1
|
Panagoda N, Balázsi G, Sampson NS. Mycobacterium tuberculosis Mce3R TetR-like Repressor Forms an Asymmetric Four-Helix Bundle and Binds a Nonpalindrome Sequence†. ACS Chem Biol 2024; 19:2580-2592. [PMID: 39545866 PMCID: PMC11667970 DOI: 10.1021/acschembio.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a major global health concern. TetR family repressors (TFRs) are important for Mtb's adaptation to the human host environment. Our study focuses on one notable Mtb repressor, Mce3R, composed of an unusual double TFR motif. Mce3R-regulated genes encode enzymes implicated in cholesterol metabolism, resistance against reactive oxygen species, and lipid transport activities important for Mtb survival and persistence in the host and for the cellular activity of a 6-azasteroid derivative. Here, we present the structure of Mce3R bound to its DNA operator, unveiling a unique asymmetric assembly previously unreported. We obtained a candidate DNA-binding motif through MEME motif analysis, comparing intergenic regions of mce3R orthologues and identifying nonpalindromic regions conserved between orthologues. Using an electrophoretic mobility shift assay (EMSA), we confirmed that Mce3R binds to a 123-bp sequence that includes the predicted motif. Using scrambled DNA and DNA oligonucleotides of varying lengths with sequences from the upstream region of the yrbE3A (mce3) operon, we elucidated the operator region to be composed of two Mce3R binding sites, each a 25-bp asymmetric sequence separated by 53 bp. Mce3R binds with a higher affinity to the downstream site with a Kd of 2.4 ± 0.7 nM. The cryo-EM structure of Mce3R bound to the 123-bp sequence was refined to a resolution of 2.51 Å. Each Mce3R monomer comprises 21 α-helices (α1-α21) folded into an asymmetric TFR-like structure with a core asymmetric four-helix bundle. This complex has two nonidentical HTH motifs and a single ligand-binding domain. The two nonidentical HTHs from each TFR bind within the high-affinity, nonpalindromic operator motif, with Arg53 and Lys262 inserted into the major groove. Site-directed mutagenesis of Arg53 to alanine abrogated DNA binding, validating the Mce3R/DNA structure obtained. Among 811,645 particles, 63% were Mce3R homodimer bound to two duplex oligonucleotides. Mce3R homodimerizes primarily through α15, and each monomer binds to an identical site in the DNA duplex oligonucleotide.
Collapse
Affiliation(s)
- Navanjalee
T. Panagoda
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Gábor Balázsi
- The
Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5252, United States
- Department
of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-2581, United
States
| | - Nicole S. Sampson
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| |
Collapse
|
2
|
Filipek J, Chalaskiewicz K, Kosmider A, Nielipinski M, Michalak A, Bednarkiewicz M, Goslawski-Zeligowski M, Prucnal F, Sekula B, Pietrzyk-Brzezinska AJ. Comprehensive structural overview of the C-terminal ligand-binding domains of the TetR family regulators. J Struct Biol 2024; 216:108071. [PMID: 38401830 DOI: 10.1016/j.jsb.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
TetR family regulators (TFRs) represent a large group of one-component bacterial signal transduction systems which recognize environmental signals, like the presence of antibiotics or other bactericidal compounds, and trigger the cell response by regulating the expression of genes that secure bacterial survival in harsh environmental conditions. TFRs act as homodimers, each protomer is composed of a conserved DNA-binding N-terminal domain (NTD) and a variable ligand-binding C-terminal domain (CTD). Currently, there are about 500 structures of TFRs available in the Protein Data Bank and one-fourth of them represent the structures of TFR-ligand complexes. In this review, we summarized information on the ligands interacting with TFRs and based on structural data, we compared the CTDs of the TFR family members, as well as their ligand-binding cavities. Additionally, we divided the whole TFR family, including more than half of a million sequences, into subfamilies according to calculated multiple sequence alignment and phylogenetic tree. We also highlighted structural elements characteristic of some of the subfamilies. The presented comprehensive overview of the TFR CTDs provides good bases and future directions for further studies on TFRs that are not only important targets for battling multidrug resistance but also good candidates for many biotechnological approaches, like TFR-based biosensors.
