1
|
Morgun EI, Govorova IA, Chernysheva MB, Machinskaya MA, Vorotelyak EA. Mini-Review: Tregs as a Tool for Therapy-Obvious and Non-Obvious Challenges and Solutions. Cells 2024; 13:1680. [PMID: 39451198 PMCID: PMC11506333 DOI: 10.3390/cells13201680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tregs have the potential to be utilized as a novel therapeutic agent for the treatment of various chronic diseases, including diabetes, Alzheimer's disease, asthma, and rheumatoid arthritis. One of the challenges associated with developing a therapeutic product based on Tregs is the non-selectivity of polyclonal cells. A potential solution to this issue is a generation of antigen-specific CAR-Tregs. Other challenges associated with developing a therapeutic product based on Tregs include the phenotypic instability of these cells in an inflammatory microenvironment, discrepancies between engineered Treg-like cells and natural Tregs, and the expression of dysfunctional isoforms of Treg marker genes. This review presents a summary of proposed strategies for addressing these challenges.
Collapse
Affiliation(s)
- Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia; (I.A.G.); (M.B.C.); (M.A.M.)
| | | | | | | | - Ekaterina A. Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia; (I.A.G.); (M.B.C.); (M.A.M.)
| |
Collapse
|
2
|
Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol 2024; 24:670-679. [PMID: 38472321 PMCID: PMC11682649 DOI: 10.1038/s41577-024-01010-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a chronic inflammatory disease of the arterial walls and is characterized by the accumulation of lipoproteins that are insufficiently cleared by phagocytes. Following the initiation of atherosclerosis, the pathological progression is accelerated by engagement of the adaptive immune system. Atherosclerosis triggers the breakdown of tolerance to self-components. This loss of tolerance is reflected in defective expression of immune checkpoint molecules, dysfunctional antigen presentation, and aberrations in T cell populations - most notably in regulatory T (Treg) cells - and in the production of autoantibodies. The breakdown of tolerance to self-proteins that is observed in ASCVD may be linked to the conversion of Treg cells to 'exTreg' cells because many Treg cells in ASCVD express T cell receptors that are specific for self-epitopes. Alternatively, or in addition, breakdown of tolerance may trigger the activation of naive T cells, resulting in the clonal expansion of T cell populations with pro-inflammatory and cytotoxic effector phenotypes. In this Perspective, we review the evidence that atherosclerosis is associated with a breakdown of tolerance to self-antigens, discuss possible immunological mechanisms and identify knowledge gaps to map out future research. Rational approaches aimed at re-establishing immune tolerance may become game changers in treating ASCVD and in preventing its downstream sequelae, which include heart attacks and strokes.
Collapse
Affiliation(s)
- Amir Khan
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Payel Roy
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Klaus Ley
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer 2023; 9:911-927. [PMID: 37598003 DOI: 10.1016/j.trecan.2023.07.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Immunosuppressive regulatory T cells (Tregs) provide a main mechanism of tumor immune evasion. Targeting Tregs, especially in the tumor microenvironment (TME), continues to be investigated to improve cancer immunotherapy. Recent studies have unveiled intratumoral Treg heterogeneity and plasticity, furthering the complexity of the role of Tregs in tumor immunity and immunotherapy response. The phenotypic and functional diversity of intratumoral Tregs can impact their response to therapy and may offer new targets to modulate specific Treg subsets. In this review we provide a unifying framework of critical factors contributing to Treg heterogeneity and plasticity in the TME, and we discuss how this information can guide the development of more specific Treg-targeting therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jee Hye Kang
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA
| | - Roberta Zappasodi
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA.
