissue pathology without compromising antileukemic efficacy.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, UCLA, Los Angeles, CA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| |
Collapse
|
22
|
Xu S, Yang X, Chen Q, Liu Z, Chen Y, Yao X, Xiao A, Tian J, Xie L, Zhou M, Hu Z, Zhu F, Xu X, Hou F, Nie J. Leukemia inhibitory factor is a therapeutic target for renal interstitial fibrosis. EBioMedicine 2022; 86:104312. [PMID: 36335669 PMCID: PMC9646860 DOI: 10.1016/j.ebiom.2022.104312] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The role of the IL6 family members in organ fibrosis, including renal interstitial fibrosis (TIF), has been widely explored. However, few studies have ever simultaneously examined them in the same cohort of patients. Besides, the role of leukemia inhibitory factor (LIF) in TIF remains unclear. METHODS RNA-seq data of kidney biopsies from chronic kidney disease (CKD) patients, in both public databases and our assays, were used to analyze transcript levels of IL6 family members. Two TIF mouse models, the unilateral ureteral obstruction (UUO) and the ischemia reperfusion injury (IRI), were employed to validate the finding. To assess the role of LIF in vivo, short hairpin RNA, lenti-GFP-LIF was used to knockdown LIF receptor (LIFR), overexpress LIF, respectively. LIF-neutralizing antibody was used in therapeutic studies. Whether urinary LIF could be used as a promising predictor for CKD progression was investigated in a prospective observation patient cohort. FINDINGS Among IL6 family members, LIF is the most upregulated one in both human and mouse renal fibrotic lesions. The mRNA level of LIF negatively correlated with eGFR with the strongest correlation and the smallest P value. Baseline urinary concentrations of LIF in CKD patients predict the risk of CKD progression to end-stage kidney disease by Kaplan-Meier analysis. In mouse TIF models, knockdown of LIFR alleviated TIF; conversely, overexpressing LIF exacerbated TIF. Most encouragingly, visible efficacy against TIF was observed by administering LIF-neutralizing antibodies to mice. Mechanistically, LIF-LIFR-EGR1 axis and Sonic Hedgehog signaling formed a vicious cycle between fibroblasts and proximal tubular cells to augment LIF expression and promote the pro-fibrotic response via ERK and STAT3 activation. INTERPRETATION This study discovered that LIF is a noninvasive biomarker for the progression of CKD and a potential therapeutic target of TIF. FUNDINGS Stated in the Acknowledgements section of the manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fanfan Hou
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Nie
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Wang J, Wang K. New insights into Chlamydia pathogenesis: Role of leukemia inhibitory factor. Front Cell Infect Microbiol 2022; 12:1029178. [PMID: 36329823 PMCID: PMC9623337 DOI: 10.3389/fcimb.2022.1029178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections worldwide. Since the symptoms of Ct infection are often subtle or absent, most people are unaware of their infection until they are tested or develop severe complications such as infertility. It is believed that the primary culprit of Ct-associated tissue damage is unresolved chronic inflammation, resulting in aberrant production of cytokines, chemokines, and growth factors, as well as dysregulated tissue influx of innate and adaptive immune cells. A member of the IL-6 cytokine family, leukemia inhibitory factor (LIF), is one of the cytokines induced by Ct infection but its role in Ct pathogenesis is unclear. In this article, we review the biology of LIF and LIF receptor (LIFR)-mediated signaling pathways, summarize the physiological role of LIF in the reproductive system, and discuss the impact of LIF in chronic inflammatory conditions and its implication in Ct pathogenesis. Under normal circumstances, LIF is produced to maintain epithelial homeostasis and tissue repair, including the aftermath of Ct infection. However, LIF/LIFR-mediated signaling – particularly prolonged strong signaling – can gradually transform the microenvironment of the fallopian tube by altering the fate of epithelial cells and the cellular composition of epithelium. This harmful transformation of epithelium may be a key process that leads to an enhanced risk of infertility, ectopic pregnancy and cancer following Ct infection.
Collapse
Affiliation(s)
- Jun Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- *Correspondence: Jun Wang,
| | - Katherine Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
| |
Collapse
|
24
|
Zhang M, Zhang Q, Cao Z, Cai X, Liu J, Jiang Y, Zhu Y, Zhou J, Yu L, Zhen X, Hu Y, Yan G, Sun H. MEKK4-mediated Phosphorylation of HOXA10 at Threonine 362 facilitates embryo adhesion to the endometrial epithelium. Cell Death Dis 2022; 8:415. [PMID: 36216824 PMCID: PMC9550837 DOI: 10.1038/s41420-022-01203-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
Embryo adhesion is a very important step in the embryo implantation process. Homeobox A10 (HOXA10), a key transcriptional factor of endometrial receptivity, is indispensable for embryo adhesion. However, how to control the activation status of HOXA10 remains elusive. Here, we found that Mitogen-activated protein kinase kinase kinase 4 (MEKK4) was associated with HOXA10 and directly phosphorylated HOXA10 at threonine 362. This MEKK4-mediated phosphorylation enhanced HOXA10-mediated transcriptional responses and adhesion between the embryo and endometrial epithelium. Specific deletion or kinase inactivation of MEKK4 in endometrial epithelial cells attenuates adhesion between embryo and epithelium. Therefore, the identification of MEKK4 as a novel physiological positive regulator of HOXA10 activation provides mechanistic insights to improve embryo implantation success. Moreover, when Thr362 was mutated to alanine (T362A) to mimic its dephosphorylation, the protein stability and transcriptional regulation of HOXA10 were decreased. In addition, HOXA10 -promoted embryo adhesion was weakened after the mutation of Thr362, suggesting that the phosphorylation of HOXA10 at this site may be a new indicator for evaluating endometrial receptivity and judging the ‘implantation window’.