Collapse
Affiliation(s)
- Jakub Filipek
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Katarzyna Chalaskiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Aleksandra Kosmider
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maciej Nielipinski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka Michalak
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maria Bednarkiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Mieszko Goslawski-Zeligowski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Filip Prucnal
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland.
| |
Collapse
|
3
|
Bei C, Zhu J, Culviner PH, Gan M, Rubin EJ, Fortune SM, Gao Q, Liu Q. Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis. Nat Commun 2024; 15:3088. [PMID: 38600064 PMCID: PMC11006872 DOI: 10.1038/s41467-024-47410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.
Collapse
Affiliation(s)
- Cheng Bei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Peter H Culviner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mingyu Gan
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China.
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Bei C, Zhu J, Culviner PH, Rubin EJ, Fortune SM, Gao Q, Liu Q. Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis. RESEARCH SQUARE 2023:rs.3.rs-3303807. [PMID: 37790329 PMCID: PMC10543248 DOI: 10.21203/rs.3.rs-3303807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also found that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.
Collapse
Affiliation(s)
- Cheng Bei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peter H Culviner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong Province, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Shee S, Veetil RT, Mohanraj K, Das M, Malhotra N, Bandopadhyay D, Beig H, Birua S, Niphadkar S, Nagarajan SN, Sinha VK, Thakur C, Rajmani RS, Chandra N, Laxman S, Singh M, Samal A, Seshasayee AN, Singh A. Biosensor-integrated transposon mutagenesis reveals rv0158 as a coordinator of redox homeostasis in Mycobacterium tuberculosis. eLife 2023; 12:e80218. [PMID: 37642294 PMCID: PMC10501769 DOI: 10.7554/elife.80218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.
Collapse
Affiliation(s)
- Somnath Shee
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | - Karthikeyan Mohanraj
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | - Mayashree Das
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | | | - Hussain Beig
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shalini Birua
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Sathya Narayanan Nagarajan
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Vikrant Kumar Sinha
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| |
Collapse
|
6
|
Bei C, Zhu J, Culviner PH, Rubin EJ, Fortune SM, Gao Q, Liu Q. Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.553992. [PMID: 37645742 PMCID: PMC10462119 DOI: 10.1101/2023.08.20.553992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also found that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.
Collapse
Affiliation(s)
- Cheng Bei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peter H Culviner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong Province, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
Myrmenaphthol A is a structurally unique phenolic steroid with a naphthyl AB-ring system and an unusual C2 hydroxy group. Herein, we report the first total synthesis of this natural product in 10 steps from inexpensive, commercially available sitolactone. Key features of the synthesis include a Baran decarboxylative coupling and a Friedel-Crafts cyclization/olefin isomerization/aromatization cascade that rapidly assembled the tetracyclic core framework. This synthetic strategy is expected to be readily amenable to the synthesis of other phenolic steroids.
Collapse
Affiliation(s)
- Mengqing Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Huafang Fan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yun Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
9
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
10
|
The Operon Encoding Hydrolytic Dehalogenation of 4-Chlorobenzoate Is Transcriptionally Regulated by the TetR-Type Repressor FcbR and Its Ligand 4-Chlorobenzoyl Coenzyme A. Appl Environ Microbiol 2021; 87:AEM.02652-20. [PMID: 33397703 DOI: 10.1128/aem.02652-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
The bacterial hydrolytic dehalogenation of 4-chlorobenzoate (4CBA) is a coenzyme A (CoA)-activation-type catabolic pathway that is usually a common part of the microbial mineralization of chlorinated aromatic compounds. Previous studies have shown that the transport and dehalogenation genes for 4CBA are typically clustered as an fcbBAT1T2T3C operon and inducibly expressed in response to 4CBA. However, the associated molecular mechanism remains unknown. In this study, a gene (fcbR) adjacent to the fcb operon was predicted to encode a TetR-type transcriptional regulator in Comamonas sediminis strain CD-2. The fcbR knockout strain exhibited constitutive expression of the fcb cluster. In the host Escherichia coli, the expression of the Pfcb -fused green fluorescent protein (gfp) reporter was repressed by the introduction of the fcbR gene, and genetic studies combining various catabolic genes suggest that the ligand for FcbR may be an intermediate metabolite. Purified FcbR could bind to the Pfcb DNA probe in vitro, and the metabolite 4-chlorobenzyl-CoA (4CBA-CoA) prevented FcbR binding to the P fcb DNA probe. Isothermal titration calorimetry (ITC) measurements showed that 4CBA-CoA could bind to FcbR at a 1:1 molar ratio. DNase I footprinting showed that FcbR protected a 42-bp DNA motif (5'-GGAAATCAATAGGTCCATAGAAAATCTATTGACTAATCGAAT-3') that consists of two sequence repeats containing four pseudopalindromic sequences (5'-TCNATNGA-3'). This binding motif overlaps with the -35 box of Pfcb and was proposed to prevent the binding of RNA polymerase. This study characterizes a transcriptional repressor of the fcb operon, together with its ligand, thus identifying halogenated benzoyl-CoA as belonging to the class of ligands of transcriptional regulators.IMPORTANCE The bacterial hydrolytic dehalogenation of 4CBA is a special CoA-activation-type catabolic pathway that plays an important role in the biodegradation of polychlorinated biphenyls and some herbicides. With genetic and biochemical approaches, the present study identified the transcriptional repressor and its cognate effector of a 4CBA hydrolytic dehalogenation operon. This work extends halogenated benzoyl-CoA as a new member of CoA-derived effector compounds that mediate allosteric regulation of transcriptional regulators.