| |
Collapse
|
5
|
Gu Q, Zhao X, Guo J, Jin Q, Wang T, Xu W, Li L, Zhang J, Zhang W, Hong S, Zhang F, Hou B, Zhou X. The splicing isoform Foxp3Δ2 differentially regulates tTreg and pTreg homeostasis. Cell Rep 2023; 42:112877. [PMID: 37498744 DOI: 10.1016/j.celrep.2023.112877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Foxp3 is the master transcription factor for regulatory T cells (Tregs). Alternative splicing of human Foxp3 results in the expression of two isoforms: the full length and an exon 2-deleted protein. Here, AlphaFold2 predictions and in vitro experiments demonstrate that the N-terminal domain of Foxp3 inhibits DNA binding by moving toward the C terminus and that this movement is mediated by exon 2. Consequently, we find that Foxp3Δ2-bearing thymus-derived Tregs (tTregs) in the peripheral lymphoid organ are less sensitive to T cell receptor (TCR) stimulation due to the enhanced binding of Foxp3Δ2 to the Batf promoter and are hyporesponsive to interleukin-2 (IL-2). In contrast, among RORγt+ peripherally induced Tregs (pTregs) in the large intestine, Foxp3Δ2 pTregs express many more RORγt-related genes, conferring a competitive advantage. Together, our results reveal that alternative splicing of exon 2 generates an active form of Foxp3, which plays a differential role in regulating tTreg and pTreg homeostasis.
Collapse
Affiliation(s)
- Qianchong Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiufeng Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Qiuzhu Jin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Ting Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Wei Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Liping Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Sheng Hong
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
6
|
Bossini-Castillo L, Glinos DA, Kunowska N, Golda G, Lamikanra AA, Spitzer M, Soskic B, Cano-Gamez E, Smyth DJ, Cattermole C, Alasoo K, Mann A, Kundu K, Lorenc A, Soranzo N, Dunham I, Roberts DJ, Trynka G. Immune disease variants modulate gene expression in regulatory CD4 + T cells. CELL GENOMICS 2022; 2:None. [PMID: 35591976 PMCID: PMC9010307 DOI: 10.1016/j.xgen.2022.100117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Identifying cellular functions dysregulated by disease-associated variants could implicate novel pathways for drug targeting or modulation in cell therapies. However, follow-up studies can be challenging if disease-relevant cell types are difficult to sample. Variants associated with immune diseases point toward the role of CD4+ regulatory T cells (Treg cells). We mapped genetic regulation (quantitative trait loci [QTL]) of gene expression and chromatin activity in Treg cells, and we identified 133 colocalizing loci with immune disease variants. Colocalizations of immune disease genome-wide association study (GWAS) variants with expression QTLs (eQTLs) controlling the expression of CD28 and STAT5A, involved in Treg cell activation and interleukin-2 (IL-2) signaling, support the contribution of Treg cells to the pathobiology of immune diseases. Finally, we identified seven known drug targets suitable for drug repurposing and suggested 63 targets with drug tractability evidence among the GWAS signals that colocalized with Treg cell QTLs. Our study is the first in-depth characterization of immune disease variant effects on Treg cell gene expression modulation and dysregulation of Treg cell function.
Collapse
Affiliation(s)
| | - Dafni A. Glinos
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- New York Genome Center, New York, NY, USA
| | - Natalia Kunowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Gosia Golda
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Abigail A. Lamikanra
- NHS Blood and Transplant, Oxford, UK
- BRC Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michaela Spitzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Blagoje Soskic
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Eddie Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Deborah J. Smyth
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | | | - Kaur Alasoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Alice Mann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Kousik Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Anna Lorenc
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - David J. Roberts
- NHS Blood and Transplant, Oxford, UK
- BRC Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
7
|
Li H, Zhu XX, Xiang JB, Jian L. Buserelin Inhibits the Immunosuppressive Activity of Regulatory T Cells through the Protein Kinase A Signaling in a Central Precocious Puberty Model. Immunol Invest 2021; 51:909-923. [PMID: 33586576 DOI: 10.1080/08820139.2021.1885437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Gonadotropin-releasing hormone analogs (GnRHas) are used for treating central precocious puberty (CPP). However, their roles in the regulation of immune cells especially regulatory T cells (Tregs) remains elusive. Therefore, we characterized buserelin-induced phenotypical and functional changes of Tregs.Methods: A rat CPP model was established followed by administration of buserelin acetate. Flow cytometry was used to evaluate the expression of functional molecules in splenic Tregs. The suppressive activity of Tregs was determined by the suppression assay. GnRHR expression in Tregs was assessed by flow cytometry analysis and Immunoblotting. Normal Tregs were then stimulated and treated with buserelin acetate in vitro. After that, Foxp3 expression, Treg proliferation, and cytokine production were analyzed by flow cytometry. Intracellular signaling was evaluated by Immunoblotting, and Treg function was determined by the suppression assay.Results: After in vivo buserelin treatment, the frequency of splenic Tregs was decreased, with the reduction in the expression of Foxp3, IL-10, and TGF-β. The suppressive activity of Tregs was weakened. Buserelin down-regulated Foxp3 expression while promoting the expression of RORγt and IL-17 in Tregs through activating the protein kinase A (PKA) pathway in vitro. The PKA inhibitor H-89 abolished the effect of buserelin and enhanced Treg function.Conclusion: Buserelin impaired the immunosuppressive activity of Tregs through the PKA signal pathway. Buserelin-induced activation of PKA signaling down-regulated Foxp3 expression while promoting RORγt expression in Tregs, and subsequently weakened Treg function. Our study indicates the necessity of monitoring Treg activity in CPP patients to avoid potential autoimmunity or inflammation.