Collapse
Affiliation(s)
- Mei Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Qun Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Jingyu Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yingchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China. .,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China. .,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211116, China.
| |
Collapse
|
25
|
Maurya VK, Szwarc MM, Fernandez-Valdivia R, Lonard DM, Song Y, Joshi N, Fazleabas AT, Lydon JP. Early growth response 1 transcription factor is essential for the pathogenic properties of human endometriotic epithelial cells. Reproduction 2022; 164:41-54. [PMID: 35679138 PMCID: PMC9339520 DOI: 10.1530/rep-22-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023]
Abstract
Although a non-malignant gynecological disorder, endometriosis displays some pathogenic features of malignancy, such as cell proliferation, migration, invasion and adaptation to hypoxia. Current treatments of endometriosis include pharmacotherapy and/or surgery, which are of limited efficacy and often associated with adverse side effects. Therefore, to develop more effective therapies to treat this disease, a broader understanding of the underlying molecular mechanisms that underpin endometriosis needs to be attained. Using immortalized human endometriotic epithelial and stromal cell lines, we demonstrate that the early growth response 1 (EGR1) transcription factor is essential for cell proliferation, migration and invasion, which represent some of the pathogenic properties of endometriotic cells. Genome-wide transcriptomics identified an EGR1-dependent transcriptome in human endometriotic epithelial cells that potentially encodes a diverse spectrum of proteins that are known to be involved in tissue pathologies. To underscore the utility of this transcriptomic data set, we demonstrate that carbonic anhydrase 9 (CA9), a homeostatic regulator of intracellular pH, is not only a molecular target of EGR1 but is also important for maintaining many of the cellular properties of human endometriotic epithelial cells that are also ascribed to EGR1. Considering therapeutic intervention strategies are actively being developed for EGR1 and CAIX in the treatment of other pathologies, we believe EGR1 and its transcriptome (which includes CA9) will offer not only a new conceptual framework to advance our understanding of endometriosis but will also furnish new molecular vulnerabilities to be leveraged as potential therapeutic options in the future treatment of endometriosis.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Song
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Niraj Joshi
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Caveolin-1 Regulation and Function in Mouse Uterus during Early Pregnancy and under Human In Vitro Decidualization. Int J Mol Sci 2022; 23:ijms23073699. [PMID: 35409055 PMCID: PMC8998724 DOI: 10.3390/ijms23073699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/03/2022] Open
Abstract
Decidualization is essential to rodent and primate pregnancy. Senescence is increased during decidualization. Failure of senescence clearance during decidualization will cause pregnancy abnormality. Caveolin-1 is located in plasmalemmal caveolae and involved in senescence. However, whether caveolin-1 is involved in decidualization remains undefined. In this study, we examined the expression, regulation and function of Caveolin-1 during mouse early pregnancy and under mouse and human in vitro decidualization. From days 1 to 8 of pregnancy, Caveolin-1 signals are mainly located in endothelium and myometrium. Estrogen stimulates Caveolin-1 expression in endothelium. Deficiency of estrogen receptor α significantly promotes Caveolin-1 level in uterine stromal cells. Progesterone upregulates Caveolin-1 expression in luminal epithelium. During mouse in vitro decidualization, Caveolin-1 is significantly increased. However, Caveolin-1 is obviously decreased during human in vitro decidualization. Caveolin-1 overexpression and siRNA suppress and upregulate IGFBP1 expression under in vitro decidualization, respectively. Blastocysts-derived tumor necrosis factor α (TNFα) and human Chorionic Gonadotropin (hCG) regulate Caveolin-1 in mouse and human decidual cells, respectively. Caveolin-1 levels are also regulated by high glucose and insulin. In conclusion, a low level of Caveolin-1 should be beneficial for human decidualization.
Collapse
|
27
|
Roles and action mechanisms of WNT4 in cell differentiation and human diseases: a review. Cell Death Discov 2021; 7:287. [PMID: 34642299 PMCID: PMC8511224 DOI: 10.1038/s41420-021-00668-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
WNT family member 4 (WNT4), which belongs to the conserved WNT protein family, plays an important role in the development and differentiation of many cell types during the embryonic development and adult homeostasis. Increasing evidence has shown that WNT4 is a special ligand that not only activates the β-catenin independent pathway but also acts on β-catenin signaling based on different cellular processes. This article is a summary of the current knowledge about the expression, regulation, and function of WNT4 ligands and their signal pathways in cell differentiation and human disease processes. WNT4 is a promoter in osteogenic differentiation in bone marrow stromal cells (BMSCs) by participating in bone homeostasis regulation in osteoporotic diseases. Non-canonical WNT4 signaling is necessary for metabolic maturation of pancreatic β-cell. WNT4 is also necessary for decidual cell differentiation and decidualization, which plays an important role in preeclampsia. WNT4 promotes neuronal differentiation of neural stem cell and dendritic cell (DC) into conventional type 1 DC (cDC1). Besides, WNT4 mediates myofibroblast differentiation in the skin, kidney, lung, and liver during scarring or fibrosis. On the negative side, WNT4 is highly expressed in cancer tissues, playing a pro-carcinogenic role in many cancer types. This review provides an overview of the progress in elucidating the role of WNT4 signaling pathway components in cell differentiation in adults, which may provide useful clues for the diagnosis, prevention, and therapy of human diseases.