Collapse
|
11
|
Luo JM, Cui HL, Jia HC, Li F, Cheng HJ, Shen YB, Wang M. Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Δ 1-Dehydrogenase Homologues from Arthrobacter simplex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9496-9512. [PMID: 32786835 DOI: 10.1021/acs.jafc.0c03360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenase (KsdD) is the key enzyme responsible for Δ1-dehydrogenation, which is one of the most valuable reactions for steroid catabolism. Arthrobacter simplex has been widely used in the industry due to its superior bioconversion efficiency, but KsdD information is not yet fully clear. Here, five KsdD homologues were identified in A. simplex CGMCC 14539. Bioinformatic analysis indicated their distinct properties and structures. Each KsdD was functionally confirmed by transcriptional response, overexpression, and heterologous expression. The substantial difference in substrate profiles might be related to the enzyme loop structure. Two promising enzymes (KsdD3 and KsdD5) were purified and characterized, exhibiting strong organic solvent tolerance and clear preference for 4-ene-3-oxosteroids. KsdD5 seemed to be more versatile due to good activity on substrates with or without a substituent at C11 and high optimal temperature and also possessed unique residues. It is the first time that KsdDs have been comprehensively disclosed in the A. simplex industrial strain.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Lin Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Chen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Fang Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| |
Collapse
|
12
|
Chiang Y, Wei ST, Wang P, Wu P, Yu C. Microbial degradation of steroid sex hormones: implications for environmental and ecological studies. Microb Biotechnol 2020; 13:926-949. [PMID: 31668018 PMCID: PMC7264893 DOI: 10.1111/1751-7915.13504] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Steroid hormones modulate development, reproduction and communication in eukaryotes. The widespread occurrence and persistence of steroid hormones have attracted public attention due to their endocrine-disrupting effects on both wildlife and human beings. Bacteria are responsible for mineralizing steroids from the biosphere. Aerobic degradation of steroid hormones relies on O2 as a co-substrate of oxygenases to activate and to cleave the recalcitrant steroidal core ring. To date, two oxygen-dependent degradation pathways - the 9,10-seco pathway for androgens and the 4,5-seco pathways for oestrogens - have been characterized. Under anaerobic conditions, denitrifying bacteria adopt the 2,3-seco pathway to degrade different steroid structures. Recent meta-omics revealed that microorganisms able to degrade steroids are highly diverse and ubiquitous in different ecosystems. This review also summarizes culture-independent approaches using the characteristic metabolites and catabolic genes to monitor steroid biodegradation in various ecosystems.