Collapse
Affiliation(s)
- Hua Li
- Department of Pediatrics, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China Three Gorges University, Yichang, China
| | - Xiao-Xia Zhu
- Department of Pediatrics, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China Three Gorges University, Yichang, China
| | - Jin-Bo Xiang
- Department of Pediatrics, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China Three Gorges University, Yichang, China
| | - Lei Jian
- Department of Pediatrics, Affiliated Renhe Hospital of China Three Gorges University, Second Clinical Medical College of China Three Gorges University, Yichang, China
| |
Collapse
|
8
|
Njunge LW, Estania AP, Guo Y, Liu W, Yang L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. Am J Cancer Res 2020; 10:8343-8364. [PMID: 32724474 PMCID: PMC7381748 DOI: 10.7150/thno.45848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, tumor progression locus 2 (TPL2) has been identified as an essential modulator of immune responses that conveys inflammatory signals to downstream effectors, subsequently modulating the generation and function of inflammatory cells. TPL2 is also differentially expressed and activated in several cancers, where it is associated with increased inflammation, malignant transformation, angiogenesis, metastasis, poor prognosis and therapy resistance. However, the relationship between TPL2-driven inflammation, tumorigenesis and tumor immunity has not been addressed. Here, we reconcile the function of TPL2-driven inflammation to oncogenic functions such as inflammation, proliferation, apoptosis resistance, angiogenesis, metastasis, immunosuppression and immune evasion. We also address the controversies reported on TPL2 function in tumor-promoting inflammation and tumorigenesis, and highlight the potential role of the TPL2 adaptor function in regulating the mechanisms leading to pro-tumorigenic inflammation and tumor progression. We discuss the therapeutic implications and limitations of targeting TPL2 for cancer treatment. The ideas presented here provide some new insight into cancer pathophysiology that might contribute to the development of more integrative and specific anti-inflammatory and anti-cancer therapeutics.