Collapse
|
28
|
Park M, Park SH, Park H, Kim HR, Lim HJ, Song H. ADAMTS-1: a novel target gene of an estrogen-induced transcription factor, EGR1, critical for embryo implantation in the mouse uterus. Cell Biosci 2021; 11:155. [PMID: 34348778 PMCID: PMC8336340 DOI: 10.1186/s13578-021-00672-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we demonstrated that estrogen (E2) induces early growth response 1 (Egr1) to mediate its actions on the uterine epithelium by controlling progesterone receptor signaling for successful embryo implantation. EGR1 is a transcription factor that regulates the spectrum of target genes in many different tissues, including the uterus. E2-induced EGR1 regulates a set of genes involved in epithelial cell remodeling during embryo implantation in the uterus. However, only few target genes of EGR1 in the uterus have been identified. RESULT The expression of ADAM metallopeptidase with thrombospondin type 1 motif 1 (Adamts-1) was significantly downregulated in the uteri of E2-treated ovariectomized (OVX) Egr1(-/-) mice. Immunostaining of ADAMTS-1 revealed its exclusive expression in the uterine epithelium of OVX wild-type but not Egr1(-/-) mice treated with E2. The expression profiles of Adamts-1 and Egr1 were similar in the uteri of E2-treated OVX mice at various time points tested. Pre-treatment with ICI 182, 780, a nuclear estrogen receptor (ER) antagonist, effectively inhibited the E2-dependent induction of Egr1 and Adamts-1. Pharmacologic inhibition of E2-induced ERK1/2 or p38 phosphorylation interfered with the induction of EGR1 and ADAMTS-1. Furthermore, ADAMTS-1, as well as EGR1, was induced in stroma cells surrounding the implanting blastocyst during embryo implantation. Transient transfection with EGR1 expression vectors significantly induced the expression of ADAMTS-1. Luciferase activity of the Adamts-1 promoter containing EGR1 binding sites (EBSs) was increased by EGR1 in a dose-dependent manner, suggesting functional regulation of Adamts-1 transcription by EGR1. Site-directed mutagenesis of EBS on the Adamts-1 promoter demonstrated that EGR1 directly binds to the EBS at -1151/-1134 among four putative EBSs. CONCLUSIONS Collectively, we have demonstrated that Adamts-1 is a novel target gene of E2-ER-MAPK-EGR1, which is critical for embryo implantation in the mouse uterus during early pregnancy.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - So Hee Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hyunsun Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hyunjung J Lim
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
29
|
Tian Y, Zhu Q, Yuan J, Kneepkens R, Yue Y, Zhang C. Direct embryotoxicity of chromium (III) exposure during preimplantation development. J Reprod Dev 2021; 67:283-291. [PMID: 34275971 PMCID: PMC8423605 DOI: 10.1262/jrd.2021-028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chromium in its trivalent form (chromium (III)) is an essential component of a balanced diet, and its deficiency disturbs glucose and lipid metabolism in humans and animals. The prevailing view is that chromium (III) is notably less toxic than chromium (VI), which is genotoxic and carcinogenic. Thus, the biotransformation of environmental chromium (VI) to chromium (III) is a promising and environmentally friendly detoxification method. However, increasing evidence suggests that chromium (III) induces considerable cytotoxicity. However, the toxicity of chromium (III) to early embryos remains largely unknown. In the present study, we used in vitro fertilization (IVF) to produce mouse embryos and identified the direct embryotoxicity of chromium (III). On exposure to high concentrations of CrCl3, blastocyst formation almost completely failed and a large proportion of embryos were arrested at the 2- to 4-cell stage. At low concentrations of CrCl3, IVF embryos showed a significant decrease in blastocyst formation, reduced total cell numbers, aberrant lineage differentiation, increased oxidative stress, and apoptosis. We also found that chromium (III) exposure during the preimplantation stage, even at low concentrations, led to impaired post-implantation development. Thus, our study substantiates the direct embryotoxicity of chromium (III) during preimplantation development and prolonged impairment of development potential. The results further highlight the potential adverse effects of chromium (III) on public reproductive health with respect to increased environmental enrichment of and dietary supplementation with chromium (III) complexes.
Collapse
Affiliation(s)
- Yuhe Tian
- High School Affiliated to Renmin University of China, Beijing, China
| | - Qisheng Zhu
- High School Affiliated to Renmin University of China, Beijing, China
| | - Jiayu Yuan
- High School Affiliated to Renmin University of China, Beijing, China
| | - Robert Kneepkens
- High School Affiliated to Renmin University of China, Beijing, China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; National Engineering Laboratory for Animal Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; National Engineering Laboratory for Animal Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Jiang NX, Li XL. The Disorders of Endometrial Receptivity in PCOS and Its Mechanisms. Reprod Sci 2021; 29:2465-2476. [PMID: 34046867 DOI: 10.1007/s43032-021-00629-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a mysterious and complicated endocrine disease with the combination of metabolic, reproductive, psychological dysfunctions. Impaired endometrial receptivity and ovulation disorders/anovulation are both important causes of PCOS-related infertility. However, change in endometrium has never received the same attention as ovulatory dysfunction. Besides, putting emphasis on endometrial function may be more realistic for PCOS-related infertility, given the wide use of assisted reproductive technology. The present review focuses on the disorders of endometrial receptivity of patients with PCOS, summarizes the changes of the indicators of endometrial receptivity including leukemia inhibitory factor, homeobox genes A, pinopodes, αvβ3-integrin, and intercellular junctions and also analyzes the possible mechanisms of decreased endometrial receptivity and its relationship with the main endocrine and metabolic disorders of PCOS such as hyperandrogenism, inflammation, insulin resistance, and obesity. Despite several biomarkers have been found to be associated with decreased endometrial receptivity in PCOS, the clinical relevance of these findings still awaits future clarification.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
31
|
Marquardt RM, Kim TH, Yoo JY, Teasley HE, Fazleabas AT, Young SL, Lessey BA, Arora R, Jeong JW. Endometrial epithelial ARID1A is critical for uterine gland function in early pregnancy establishment. FASEB J 2021; 35:e21209. [PMID: 33222288 PMCID: PMC8076973 DOI: 10.1096/fj.202002178r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022]
Abstract
Though endometriosis and infertility are clearly associated, the pathophysiological mechanism remains unclear. Previous work has linked endometrial ARID1A loss to endometriosis-related endometrial non-receptivity. Here, we show in mice that ARID1A binds and regulates transcription of the Foxa2 gene required for endometrial gland function. Uterine-specific deletion of Arid1a compromises gland development and diminishes Foxa2 and Lif expression. Deletion of Arid1a with Ltf-iCre in the adult mouse endometrial epithelium preserves the gland development while still compromising the gland function. Mice lacking endometrial epithelial Arid1a are severely sub-fertile due to defects in implantation, decidualization, and endometrial receptivity from disruption of the LIF-STAT3-EGR1 pathway. FOXA2 is also reduced in the endometrium of women with endometriosis in correlation with diminished ARID1A, and both ARID1A and FOXA2 are reduced in nonhuman primates induced with endometriosis. Our findings describe a role for ARID1A in the endometrial epithelium supporting early pregnancy establishment through the maintenance of gland function.