Collapse
Affiliation(s)
- Yin‐Ru Chiang
- Biodiversity Research CenterAcademia SinicaTaipei115Taiwan
| | | | - Po‐Hsiang Wang
- Biodiversity Research CenterAcademia SinicaTaipei115Taiwan
- Present address:
Earth‐Life Science InstituteTokyo Institute of TechnologyTokyoJapan
| | - Pei‐Hsun Wu
- Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipei106Taiwan
| | - Chang‐Ping Yu
- Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipei106Taiwan
| |
Collapse
|
13
|
A DNA-Binding Protein Tunes Septum Placement during Bacillus subtilis Sporulation. J Bacteriol 2019; 201:JB.00287-19. [PMID: 31160399 PMCID: PMC6657595 DOI: 10.1128/jb.00287-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
Bacillus subtilis is a bacterium capable of differentiating into a spore form more resistant to environmental stress. Early in sporulation, each cell possesses two copies of a circular chromosome. A polar FtsZ ring (Z ring) directs septation over one of the chromosomes, generating two cell compartments. The smaller "forespore" compartment initially contains only 25 to 30% of one chromosome, and this transient genetic asymmetry is required for differentiation. Timely assembly of polar Z rings and precise capture of the chromosome in the forespore both require the DNA-binding protein RefZ. To mediate its role in chromosome capture, RefZ must bind to specific DNA motifs (RBMs) that localize near the poles at the time of septation. Cells artificially induced to express RefZ during vegetative growth cannot assemble Z rings, an effect that also requires DNA binding. We hypothesized that RefZ-RBM complexes mediate precise chromosome capture by modulating FtsZ function. To investigate, we isolated 10 RefZ loss-of-function (rLOF) variants unable to inhibit cell division yet still capable of binding RBMs. Sporulating cells expressing the rLOF variants in place of wild-type RefZ phenocopied a ΔrefZ mutant, suggesting that RefZ acts through an FtsZ-dependent mechanism. The crystal structure of RefZ was solved, and wild-type RefZ and the rLOF variants were further characterized. Our data suggest that RefZ's oligomerization state and specificity for the RBMs are critical determinants influencing RefZ's ability to affect FtsZ dynamics. We propose that RBM-bound RefZ complexes function as a developmentally regulated nucleoid occlusion system for fine-tuning the position of the septum relative to the chromosome during sporulation.IMPORTANCE The bacterial nucleoid forms a large, highly organized structure. Thus, in addition to storing the genetic code, the nucleoid harbors positional information that can be leveraged by DNA-binding proteins to spatially constrain cellular activities. During B. subtilis sporulation, the nucleoid undergoes reorganization, and the cell division protein FtsZ assembles polarly to direct septation over one chromosome. The TetR family protein RefZ binds DNA motifs (RBMs) localized near the poles at the time of division and is required for both timely FtsZ assembly and precise capture of DNA in the future spore compartment. Our data suggest that RefZ exploits nucleoid organization by associating with polarly localized RBMs to modulate the positioning of FtsZ relative to the chromosome during sporulation.
Collapse
|
14
|
Yang X, Yuan T, Ma R, Chacko KI, Smith M, Deikus G, Sebra R, Kasarskis A, van Bakel H, Franzblau SG, Sampson NS. Mce3R Stress-Resistance Pathway Is Vulnerable to Small-Molecule Targeting That Improves Tuberculosis Drug Activities. ACS Infect Dis 2019; 5:1239-1251. [PMID: 31012313 PMCID: PMC6630528 DOI: 10.1021/acsinfecdis.9b00099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
One-third of the world’s population
carries Mycobacterium tuberculosis (Mtb), the infectious agent that causes tuberculosis (TB), and every
17 s someone dies of TB. After infection, Mtb can
live dormant for decades in a granuloma structure arising from the
host immune response, and cholesterol is important for this persistence
of Mtb. Current treatments require long-duration
drug regimens with many associated toxicities, which are compounded
by the high doses required. We phenotypically screened 35 6-azasteroid
analogues against Mtb and found that, at low micromolar
concentrations, a subset of the analogues sensitized Mtb to multiple TB drugs. Two analogues were selected for further study
to characterize the bactericidal activity of bedaquiline and isoniazid
under normoxic and low-oxygen conditions. These two 6-azasteroids
showed strong synergy with bedaquiline (fractional inhibitory concentration
index = 0.21, bedaquiline minimal inhibitory concentration = 16 nM
at 1 μM 6-azasteroid). The rate at which spontaneous resistance
to one of the 6-azasteroids arose in the presence of bedaquiline was
approximately 10–9, and the 6-azasteroid-resistant
mutants retained their isoniazid and bedaquiline sensitivity. Genes
in the cholesterol-regulated Mce3R regulon were required for 6-azasteroid
activity, whereas genes in the cholesterol catabolism pathway were
not. Expression of a subset of Mce3R genes was down-regulated upon
