1
|
McMurphy TB, Park A, Heizer PJ, Bottenfield C, Kurasawa JH, Ikeda Y, Doran MR. AAV-mediated co-expression of an immunogenic transgene plus PD-L1 enables sustained expression through immunological evasion. Sci Rep 2024; 14:28853. [PMID: 39572604 PMCID: PMC11582688 DOI: 10.1038/s41598-024-75698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors can mediate long-term expression of immunogenic transgenes in vivo through transduction of tolerogenic cells in the liver. Tissue-targeted AAV vectors allow transduction of non-hepatic cells, but this necessitates development of strategies to minimize transgene immunogenicity. Here, we first validated that AAV capsids with tissue-specific tropism and transgene promoters enabled expression of the immunogenic protein, firefly luciferase, in liver, muscle, or adipose tissue. Cellular immunity was detectable in animals where luciferase was expressed in muscle or adipose, but not liver tissue. With the objective of enhancing tolerance of transduced non-hepatic cells, AAV vectors were engineered to co-express luciferase plus the immune checkpoint protein, PD-L1. In animals where transduced cells expressed luciferase but not PD-L1, there was incremental depletion of transduced cells over time. By contrast, the bioluminescent signal increased incrementally over the study, and was significantly greater, in the muscle and adipose tissue of animals where PD-L1 was co-expressed with luciferase. Our data demonstrate that PD-L1 co-expression facilitates persistent, tissue-targeted expression of immunogenic transgenes without transducing tolerogenic hepatic cells. Our strategy of PD-L1 co-expression may provide a versatile platform for sustained expression of immunogenic transgenes in gene and cell therapies.
Collapse
Affiliation(s)
- Travis B McMurphy
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Andrew Park
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Patrick J Heizer
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Crystal Bottenfield
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - James H Kurasawa
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Yasuhiro Ikeda
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Michael R Doran
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
2
|
He B, Wilson B, Chen SH, Sharma K, Scappini E, Cook M, Petrovich R, Martin NP. Molecular Engineering of Virus Tropism. Int J Mol Sci 2024; 25:11094. [PMID: 39456875 PMCID: PMC11508178 DOI: 10.3390/ijms252011094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered viral vectors designed to deliver genetic material to specific targets offer significant potential for disease treatment, safer vaccine development, and the creation of novel biochemical research tools. Viral tropism, the specificity of a virus for infecting a particular host, is often modified in recombinant viruses to achieve precise delivery, minimize off-target effects, enhance transduction efficiency, and improve safety. Key factors influencing tropism include surface protein interactions between the virus and host-cell, the availability of host-cell machinery for viral replication, and the host immune response. This review explores current strategies for modifying the tropism of recombinant viruses by altering their surface proteins. We provide an overview of recent advancements in targeting non-enveloped viruses (adenovirus and adeno-associated virus) and enveloped viruses (retro/lentivirus, Rabies, Vesicular Stomatitis Virus, and Herpesvirus) to specific cell types. Additionally, we discuss approaches, such as rational design, directed evolution, and in silico and machine learning-based methods, for generating novel AAV variants with the desired tropism and the use of chimeric envelope proteins for pseudotyping enveloped viruses. Finally, we highlight the applications of these advancements and discuss the challenges and future directions in engineering viral tropism.