Collapse
Affiliation(s)
- Ryan M. Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna E. Teasley
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
32
|
Eker C, Basdas R, Balci BK, Bastu E, Gunel T. The genomic analysis of endometrial mitochondrial DNA copy number variation on recurrent implantation failure. J Gynecol Obstet Hum Reprod 2020; 50:101945. [PMID: 33075545 DOI: 10.1016/j.jogoh.2020.101945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/29/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Aim of this study was to define the relationship between RIF (Recurrent Implantation Failure) and endometrial mtDNA copy number. STUDY DESIGN A total of 50 women of reproductive age including twenty-five patients clinically diagnosed with RIF and twenty-five fertile women as healthy controls were recruited into the study. Endometrial biopsy samples were obtained with a pipelle at the 20-24 days of the menstrual cycle of each participant. Total genomic DNA samples were isolated from endometrial tissues; MT-ND1 (mitochondrially encoded NADH dehydrogenase I) and MT-CO2 (mitochondrially encoded cytochrome C oxidase II) target genes were amplified by droplet digital PCR (ddPCR). Nuclear GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) gene was also used for study normalization. The study has been conducted between February 2019 and June 2019. RESULT(S) Droplet digital PCR results were analyzed in "QuantaSoft" software. The concentration amount (copies/μl) of each participant's mitochondrial gene was normalized according to the GAPDH gene concentrations as nuclear reference. mtDNA amounts were compared between RIF patients and healthy controls. Normalized data was statistically evaluated using Mann-Whitney U test and ROC curve analysis. CONCLUSION(S) It was concluded that the mitochondrial target gene (MT-ND1 and MT-CO2) copy number amount of RIF patients was higher than the one obtained from the healthy group in endometrial tissues. It is thought that higher mtDNA copy number at the RIF group may be related to increased oxidative stress in the endometrium. This stress factors may influence receptivity negatively and cause implantation failure. The receptivity of the endometrium is associated with the number of mtDNA copies and difference can be used as a biomarker for receptivity analysis.
Collapse
Affiliation(s)
- Candan Eker
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, 34134 Vezneciler, Istanbul, Turkey.
| | - Rumeysa Basdas
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, 34134 Vezneciler, Istanbul, Turkey.
| | - Burcin Karamustafaoglu Balci
- Istanbul University, Istanbul Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 34093 Istanbul, Turkey.
| | - Ercan Bastu
- Acibadem University, Faculty of Medicine, Department of Obstetrics and Gynecology, 34755 Atasehir, Istanbul, Turkey.
| | - Tuba Gunel
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
33
|
Yang W, Lu Z, Zhi Z, Liu L, Deng L, Jiang X, Pang L. Increased miRNA-518b inhibits trophoblast migration and angiogenesis by targeting EGR1 in early embryonic arrest†. Biol Reprod 2020; 101:664-674. [PMID: 31291448 DOI: 10.1093/biolre/ioz109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/20/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Evidence indicates that microRNAs (miRNAs) play essential roles in early embryonic development. The miRNA-518 family is a special biomarker of the placenta, and miRNA-518b is abnormally expressed in placental tissue in preeclampsia. Early growth response protein 1 (EGR1), a zinc finger transcriptional factor, plays an essential role in regulating cell differentiation, angiogenesis, and migration. Moreover, earlier studies have shown that EGR1 protein plays a key role in implantation. However, little is known about the role of miR-518b and EGR1 on early embryonic arrest (EEA) in humans. In our study, increased miR-518b along with decreased EGR1 was found in human villus tissues with EEA. Furthermore, we demonstrated by luciferase assay that miR-518b is a direct regulator of EGR1. After comparing the effect of silencing EGR1, vascular endothelial growth factor (VEGF) individually, and EGR1/VEGF in combination, we found that EGR1 can inhibit migration and angiogenesis of HTR-8 SVneo cells by decreasing the VEGF expression. Hypoxia plays an initial role in early embryonic development, and we found that hypoxia reduces the expression of miR-518b and increases the expression of EGR1 and VEGF to facilitate migration and angiogenesis in a hypoxic model of HTR-8/SVneo cell line. Our findings provide new insights into the role of miR-518b in EEA and implicate the potential application of miR-518b in the diagnosis and development of intervention for EEA.
Collapse
Affiliation(s)
- Wenmei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhaoyi Lu
- The First People's Hospital Of Nanning, Nanning, Guangxi, China
| | - Zhifu Zhi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liling Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingjie Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoli Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lihong Pang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
34
|
Gu XW, Chen ZC, Yang ZS, Yang Y, Yan YP, Liu YF, Pan JM, Su RW, Yang ZM. Blastocyst-induced ATP release from luminal epithelial cells initiates decidualization through the P2Y2 receptor in mice. Sci Signal 2020; 13:13/646/eaba3396. [PMID: 32843542 DOI: 10.1126/scisignal.aba3396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Embryo implantation involves a sterile inflammatory reaction that is required for the invasion of the blastocyst into the decidua. Adenosine triphosphate (ATP) released from stressed or injured cells acts as an important signaling molecule to regulate many key physiological events, including sterile inflammation. We found that the amount of ATP in the uterine luminal fluid of mice increased during the peri-implantation period, and this depended on the presence of an embryo. We further showed that the release of ATP from receptive epithelial cells was likely stimulated by lactate released from the blastocyst through connexin hemichannels. The ATP receptor P2y2 was present on uterine epithelial cells during the preimplantation period and increased in the stromal cells during the time at which decidualization began. Pharmacological inhibition of P2y2 compromised decidualization and implantation. ATP-P2y2 signaling stimulated the phosphorylation of Stat3 in uterine luminal epithelial cells and the expression of early growth response 1 (Egr1) and prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox-2), all of which are required for decidualization and/or implantation, in stromal cells. Short exposure to high concentrations of ATP promoted decidualization of primary stromal cells, but longer exposures or lower ATP concentrations did not. The expression of genes encoding ATP-degrading ectonucleotidases increased in the decidua during the peri-implantation period, suggesting that they may limit the duration of the ATP signal. Together, our results indicate that the blastocyst-induced release of ATP from uterine epithelial cells during the peri-implantation period may be important for the initiation of stromal cell decidualization.
Collapse
Affiliation(s)
- Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Cong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Ping Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yue-Fang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ji-Min Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Milesi MM, Durando M, Lorenz V, Gastiazoro MP, Varayoud J. Postnatal exposure to endosulfan affects uterine development and fertility. Mol Cell Endocrinol 2020; 511:110855. [PMID: 32437785 DOI: 10.1016/j.mce.2020.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Endosulfan is an organochlorine pesticide (OCP) used in large-scale agriculture for controlling a variety of insects and mites that attack food and non-food crops. Although endosulfan has been listed in the Stockholm Convention as a persistent organic pollutant to be worldwide banned, it is still in use in some countries. Like other OCPs, endosulfan is bioaccumulative, toxic and persistent in the environment. Human unintentional exposure may occur through air inhalation, dietary, skin contact, as well as, via transplacental route and breast feeding. Due to its lipophilic nature, endosulfan is rapidly absorbed into the gastrointestinal tract and bioaccumulates in the fatty tissues. Similar to other OCPs, endosulfan has been classified as an endocrine disrupting chemical (EDC). Endocrine action of endosulfan on development and reproductive function of males has been extensively discussed; however, endosulfan effects on the female reproductive tract have received less attention. This review provides an overview of: i) the fate and levels of endosulfan in the environment and human population, ii) the potential estrogenic properties of endosulfan in vitro and in vivo, iii) its effects on uterine development, and iv) the long-term effects on female fertility and uterine functional differentiation during early gestation.