Collapse
|
9
|
Jeffries MA, Obr AE, Urbanek K, Fyffe-Maricich SL, Wood TL. Cnp Promoter-Driven Sustained ERK1/2 Activation Increases B-Cell Activation and Suppresses Experimental Autoimmune Encephalomyelitis. ASN Neuro 2020; 12:1759091420971916. [PMID: 33228381 PMCID: PMC7691909 DOI: 10.1177/1759091420971916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023] Open
Abstract
The ERK1/2 signaling pathway promotes myelin wrapping during development and remyelination, and sustained ERK1/2 activation in the oligodendrocyte (OL) lineage results in hypermyelination of the CNS. We therefore hypothesized that increased ERK1/2 signaling in the OL lineage would 1) protect against immune-mediated demyelination due to increased baseline myelin thickness and/or 2) promote enhanced remyelination and thus functional recovery after experimental autoimmune encephalomyelitis (EAE) induction. Cnp-Cre;Mek1DD-eGFP/+ mice that express a constitutively active form of MEK1 (the upstream activator of ERK1/2) in the OL lineage, exhibited a significant decrease in EAE clinical severity compared to controls. However, experiments using tamoxifen-inducible Plp-CreERT;Mek1DD-eGFP/+ or Pdgfrα-CreERT;Mek1DD-eGFP mice revealed this was not solely due to a protective or reparative effect resulting from MEK1DD expression specifically in the OL lineage. Because EAE is an immune-mediated disease, we examined Cnp-Cre;Mek1DD-eGFP/+ splenic immune cells for recombination. Surprisingly, GFP+ recombined CD19+ B-cells, CD11b+ monocytes, and CD3+ T-cells were noted when Cre expression was driven by the Cnp promoter. While ERK1/2 signaling in monocytes and T-cells is associated with proinflammatory activation, fewer studies have examined ERK1/2 signaling in B-cell populations. After in vitro stimulation, MEK1DD-expressing B-cells exhibited a 3-fold increase in CD138+ plasmablasts and a 5-fold increase in CD5+CD1dhi B-cells compared to controls. Stimulated MEK1DD-expressing B-cells also exhibited an upregulation of IL-10, known to suppress the initiation of EAE when produced by CD5+CD1dhi regulatory B-cells. Taken together, our data support the conclusion that sustained ERK1/2 activation in B-cells suppresses immune-mediated demyelination via increasing activation of regulatory B10 cells.
Collapse
MESH Headings
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/biosynthesis
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- MAP Kinase Signaling System/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic/physiology
Collapse
Affiliation(s)
- Marisa A. Jeffries
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Neuroscience, University of Pittsburgh,
Pittsburgh, Pennsylvania, United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| | - Alison E. Obr
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| | - Kelly Urbanek
- Department of Pediatrics, Division of Neurology,
University of Pittsburgh, Pittsburgh, Pennsylvania, United
States
| | - Sharyl L. Fyffe-Maricich
- Center for Neuroscience, University of Pittsburgh,
Pittsburgh, Pennsylvania, United States
- Department of Pediatrics, Division of Neurology,
University of Pittsburgh, Pittsburgh, Pennsylvania, United
States
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| |
Collapse
|
10
|
Naciri I, Laisné M, Ferry L, Bourmaud M, Gupta N, Di Carlo S, Huna A, Martin N, Peduto L, Bernard D, Kirsh O, Defossez PA. Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors. Nucleic Acids Res 2019; 47:3407-3421. [PMID: 30753595 PMCID: PMC6468300 DOI: 10.1093/nar/gkz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The proper tissue-specific regulation of gene expression is essential for development and homeostasis in metazoans. However, the illegitimate expression of normally tissue-restricted genes—like testis- or placenta-specific genes—is frequently observed in tumors; this promotes transformation, but also allows immunotherapy. Two important questions are: how is the expression of these genes controlled in healthy cells? And how is this altered in cancer? To address these questions, we used an unbiased approach to test the ability of 350 distinct genetic or epigenetic perturbations to induce the illegitimate expression of over 40 tissue-restricted genes in primary human cells. We find that almost all of these genes are remarkably resistant to reactivation by a single alteration in signaling pathways or chromatin regulation. However, a few genes differ and are more readily activated; one is the placenta-expressed gene ADAM12, which promotes invasion. Using cellular systems, an animal model, and bioinformatics, we find that a non-canonical but druggable TGF-β/KAT2A/TAK1 axis controls ADAM12 induction in normal and cancer cells. More broadly, our data show that illegitimate gene expression in cancer is an heterogeneous phenomenon, with a few genes activatable by simple events, and most genes likely requiring a combination of events to become reactivated.