6-azasteroid treatment. The Mce3R regulon is implicated in stress
resistance and is absent in saprophytic mycobacteria. This regulon
encodes a cholesterol-regulated stress-resistance pathway that we
conclude is important for pathogenesis and contributes to drug tolerance,
and this pathway is vulnerable to small-molecule targeting in live
mycobacteria.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Chemistry, Stony Brook University, 100 John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, 100 John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Rui Ma
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, 425 PHARM, Chicago, Illinois 60612-7231, United States
| | - Kieran I. Chacko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York 10029, United States
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York 10029, United States
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York, 10029-6574, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York 10029, United States
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York, 10029-6574, United States
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York 10029, United States
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York, 10029-6574, United States
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York 10029, United States
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York, 10029-6574, United States
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York 10029, United States
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York City, New York, 10029-6574, United States
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, 425 PHARM, Chicago, Illinois 60612-7231, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, 100 John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 10 Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
15
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
16
|
Fernández-Cabezón L, Galán B, García JL. Unravelling a new catabolic pathway of C-19 steroids in Mycobacterium smegmatis. Environ Microbiol 2018; 20:1815-1827. [PMID: 29611894 DOI: 10.1111/1462-2920.14114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
In this work, we have characterized the C-19+ gene cluster (MSMEG_2851 to MSMEG_2901) of Mycobacterium smegmatis. By in silico analysis, we have identified the genes encoding enzymes involved in the modification of the A/B steroid rings during the catabolism of C-19 steroids in certain M. smegmatis mutants mapped in the PadR-like regulator (MSMEG_2868), that constitutively express the C-19+ gene cluster. By using gene complementation assays, resting-cell biotransformations and deletion mutants, we have characterized the most critical genes of the cluster, that is, kstD2, kstD3, kshA2, kshB2, hsaA2, hsaC2 and hsaD2. These results have allowed us to propose a new catabolic route named C-19+ pathway for the mineralization of C-19 steroids in M. smegmatis. Our data suggest that the deletion of the C-19+ gene cluster may be useful to engineer more robust and efficient M. smegmatis strains to produce C-19 steroids from sterols. Moreover, the new KshA2, KshB2, KstD2 and KstD3 isoenzymes may be useful to design new microbial cell factories for the 9α-hydroxylation and/or Δ1-dehydrogenation of 3-ketosteroids.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
17
|
Bock T, Volz C, Hering V, Scrima A, Müller R, Blankenfeldt W. The AibR-isovaleryl coenzyme A regulator and its DNA binding site - a model for the regulation of alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus. Nucleic Acids Res 2017; 45:2166-2178. [PMID: 27940564 PMCID: PMC5389471 DOI: 10.1093/nar/gkw1238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Isovaleryl coenzyme A (IV-CoA) is an important building block of iso-fatty acids. In myxobacteria, IV-CoA is essential for the formation of signaling molecules involved in fruiting body formation. Leucine degradation is the common source of IV-CoA, but a second, de novo biosynthetic route to IV-CoA termed AIB (alternative IV-CoA biosynthesis) was recently discovered in M. xanthus. The AIB-operon contains the TetR-like transcriptional regulator AibR, which we characterize in this study. We demonstrate that IV-CoA binds AibR with micromolar affinity and show by gelshift experiments that AibR interacts with the promoter region of the AIB-operon once IV-CoA is present. We identify an 18-bp near-perfect palindromic repeat as containing the AibR operator and provide evidence that AibR also controls an additional genomic locus coding for a putative acetyl-CoA acetyltransferase. To elucidate atomic details, we determined crystal structures of AibR in the apo, the IV-CoA- and the IV-CoA-DNA-bound state to 1.7 Å, 2.35 Å and 2.92 Å, respectively. IV-CoA induces partial unfolding of an α-helix, which allows sequence-specific interactions between AibR and its operator. This study provides insights into AibR-mediated regulation and shows that AibR functions in an unusual TetR-like manner by blocking transcription not in the ligand-free but in the effector-bound state.