Collapse
Affiliation(s)
- M M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| | - M Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - V Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - M P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - J Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
36
|
Liu J, Song G, Meng T, Zhao G. Identification of Differentially Expressed Genes and Signaling Pathways in Placenta Tissue of Early-Onset and Late-Onset Pre-Eclamptic Pregnancies by Integrated Bioinformatics Analysis. Med Sci Monit 2020; 26:e921997. [PMID: 32497025 PMCID: PMC7294845 DOI: 10.12659/msm.921997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Pre-eclampsia (PE) can be divided into 2 sub-groups: early-onset and late-onset PE. Although these sub-groups show overlapping molecular and cellular mechanisms and similar clinical manifestations, they are regarded as 2 different phenotypes with heterogeneous manifestations. The pathophysiological mechanisms underlying early-onset and late-onset PE still remain unclear. Therefore, the present study aimed to identify the key genes and pathways related to early-onset and late-onset PE, and to investigate the molecular mechanisms that are involved in gene regulation. Material/Methods Our analysis involved the Gene Expression Series (GSE) 74341 and GSE22526 from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus Database. These 2 microarray datasets included 15 patients with early-onset PE and 15 patients with late-onset PE. Results Our analyses identified 15 differentially expressed genes (DEGs), including CGA, EGR1, HBB, HBA2, LEP, and LHB. Gene Ontology (GO) functional annotation showed that the biological functions of these DEGs were mainly associated with steroid biosynthetic, oxidative stress, angiogenesis, and sex differentiation. Signaling pathway analyses showed that these DEGs were mainly involved in the prolactin signaling pathway, hormone metabolism, the AMPK signaling pathway, and the FoxO signaling pathway. Protein-protein interaction (PPI) network analysis identified 4 genes with the highest degree of interaction. The hub genes for this selection of DEGS were EGR1, LEP, and HBB. Conclusions Integrated bioinformatic analyses provide us with a new approach to further understand the pathophysiology and molecular mechanisms underlying early-onset and late-onset PE. The DEGs identified in this study represent potential biomarkers for the early diagnosis of PE and may provide significant options the treatment of these 2 subtypes of PE.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Guang Song
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ge Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
37
|
Ai LQY, Yuan RD, Chen X, Liu YJ, Liu WY, Zhu JY, Zhang Z, Yan J, Chen CL, Lin S, Ye J. Retinal blood vessel-origin yes-associated protein (YAP) governs astrocytic maturation via leukaemia inhibitory factor (LIF). Cell Prolif 2020; 53:e12757. [PMID: 31916327 PMCID: PMC7046482 DOI: 10.1111/cpr.12757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Objectives To testify that endothelial cells (ECs) induce astrocyte maturation by leukaemia inhibitory factor (LIF) secretion. Materials and Methods In vivo experiments, mice bearing floxed alleles of YAP were crossed with mice expressing a Cre recombinase driven by the endothelial Tek promoter (Tek‐Cre) to finally obtain the following three genotypes: YAPf/f, Tek‐Cre; YAPf/w, Tek‐Cre; and YAPf/f. Retinal vascularization and astrocyte network were evaluated by whole‐mount fluorescence and Western blotting. In vitro, experiments were performed in an astrocyte and human microvascular endothelial cell (HMEC‐1) coculture model to analyse the mechanisms underlying the effect of endothelial YAP on astrocytes. Results In vivo, YAPf/f;Tek‐Cre mice showed delayed angiogenesis, sparse vessels and decreased glial fibrillary acidic protein (GFAP)+ astrocytes but aberrant growth of endothelial networks and immature astrocytes (platelet‐derived growth factor A, PDGFRA+ astrocytes) overgrowth. In vitro, Yap deletion attenuated the LIF release that delayed the maturation of retinal astrocyte which was consistent with the results of HMEC‐1—astrocyte coculture. The effect of YAP overexpression on LIF‐LIFR axis in HMEC‐1 interferes the GFAP expression of astrocyte. In contrast, LIF protein rescues the astrocytic GFAP expression when EC YAP was inhibited by siRNAs. Conclusions We show that EC yes‐associated protein (YAP) is not only a critical coactivator of Hippo signalling in retinal vessel development but also plays an essential role in retinal astrocyte maturation by regulating LIF production.
Collapse
Affiliation(s)
- Li-Qian-Yu Ai
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Rong-Di Yuan
- Department of Ophthalmology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Yun-Jia Liu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wen-Yi Liu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jing-Yi Zhu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Zhou Zhang
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jun Yan
- Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Chun-Lin Chen
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
38
|
Hu W, Liang YX, Luo JM, Gu XW, Chen ZC, Fu T, Zhu YY, Lin S, Diao HL, Jia B, Yang ZM. Nucleolar stress regulation of endometrial receptivity in mouse models and human cell lines. Cell Death Dis 2019; 10:831. [PMID: 31685803 PMCID: PMC6828743 DOI: 10.1038/s41419-019-2071-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
Embryo implantation is essential to the successful establishment of pregnancy. A previous study has demonstrated that actinomycin D (ActD) could initiate the activation of mouse delayed implantation. However, the mechanism underlying this activation remains to be elucidated. A low dose of ActD is an inducer of nucleolar stress. This study was to examine whether nucleolar stress is involved in embryo implantation. We showed that nucleolar stress occurred when delayed implantation was activated by ActD in mice. ActD treatment also stimulated the Lif-STAT3 pathway. During early pregnancy, nucleolar stress was detected in the luminal epithelial cells during the receptive phase. Blastocyst-derived lactate could induce nucleolar stress in cultured luminal epithelial cells. The inhibition of nucleophosmin1 (NPM1), which was a marker of nucleolar stress, compromised uterine receptivity and decreased the implantation rates in pregnant mice. To translate these mouse data into humans, we examined nucleolar stress in human endometrium. Our data demonstrated that ActD-induced nucleolar stress had positive effects on the embryo attachment by upregulating IL32 expression in non-receptive epithelial cells rather than receptive epithelial cells. Our data should be the first to demonstrate that nucleolar stress is present during early pregnancy and is able to induce embryo implantation in both mice and humans.