Collapse
Affiliation(s)
- Ikrame Naciri
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Marthe Laisné
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Laure Ferry
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Morgane Bourmaud
- INSERM U1132 and USPC Paris-Diderot, Hôpital Lariboisière, Paris, France
| | - Nikhil Gupta
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Selene Di Carlo
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Lucie Peduto
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Olivier Kirsh
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Pierre-Antoine Defossez
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| |
Collapse
|
11
|
Wakamatsu E, Omori H, Ohtsuka S, Ogawa S, Green JM, Abe R. Regulatory T cell subsets are differentially dependent on CD28 for their proliferation. Mol Immunol 2018; 101:92-101. [PMID: 29909367 DOI: 10.1016/j.molimm.2018.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
It is thought that CD28 plays a crucial role in the maintenance of regulatory T cell (Treg) pool size through promoting the development and proliferation of these cells. However, recently we found that the dependency on CD28 co-stimulation for their development is different between Treg subsets, thymus-derived Tregs (tTregs, CD28-dependent) and peripherally-derived Tregs (pTregs, CD28-independent), suggesting that CD28 may also have differential influences on the homeostasis of each Treg subset. Here, we demonstrated that both Treg subsets were reduced in secondary lymphoid organs of CD28 deficient mice, and that this reduction was due to impaired proliferation in both Treg subsets by the intrinsic CD28 defect. However, we found that the massive proliferation of both Treg subsets under lymphopenic condition was regulated by CD28, whereas the proliferative activity of tTregs but not pTregs in the steady state was dependent on CD28. Also, experiments using mutant CD28 knock-in mice revealed that proliferation of pTregs under lymphopenic condition required only the Lck-NFκB pathway of CD28, whereas tTregs required an additional unknown pathway. These findings indicate that the dependency on CD28 for proliferation in each Treg subset differs depending on the environment.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan; Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hiroki Omori
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Shizuka Ohtsuka
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Shuhei Ogawa
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Jonathan M Green
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan.
| |
Collapse
|
12
|
Xu D, Matsumoto ML, McKenzie BS, Zarrin AA. TPL2 kinase action and control of inflammation. Pharmacol Res 2017; 129:188-193. [PMID: 29183769 DOI: 10.1016/j.phrs.2017.11.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
Tumor progression locus 2 (TPL2, also known as COT or MAP3K8) is a mitogen-activated protein kinase kinase (MAP3K) activated downstream of TNFαR, IL1R, TLR, CD40, IL17R, and some GPCRs. TPL2 regulates the MEK1/2 and ERK1/2 pathways to regulate a cascade of inflammatory responses. In parallel to this, TPL2 also activates p38α and p38δ to drive the production of various inflammatory mediators in neutrophils. We discuss the implications of this finding in the context of various inflammatory diseases.
Collapse
Affiliation(s)
- Daqi Xu
- Genentech Research, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Marissa L Matsumoto
- Genentech Research, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Brent S McKenzie
- Genentech Research, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ali A Zarrin
- Genentech Research, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
13
|
Huang CH, Lee YC, Chen YJ, Wang LJ, Shi YJ, Chang LS. Quinacrine induces the apoptosis of human leukemia U937 cells through FOXP3/miR-183/β-TrCP/SP1 axis-mediated BAX upregulation. Toxicol Appl Pharmacol 2017; 334:35-46. [PMID: 28867437 DOI: 10.1016/j.taap.2017.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022]
Abstract
Quinacrine, which is clinically used as an antimalarial drug, has anti-cancer activity. However, mechanism underlying its cytotoxic effect remains to be completely elucidated. In the present study, we investigated the cytotoxic effect of quinacrine on human leukemia U937 cells. Quinacrine-induced apoptosis of U937 cells was accompanied with ROS generation, mitochondrial depolarization, and BAX upregulation. Quinacrine-treated U937 cells showed ROS-mediated p38 MAPK activation and ERK inactivation, which in turn upregulated FOXP3 transcription. FOXP3-mediated miR-183 expression decreased β-TrCP mRNA stability and suppressed β-TrCP-mediated SP1 degradation, thus increasing SP1 expression in U937 cells. Upregulated SP1 expression further increased BAX expression. BAX knock-down attenuated quinacrine-induced mitochondrial depolarization and increased the viability of quinacrine-treated cells. Together, our data indicate that quinacrine-induced apoptosis of U937 cells is mediated by mitochondrial alterations triggered by FOXP3/miR-183/β-TrCP/SP1 axis-mediated BAX upregulation.