Collapse
Affiliation(s)
- Tobias Bock
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Carsten Volz
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Vanessa Hering
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrea Scrima
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
19
|
Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol. Appl Microbiol Biotechnol 2017; 101:4659-4667. [DOI: 10.1007/s00253-017-8288-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
|
20
|
Fernández-Cabezón L, García-Fernández E, Galán B, García JL. Molecular characterization of a new gene cluster for steroid degradation in Mycobacterium smegmatis. Environ Microbiol 2017; 19:2546-2563. [PMID: 28217856 DOI: 10.1111/1462-2920.13704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 11/27/2022]
Abstract
The C-19 steroids 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) or 9α-hydroxy-4-androstene-3,17-dione (9OH-AD), which have been postulated as intermediates of the cholesterol catabolic pathway in Mycobacterium smegmatis, cannot be used as sole carbon and energy sources by this bacterium. Only the ΔkstR mutant which constitutively expresses the genes repressed by the KstR regulator can metabolize AD and ADD with severe difficulties but still cannot metabolize 9OH-AD, suggesting that these compounds are not true intermediates but side products of the cholesterol pathway. However, we have found that some M. smegmatis spontaneous mutants mapped in the PadR-like regulator (MSMEG_2868) can efficiently metabolize all C-19 steroids. We have demonstrated that the PadR mutants allow the expression of a gene cluster named C-19+ (MSMEG_2851 to MSMEG_2901) encoding steroid degrading enzymes, that are not expressed under standard culture conditions. The C-19+ cluster has apparently evolved independently from the upper cholesterol kstR-regulon, but both clusters converge on the lower cholesterol kstR2-regulon responsible for the metabolism of C and D steroid rings. Homologous C-19+ clusters have been found only in other actinobacteria that metabolize steroids, but remarkably it is absent in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Esther García-Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología. Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
21
|
Guevara G, Fernández de Las Heras L, Perera J, Navarro Llorens JM. Functional differentiation of 3-ketosteroid Δ 1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microb Cell Fact 2017; 16:42. [PMID: 28288625 PMCID: PMC5348764 DOI: 10.1186/s12934-017-0657-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
Background The Rhodococcus ruber strain Chol-4 genome contains at least three putative 3-ketosteroid Δ1-dehydrogenase ORFs (kstD1, kstD2 and kstD3) that code for flavoenzymes involved in the steroid ring degradation. The aim of this work is the functional characterization of these enzymes prior to the developing of different biotechnological applications. Results The three R. ruber KstD enzymes have different substrate profiles. KstD1 shows preference for 9OHAD and testosterone, followed by progesterone, deoxy corticosterone AD and, finally, 4-BNC, corticosterone and 19OHAD. KstD2 shows maximum preference for progesterone followed by 5α-Tes, DOC, AD testosterone, 4-BNC and lastly 19OHAD, corticosterone and 9OHAD. KstD3 preference is for saturated steroid substrates (5α-Tes) followed by progesterone and DOC. A preliminary attempt to model the catalytic pocket of the KstD proteins revealed some structural differences probably related to their catalytic differences. The expression of kstD genes has been studied by RT-PCR and RT-qPCR. All the kstD genes are transcribed under all the conditions assayed, although an additional induction in cholesterol and AD could be observed for kstD1 and in cholesterol for kstD3. Co-transcription of some correlative genes could be stated. The transcription initiation signals have been searched, both in silico and in vivo. Putative promoters in the intergenic regions upstream the kstD1, kstD2 and kstD3 genes were identified and probed in an apramycin-promoter-test vector, leading to the functional evidence of those R. ruber kstD promoters. Conclusions At least three putative 3-ketosteroid Δ1-dehydrogenase ORFs (kstD1, kstD2 and kstD3) have been identified and functionally confirmed in R. ruber strain Chol-4. KstD1 and KstD2 display a wide range of substrate preferences regarding to well-known intermediaries of the cholesterol degradation pathway (9OHAD and AD) and other steroid compounds. KstD3 shows a narrower substrate range with a preference for saturated substrates. KstDs differences in their catalytic properties was somehow related to structural differences revealed by a preliminary structural modelling. Transcription of R. ruber kstD genes is driven from specific promoters. The three genes are constitutively transcribed, although an additional induction is observed in kstD1 and kstD3. These enzymes have a wide versatility and allow a fine tuning-up of the KstD cellular activity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0657-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Govinda Guevara
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Laura Fernández de Las Heras
- Faculty of Science and Engineering, Microbial Physiology-Gron Inst Biomolecular Sciences & Biotechnology, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Julián Perera
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Aguilar-Ayala DA, Palomino JC, Vandamme P, Martin A, Gonzalez-Y-Merchand JA. "Genetic regulation of Mycobacterium tuberculosis in a lipid-rich environment". INFECTION GENETICS AND EVOLUTION 2016; 55:392-402. [PMID: 27771519 DOI: 10.1016/j.meegid.2016.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023]
Abstract
Tuberculosis (TB) remains as one of the leading causes of morbidity and mortality among infectious diseases worldwide. Although lipids (mainly fatty acids and cholesterol) have been reported to play an important role during active and latent infection of M. tuberculosis, there are other molecular aspects of bacterial response to those substrates that are not fully understood, involving gene regulation background. This review highlights recent insights on pathogen gene expression: regulation during its active growth, during survival in presence of lipids and under variable hostile host microenvironments. We also propose several application options of this knowledge that may contribute for improved TB control.