Collapse
Affiliation(s)
- Wei Hu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Yu-Xiang Liang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China.,Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, 030001, Taiyuan, China.,Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, 030001, Taiyuan, China
| | - Jia-Mei Luo
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Zi-Cong Chen
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Tao Fu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Yu-Yuan Zhu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Shuai Lin
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China
| | - Hong-Lu Diao
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Bo Jia
- Jiangxi Provincial Institute of Occupational Medicine, 330006, Nanchang, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
39
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
40
|
Shukla V, Kaushal JB, Kumar R, Popli P, Agnihotri PK, Mitra K, Dwivedi A. Microtubule depolymerization attenuates WNT4/CaMKIIα signaling in mouse uterus and leads to implantation failure. Reproduction 2019; 158:47-59. [PMID: 30952110 DOI: 10.1530/rep-18-0611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 05/16/2025]
Abstract
Microtubule (MT) dynamics plays a crucial role in fertilization and early embryonic development; however its involvement in uterus during embryo implantation remains unclear. Herein, we report the effect of microtubule depolymerization during embryo implantation in BALB/c mice. Intrauterine treatment with depolymerizing agent nocodazole at pre-implantation phase (D4, 07:00 h) in mice resulted into mitigation in receptivity markers viz. LIF, HoxA10, Integrin-β3, IHH, WNT4 and led to pregnancy failure. MT depolymerization in endometrial epithelial cells (EECs) also inhibited the blastocyst attachment and the adhesion. The decreased expression of MT polymerization-related proteins TPPP and α/β-tubulin in luminal and glandular epithelial cells along with the alteration in morphology of pinopodes in the luminal epithelium was observed in nocodazole receiving uteri. Nocodazole treatment also led to increased intracellular Ca+2 levels in EECs, which indicated that altered Ca+2 homeostasis might be responsible for implantation failure. Microtubule depolymerization inhibited WNT4 and Fz-2 interaction, thereby suppressing the downstream WNT4/CaMKIIα signaling cascades calmodulin and calcineurin which led to attenuation of NF-κB transcriptional promoter activity in EECs. MT depolymerization or CaMKIIα knockdown inhibited the transcription factor NFAT and NF-κB expression along with reduced secretion of prostaglandins PGE2 and PGF2α in mouse EECs. Overall, MT depolymerization impaired the WNT4/CaMKIIα signaling and suppressed the secretion of PGE2 and PGF2α in EECs which may be responsible for implantation failure in mice.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Rohit Kumar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Promod Kumar Agnihotri
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
- Electron Microscopy Unit, SAIF, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
41
|
Fukui Y, Hirota Y, Matsuo M, Gebril M, Akaeda S, Hiraoka T, Osuga Y. Uterine receptivity, embryo attachment, and embryo invasion: Multistep processes in embryo implantation. Reprod Med Biol 2019; 18:234-240. [PMID: 31312101 PMCID: PMC6613011 DOI: 10.1002/rmb2.12280] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recurrent implantation failure is a critical issue in IVF-ET treatment. Successful embryo implantation needs appropriate molecular and cellular communications between embryo and uterus. Rodent models have been used intensively to understand these mechanisms. METHODS The molecular and cellular mechanisms of embryo implantation were described by referring to the previous literature investigated by us and others. The studies using mouse models of embryo implantation were mainly cited. RESULTS Progesterone (P4) produced by ovarian corpus luteum provides the uterus with receptivity to the embryo, and uterine epithelial growth arrest and stromal proliferation, what we call uterine proliferation-differentiation switching (PDS), take place in the peri-implantation period before embryo attachment. Uterine PDS is a hallmark of uterine receptivity, and several genes such as HAND2 and BMI1, control uterine PDS by modulating P4-PR signaling. As the next implantation process, embryo attachment onto the luminal epithelium occurs. This process is regulated by FOXA2-LIF pathway and planar cell polarity signaling. Then, the luminal epithelium at the embryo attachment site detaches from the stroma, which enables trophoblast invasion. This process of embryo invasion is regulated by HIF2α in the stroma. CONCLUSION These findings indicate that embryo implantation contains multistep processes regulated by specific molecular pathways.
Collapse
Affiliation(s)
- Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mona Gebril
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
42
|
Fu T, Zheng HT, Zhang HY, Chen ZC, Li B, Yang ZM. Oncostatin M expression in the mouse uterus during early pregnancy promotes embryo implantation and decidualization. FEBS Lett 2019; 593:2040-2050. [PMID: 31155707 DOI: 10.1002/1873-3468.13468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/15/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022]
Abstract
Oncostatin M (OSM) is a member of the interleukin-6 (IL-6) family, which functions in embryo implantation and decidualization. The expression, function and regulation of Osm in mouse uteri during early pregnancy remain unknown. We show that Osm is mainly expressed in the uterine epithelium from days 1 to 4 of pregnancy and in decidual cells on day 5 of pregnancy. Osm promotes the attachment of Osm-soaked blue beads, which mimic blastocysts, to a pseudopregnant mouse uterus. Prostaglandin E2 (PGE2 )-induced Osm in mouse uterine epithelial cells upregulates the levels of Il-33 expression and phosphorylates Stat3. In vitro decidualization is significantly promoted by Osm. Our results indicate that PGE2 -induced Osm may mediate embryo implantation through Il-33 and participate in decidualization via the Stat3-Egr1 pathway.