Collapse
Affiliation(s)
- Bo He
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Belinda Wilson
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Shih-Heng Chen
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Erica Scappini
- Fluorescent Microscopy and Imaging Center, Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Molly Cook
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Robert Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| |
Collapse
|
3
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
4
|
Liu S, Chowdhury EA, Xu V, Jerez A, Mahmood L, Ly BQ, Le HK, Nguyen A, Rajwade A, Meno-Tetang G, Shah DK. Whole-Body Disposition and Physiologically Based Pharmacokinetic Modeling of Adeno-Associated Viruses and the Transgene Product. J Pharm Sci 2024; 113:141-157. [PMID: 37805073 DOI: 10.1016/j.xphs.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
To facilitate model-informed drug development (MIDD) of adeno-associated virus (AAV) therapy, here we have developed a physiologically based pharmacokinetic (PBPK) model for AAVs following preclinical investigation in mice. After 2E11 Vg/mouse dose of AAV8 and AAV9 encoding a monoclonal antibody (mAb) gene, whole-body disposition of both the vector and the transgene mAb was evaluated over 3 weeks. At steady-state, the following tissue-to-blood (T/B) concentration ratios were found for AAV8/9: ∼50 for liver; ∼10 for heart and muscle; ∼2 for brain, lung, kidney, adipose, and spleen; ≤1 for bone, skin, and pancreas. T/B values for mAb were compared with the antibody biodistribution coefficients, and five different clusters of organs were identified based on their transgene expression profile. All the biodistribution data were used to develop a novel AAV PBPK model that incorporates: (i) whole-body distribution of the vector; (ii) binding, internalization, and intracellular processing of the vector; (iii) transgene expression and secretion; and (iv) whole-body disposition of the secreted transgene product. The model was able to capture systemic and tissue PK of the vector and the transgene-produced mAb reasonably well. Pathway analysis of the PBPK model suggested that liver, muscle, and heart are the main contributors for the secreted transgene mAb. Unprecedented PK data and the novel PBPK model developed here provide the foundation for quantitative systems pharmacology (QSP) investigations of AAV-mediated gene therapies. The PBPK model can also serve as a quantitative tool for preclinical study design and preclinical-to-clinical translation of AAV-based gene therapies.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Vivian Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Anthony Jerez
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Leeha Mahmood
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Bao Quoc Ly
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Huyen Khanh Le
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Anne Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Aneesh Rajwade
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Guy Meno-Tetang
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
5
|
Ross M, Obolensky A, Averbukh E, Desrosiers M, Ezra-Elia R, Honig H, Yamin E, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Ther 2022; 29:624-635. [PMID: 34853444 DOI: 10.1038/s41434-021-00306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Sheep carrying a mutated CNGA3 gene exhibit diminished cone function and provide a naturally occurring large animal model of achromatopsia. Subretinal injection of a vector carrying the CNGA3 transgene resulted in long-term recovery of cone function and photopic vision in these sheep. Research is underway to develop efficacious vectors that would enable safer transgene delivery, while avoiding potential drawbacks of subretinal injections. The current study evaluated two modified vectors, adeno-associated virus 2-7m8 (AAV2-7m8) and AAV9-7m8. Intravitreal injection of AAV2-7m8 carrying enhanced green fluorescent protein under a cone-specific promoter resulted in moderate photoreceptor transduction in wild-type sheep, whereas peripheral subretinal delivery of AAV9-7m8 resulted in the radial spread of the vector beyond the point of deposition. Intravitreal injection of AAV2-7m8 carrying human CNGA3 in mutant sheep resulted in mild photoreceptor transduction, but did not lead to the clinical rescue of photopic vision, while day-blind sheep treated with a subretinal injection exhibited functional recovery of photopic vision. Transgene messenger RNA levels in retinas of intravitreally treated eyes amounted to 4-23% of the endogenous CNGA3 levels, indicating that expression levels >23% are needed to achieve clinical rescue. Overall, our results indicate intravitreal injections of AAV2.7m8 transduce ovine photoreceptors, but not with sufficient efficacy to achieve clinical rescue in CNGA3 mutant sheep.