Collapse
Affiliation(s)
- Diana A Aguilar-Ayala
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala S/N, Mexico City, Mexico; Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Juan Carlos Palomino
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Anandi Martin
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala S/N, Mexico City, Mexico; Red Multidisciplinaria de Investigación en Tuberculosis, Mexico.
| |
Collapse
|
23
|
Gomez RL, Jose L, Ramachandran R, Raghunandanan S, Muralikrishnan B, Johnson JB, Sivakumar KC, Mundayoor S, Kumar RA. The multiple stress responsive transcriptional regulator Rv3334 of Mycobacterium tuberculosis is an autorepressor and a positive regulator of kstR. FEBS J 2016; 283:3056-71. [PMID: 27334653 DOI: 10.1111/febs.13791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/12/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Rv3334 protein of Mycobacterium tuberculosis belongs to the MerR family of transcriptional regulators and is upregulated during hypoxia and other stress conditions. Employing GFP reporter constructs, mobility shift assays and ChIP assays, we demonstrate that Rv3334 binds to its own promoter and acts as an autorepressor. We were able to locate a 22 bp palindrome in its promoter that we show to be the cognate binding sequence of Rv3334. Using chase experiments, we could conclusively prove the requirement of this palindrome for Rv3334 binding. Recombinant Rv3334 readily formed homodimers in vitro, which could be necessary for its transcriptional regulatory role in vivo. Although the DNA-binding activity of the protein was abrogated by the presence of certain divalent metal cations, the homodimer formation remained unaffected. In silico predictions and subsequent assays using GFP reporter constructs and mobility shift assays revealed that the expression of ketosteroid regulator gene (kstR), involved in lipid catabolism, is positively regulated by Rv3334. ChIP assays with aerobically grown M. tuberculosis as well as dormant bacteria unambiguously prove that Rv3334 specifically upregulates expression of kstR during dormancy. Our study throws light on the possible role of Rv3334 as a master regulator of lipid catabolism during hypoxia-induced dormancy.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Leny Jose
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ranjit Ramachandran
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sajith Raghunandanan
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Balaji Muralikrishnan
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - John Bernet Johnson
- Viral Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Sathish Mundayoor
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
24
|
Ho NAT, Dawes SS, Crowe AM, Casabon I, Gao C, Kendall SL, Baker EN, Eltis LD, Lott JS. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis. J Biol Chem 2016; 291:7256-66. [PMID: 26858250 DOI: 10.1074/jbc.m115.707760] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Cholesterol can be a major carbon source forMycobacterium tuberculosisduring infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, includingkstR, are either induced during infection or are essential for survival ofM. tuberculosis in vivo In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release.
Collapse
Affiliation(s)
- Ngoc Anh Thu Ho
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Stephanie S Dawes
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Adam M Crowe
- the Departments of Biochemistry and Molecular Biology and
| | - Israël Casabon
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand, Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Chen Gao
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Sharon L Kendall
- the Department of Pathology and Pathogen Biology The Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom, and
| | - Edward N Baker
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Lindsay D Eltis
- the Departments of Biochemistry and Molecular Biology and Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - J Shaun Lott
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand,
| |
Collapse
|
25
|
Holert J, Yücel O, Jagmann N, Prestel A, Möller HM, Philipp B. Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts inPseudomonassp. strain Chol1. Environ Microbiol 2016; 18:3373-3389. [DOI: 10.1111/1462-2920.13192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Johannes Holert
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Onur Yücel
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | | | | | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| |
Collapse
|
26
|
Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity. J Struct Biol 2016; 194:18-28. [PMID: 26796657 DOI: 10.1016/j.jsb.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/13/2023]
Abstract
Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.
Collapse
|
27
|
Stubbing LA, Lott JS, Dawes SS, Furkert DP, Brimble MA. Synthesis of DOHNAA, aMycobacterium tuberculosisCholesterol CD Ring Catabolite and FadD3 Substrate. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|