Collapse
Affiliation(s)
- Tao Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hong-Tao Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hai-Yi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Cong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Szwarc MM, Hai L, Gibbons WE, Mo Q, Lanz RB, DeMayo FJ, Lydon JP. Early growth response 1 transcriptionally primes the human endometrial stromal cell for decidualization. J Steroid Biochem Mol Biol 2019; 189:283-290. [PMID: 30711473 PMCID: PMC6566904 DOI: 10.1016/j.jsbmb.2019.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/31/2023]
Abstract
Mouse studies support a role for endometrial early growth response 1 (EGR1) in uterine receptivity and decidualization, which are processes controlled by estrogen and progesterone. However, the importance of this transcription factor in similar cellular processes in human is unclear. Analysis of clinical samples indicate that endometrial EGR1 levels are decreased in the endometrium of women with recurrent implantation failure, suggesting that tight control of EGR1 levels are necessary for normal endometrial function. Therefore, we used siRNA-mediated knockdown of EGR1 expression in cultured human endometrial stromal cells (hESCs) to assess the functional role of EGR1 in hESC decidualization. Protein expression studies revealed that EGR1 is highly expressed in pre-decidual hESCs. However, EGR1 protein levels rapidly decrease following administration of an established deciduogenic hormone stimulus containing estradiol, medroxyprogesterone acetate, and cyclic adenosine monophosphate. Intriguingly, EGR1 knockdown in pre-decidual hESCs blocks the ability of these cells to decidualize later, indicating that EGR1 is required to transcriptionally program pre-decidual hESCs for decidualization. Support for this proposal comes from the analysis of transcriptome and cistrome datasets, which shows that EGR1 target genes are primarily involved in transcriptional regulation, cell signaling, and proliferation. Collectively, our studies provide translational support for an evolutionary conserved role for human endometrial stromal EGR1 in the early events of pregnancy establishment.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - William E Gibbons
- Department of Obstetrics & Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qianxing Mo
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States; Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States.
| |
Collapse
|
44
|
Tao X, Zuo Q, Ruan H, Wang H, Jin H, Cheng Z, Lv Y, Qin W, Wang C. Argininosuccinate synthase 1 suppresses cancer cell invasion by inhibiting STAT3 pathway in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:263-276. [PMID: 30883650 DOI: 10.1093/abbs/gmz005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/06/2019] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the main reason for high recurrence and poor survival of hepatocellular carcinoma (HCC). The molecular mechanism underlying HCC metastasis remains unclear. In this study, we found that argininosuccinate synthase 1 (ASS1) expression was significantly decreased and down-regulation of ASS1 was closely correlated with poor prognosis in HCC patients. DNA methylation led to the down-regulation of ASS1 in HCC. Stable silencing of ASS1 promoted migration and invasion of HCC cells, whereas overexpression of ASS1-inhibited metastasis of HCC cells in vivo and in vitro. We also revealed that ASS1-knockdown increased the phosphorylation level of S727STAT3, which contributed to HCC metastasis by up-regulation of inhibitor of differentiation 1 (ID1). These findings indicate that ASS1 inhibits HCC metastasis and may serve as a target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Xuemei Tao
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaozhu Zuo
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoan Cheng
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Shukla V, Popli P, Kaushal JB, Gupta K, Dwivedi A. Uterine TPPP3 plays important role in embryo implantation via modulation of β-catenin. Biol Reprod 2018; 99:982-999. [PMID: 29901777 DOI: 10.1093/biolre/ioy136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/11/2018] [Indexed: 05/16/2025] Open
Abstract
Tubulin polymerization promoting protein 3 (TPPP3) is known to be expressed in the endometrium in a cyclic manner, and its functional role in the physiology of implantation remains unknown. Here we demonstrate a novel function of TPPP3 during the window of implantation and in the establishment of pregnancy using a mouse model. The increased protein expression of TPPP3 and β-catenin during peri-implantation period, i.e. D5 (receptive phase, 0800 h), was observed as compared to that on D1 (nonreceptive phase, 0800 h). SiRNATPPP3-mediated knockdown of uterine TPPP3 resulted in implantation failure and inhibited the expression of receptivity markers: LIF, Integrin-β3, IHH, and Wnt4. TPPP3 silencing in mouse endometrial epithelial cells also prevented blastocyst attachment and the adhesion reaction. In delayed implantation experiment, expression of TPPP3 was increased in active implantation group (E2 + P4) compared to delayed implantation group (P4). The increased expression of TPPP3 in E2 + P4-treated Ishikawa cells compared to vehicle or P4 or E2 alone-treated Ishikawa cells also revealed its upregulation by E2. The suppression of β-catenin in uterus under the condition of transient knockdown of TPPP3 and the co-immunoprecipitation experiment revealed that regulation of β-catenin was mediated via TPPP3 during implantation. Additionally, in order to gain insight into TPPP3 collaborators, we identified TPPP3 interacting proteins by nanoLC-MS analysis in mouse uterus which might be involved during implantation. In conclusion, our study suggests that TPPP3 is important for embryo implantation and for the establishment of early pregnancy through modulation of β-catenin.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pooja Popli
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
46
|
Yoshinaga K. A historical review of blastocyst implantation research. Biol Reprod 2018; 99:175-195. [PMID: 30010858 PMCID: PMC6279068 DOI: 10.1093/biolre/ioy093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Research development on blastocyst implantation was reviewed in three sections: primate implantation, ungulate farm animal implantation, and the general process of blastocyst implantation in small rodents. Future research directions of this area are suggested.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch, Division of Extramural Research, NICHD, NIH,
Bethesda, Maryland, USA
| |
Collapse
|
47
|
Orgeur M, Martens M, Leonte G, Nassari S, Bonnin MA, Börno ST, Timmermann B, Hecht J, Duprez D, Stricker S. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors. Development 2018; 145:dev.161208. [PMID: 29511024 DOI: 10.1242/dev.161208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022]
Abstract
Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development.