Collapse
Affiliation(s)
- Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
14
|
Zwang NA, Zhang R, Germana S, Fan MY, Hastings WD, Cao A, Turka LA. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant 2016; 16:2624-38. [PMID: 27017850 PMCID: PMC5007157 DOI: 10.1111/ajt.13805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/29/2016] [Accepted: 03/20/2016] [Indexed: 01/25/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4(+) and CD8(+) lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform-specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4(+) and CD8(+) counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4(+) and CD8(+) lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity.
Collapse
Affiliation(s)
- N. A. Zwang
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
- Massachusetts General Hospital/Brigham and Women’s Hospital Nephrology Joint Fellowship Program, Boston, MA
| | - R. Zhang
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - S. Germana
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - M. Y. Fan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | | | - A. Cao
- Novartis Pharmaceuticals, Cambridge, MA
| | - L. A. Turka
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
15
|
Li X, Acuff NV, Peeks AR, Kirkland R, Wyatt KD, Nagy T, Watford WT. Tumor Progression Locus 2 (Tpl2) Activates the Mammalian Target of Rapamycin (mTOR) Pathway, Inhibits Forkhead Box P3 (FoxP3) Expression, and Limits Regulatory T Cell (Treg) Immunosuppressive Functions. J Biol Chem 2016; 291:16802-15. [PMID: 27261457 DOI: 10.1074/jbc.m116.718783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine kinase tumor progression locus 2 (Tpl2, also known as Map3k8/Cot) is a potent inflammatory mediator that drives the production of TNFα, IL-1β, and IFNγ. We previously demonstrated that Tpl2 regulates T cell receptor (TCR) signaling and modulates T helper cell differentiation. However, very little is known about how Tpl2 modulates the development of regulatory T cells (Tregs). Tregs are a specialized subset of T cells that express FoxP3 and possess immunosuppressive properties to limit excess inflammation. Because of the documented role of Tpl2 in promoting inflammation, we hypothesized that Tpl2 antagonizes Treg development and immunosuppressive function. Here we demonstrate that Tpl2 constrains the development of inducible Tregs. Tpl2(-/-) naïve CD4(+) T cells preferentially develop into FoxP3(+) inducible Tregs in vitro as well as in vivo in a murine model of ovalbumin (OVA)-induced systemic tolerance. Treg biasing of Tpl2(-/-) T cells depended on TCR signal strength and corresponded with reduced activation of the mammalian target of rapamycin (mTOR) pathway. Importantly, Tpl2(-/-) Tregs have basally increased expression of FoxP3 and immunosuppressive molecules, IL-10 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Furthermore, they were more immunosuppressive in vivo in a T cell transfer model of colitis, as evidenced by reduced effector T cell accumulation, systemic production of inflammatory cytokines, and colonic inflammation. These results demonstrate that Tpl2 promotes inflammation in part by constraining FoxP3 expression and Treg immunosuppressive functions. Overall, these findings suggest that Tpl2 inhibition could be used to preferentially drive Treg induction and thereby limit inflammation in a variety of autoimmune diseases.
Collapse
Affiliation(s)
- Xin Li
- From the Departments of Infectious Diseases and
| | | | | | | | | | - Tamas Nagy
- Pathology, University of Georgia, Athens, Georgia 30602-7387
| | | |
Collapse
|
16
|
Guo J, Zhou X. Regulatory T cells turn pathogenic. Cell Mol Immunol 2015; 12:525-32. [PMID: 25942597 PMCID: PMC4579652 DOI: 10.1038/cmi.2015.12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/31/2022] Open
Abstract
Foxp3(+) regulatory T (Treg) cells are considered a sub-lineage of CD4(+) T cells that are protective against autoimmunity due to their essential roles in maintaining immune homeostasis and self-tolerance. However, Treg cells are unstable in vivo in terms of lineage specialization and suppressive function. These unstable Treg cells play roles in the pathogenesis of diseases, which cause safety concerns regarding human Treg cell therapy. In this review, we highlight recent findings that demonstrate the pathogenic conversion of Treg cells in different disease models.
Collapse
|