Collapse
Affiliation(s)
- Mickael Orgeur
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany.,Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.,Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Marvin Martens
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Georgeta Leonte
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.,Freie Universität Berlin, Institute of Biology, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Sonya Nassari
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Stefan T Börno
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jochen Hecht
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitatsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Delphine Duprez
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Sigmar Stricker
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany .,Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| |
Collapse
|
48
|
Kim HR, Kim YS, Yoon JA, Yang SC, Park M, Seol DW, Lyu SW, Jun JH, Lim HJ, Lee DR, Song H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation. FASEB J 2018; 32:1184-1195. [PMID: 29092905 DOI: 10.1096/fj.201700854rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The harmonized actions of ovarian E2 and progesterone (P4) regulate the proliferation and differentiation of uterine cells in a spatiotemporal manner. Imbalances between these hormones often lead to infertility and gynecologic diseases. Whereas numerous factors that are involved in P4 signaling have been identified, few local factors that mediate E2 actions in the uterus have been revealed. Here, we demonstrate that estrogen induces the transcription factor, early growth response 1 ( Egr1), to fine-tune its actions in uterine epithelial cells (ECs) that are responsible for uterine receptivity for embryo implantation. In the presence of exogenous gonadotrophins, ovulation, fertilization, and embryonic development normally occur in Egr1-/- mice, but these animals experience the complete failure of embryo implantation with reduced artificial decidualization. Although serum levels of E2 and P4 were comparable between Egr1+/+ and Egr1-/- mice on d 4 of pregnancy, aberrantly reduced levels of progesterone receptor in Egr1-/- uterine ECs caused enhanced E2 activity and impaired P4 response. Ultrastructural analyses revealed that Egr1-/- ECs are not fully able to provide proper uterine receptivity. Uterine mRNA landscapes in Egr1-/- mice revealed that EGR1 controls the expression of a subset of E2-regulated genes. In addition, P4 signaling was unable to modulate estrogen actions, including those that are involved in cell-cycle progression, in ECs that were deficient in EGR1. Furthermore, primary coculture of Egr1-/- ECs with Egr1+/+ stromal cells, and vice versa, supported the notion that Egr1 is required to modulate E2 actions on ECs to prepare the uterine environment for embryo implantation. In contrast to its role in ECs, loss of Egr1 in stroma significantly reduced stromal cell proliferation. Collectively, our results demonstrate that E2 induces EGR1 to streamline its actions for the preparation of uterine receptivity for embryo implantation in mice.-Kim, H.-R., Kim, Y. S., Yoon, J. A., Yang, S. C., Park, M., Seol, D.-W., Lyu, S. W., Jun, J. H., Lim, H. J., Lee, D. R., Song, H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Sang Woo Lyu
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
49
|
Charkiewicz K, Jasinska E, Goscik J, Koc-Zorawska E, Zorawski M, Kuc P, Raba G, Kluz T, Kalinka J, Sakowicz A, Laudanski P. Angiogenic factor screening in women with mild preeclampsia - New and significant proteins in plasma. Cytokine 2017; 106:125-130. [PMID: 29111087 DOI: 10.1016/j.cyto.2017.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The aim of this study was to analyse a panel of 60 angiogenic factors (pro-angiogenic and antiangiogenic) in the plasma of women with mild preeclampsia. MATERIALS AND METHODS We recruited 21 women between 25 and 40 weeks gestation with diagnosed mild preeclampsia into the study group and 27 healthy women with uncomplicated pregnancies of corresponding gestational age to that of the study to the control group. We used a quantitative protein macroarray method that allowed for analysis of 60 angiogenic proteins per sample simultaneously. RESULTS We showed a statistically significant increase in the concentration of 8 proteins, interferon gamma (IFN-γ), interleukin 6 (IL-6), leukaemia inhibitory factor (LIF), heparin-binding EGF-like growth factor (HB-EGF), hepatocyte growth factor (HGF), C-X-C motif chemokine 10 (IP-10), leptin and platelet-derived growth factor BB (PDGF-BB), as well as a significant decrease in the concentration of 3 proteins, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and follistatin, in the plasma of women with preeclampsia. CONCLUSION Based on our findings, it seems that protein factors may play an important role in the pathogenesis of preeclampsia, and there are many proteins that have not been studied in PE to date. There are no previous studies assessing the LIF, follistatin, HGF, HB-EGF and PDGF-BB concentrations in the plasma of women with PE; therefore, our obtained results indicate that these proteins are new factors that can play an important role in the pathomechanisms of PE.
Collapse
Affiliation(s)
- Karol Charkiewicz
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Elwira Jasinska
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
| | - Ewa Koc-Zorawska
- Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Poland, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Marcin Zorawski
- Department of Clinical Medicine, Medical University of Bialystok, Poland, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Pawel Kuc
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Grzegorz Raba
- Institute of Obstetric and Emergency Medicine, University of Rzeszow, Żurawica, 37-710 Podkarpackie, Poland
| | - Tomasz Kluz
- Department of Obstetrics and Gynecology, Fryderyk Chopin University Hospital No 1, Faculty of Medicine, Rzeszow University, Poland
| | - Jaroslaw Kalinka
- Department of Perinatology, Medical University of Lodz, 91-429 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, 91-425 Lodz, Poland
| | - Piotr Laudanski
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| |
Collapse
|
50
|
Milesi MM, Varayoud J, Ramos JG, Luque EH. Uterine ERα epigenetic modifications are induced by the endocrine disruptor endosulfan in female rats with impaired fertility. Mol Cell Endocrinol 2017; 454:1-11. [PMID: 28559116 DOI: 10.1016/j.mce.2017.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/30/2023]
Abstract
High ERα activity may disrupt the window of uterine receptivity, causing defective implantation. We investigated whether implantation failures prompted by endosulfan are associated with aberrant ERα uterine expression and DNA methylation status during the pre-implantation period. ERα-dependent target genes that play a crucial role in the uterine receptivity for embryo attachment and implantation were also investigated. Newborn female rats received corn oil (vehicle, Control), 6 μg/kg/d of endosulfan (Endo6) or 600 μg/kg/d of endosulfan (Endo600) on postnatal days (PND) 1, 3, 5, and 7. On PND90, females were made pregnant and on gestational day 5 (GD5, pre-implantation period) uterine samples were collected. ERα expression was assessed at protein and mRNA levels by immunohistochemistry and real time RT-PCR, respectively. ERα transcript variants mRNA containing alternative 5'-untranslated regions (5'UTRs) were also evaluated. We searched for predicted transcription factors binding sites in ERα regulatory regions and assessed their methylation status by Methylation-Sensitive Restriction Enzymes-PCR technique (MSRE-PCR). The expression of the ERα-dependent uterine target genes, i.e. mucin-1 (MUC-1), insulin-like growth factor-1 (IGF-1), and leukemia inhibitory factor (LIF), was assessed by real time RT-PCR. Both doses of endosulfan increased the expression of ERα and its transcript variants ERα-OS, ERα-O, ERα-OT and ERα-E1. Moreover, a decreased DNA methylation levels were detected in some ERα regulatory regions, suggesting an epigenetic up-regulation of it transcription. ERα overexpression was associated with an induction of its downstream genes, MUC-1 and IGF-1, suggesting that endosulfan might alter the uterine estrogenic pathway compromising uterine receptivity. These alterations could account, at least in part, for the endosulfan-induced implantation failures.
Collapse
Affiliation(s)
- María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|