Collapse
Affiliation(s)
- M Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - A Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Desrosiers
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - H Honig
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - H Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D Dalkara
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
6
|
Bauer A, Puglisi M, Nagl D, Schick JA, Werner T, Klingl A, El Andari J, Hornung V, Kessler H, Götz M, Grimm D, Brack‐Werner R. Molecular Signature of Astrocytes for Gene Delivery by the Synthetic Adeno-Associated Viral Vector rAAV9P1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104979. [PMID: 35398994 PMCID: PMC9165502 DOI: 10.1002/advs.202104979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Indexed: 06/01/2023]
Abstract
Astrocytes have crucial functions in the central nervous system (CNS) and are major players in many CNS diseases. Research on astrocyte-centered diseases requires efficient and well-characterized gene transfer vectors. Vectors derived from the Adeno-associated virus serotype 9 (AAV9) target astrocytes in the brains of rodents and nonhuman primates. A recombinant (r) synthetic peptide-displaying AAV9 variant, rAAV9P1, that efficiently and selectively transduces cultured human astrocytes, has been described previously. Here, it is shown that rAAV9P1 retains astrocyte-targeting properties upon intravenous injection in mice. Detailed analysis of putative receptors on human astrocytes shows that rAAV9P1 utilizes integrin subunits αv, β8, and either β3 or β5 as well as the AAV receptor AAVR. This receptor pattern is distinct from that of vectors derived from wildtype AAV2 or AAV9. Furthermore, a CRISPR/Cas9 genome-wide knockout screening revealed the involvement of several astrocyte-associated intracellular signaling pathways in the transduction of human astrocytes by rAAV9P1. This study delineates the unique receptor and intracellular pathway signatures utilized by rAAV9P1 for targeting human astrocytes. These results enhance the understanding of the transduction biology of synthetic rAAV vectors for astrocytes and can promote the development of advanced astrocyte-selective gene delivery vehicles for research and clinical applications.
Collapse
Affiliation(s)
- Amelie Bauer
- Institute of VirologyHelmholtz Center MunichNeuherberg85764Germany
| | - Matteo Puglisi
- Physiological GenomicsBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Institute for Stem Cell ResearchHelmholtz Center MunichBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| | - Dennis Nagl
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐UniversitätMunich81377Germany
| | - Joel A Schick
- Institute of Molecular Toxicology and PharmacologyGenetics and Cellular Engineering GroupHelmholtz Center MunichNeuherberg85764Germany
| | - Thomas Werner
- Department of Computational Medicine and Bioinformatics & Department of Internal MedicineUniversity of MichiganAnn ArborMI48109USA
| | - Andreas Klingl
- Plant Development and Electron MicroscopyDepartment Biology IBiocenterLudwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| | - Jihad El Andari
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg UniversityHeidelberg69120Germany
- Department of Infectious DiseasesVirologyMedical FacultyHeidelberg UniversityHeidelberg69120Germany
| | - Veit Hornung
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐UniversitätMunich81377Germany
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM)Department ChemieTechnische Universität MünchenGarching85748Germany
| | - Magdalena Götz
- Physiological GenomicsBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Institute for Stem Cell ResearchHelmholtz Center MunichBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Excellence Cluster of Systems Neurology (SYNERGY)Munich81377Germany
| | - Dirk Grimm
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg UniversityHeidelberg69120Germany
- Department of Infectious DiseasesVirologyMedical FacultyHeidelberg UniversityHeidelberg69120Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK)Partner site HeidelbergHeidelberg69120Germany
| | - Ruth Brack‐Werner
- Institute of VirologyHelmholtz Center MunichNeuherberg85764Germany
- Department of Biology IILudwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| |
Collapse
|
7
|
Wang Q, Nambiar K, Wilson JM. Isolating Natural Adeno-Associated Viruses from Primate Tissues with a High-Fidelity Polymerase. Hum Gene Ther 2021; 32:1439-1449. [PMID: 34448594 DOI: 10.1089/hum.2021.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated viruses (AAVs) are advantageous as gene-transfer vectors due to their favorable biological and safety characteristics, with discovering novel AAV variants being key to improving this treatment platform. To date, researchers have isolated over 200 AAVs from natural sources using PCR-based methods. We compared two modern DNA polymerases and their utility for isolating and amplifying the AAV genome. Compared to the HotStar polymerase, the higher-fidelity Q5 Hot Start High-Fidelity DNA Polymerase provided more precise and accurate amplification of the input AAV sequences. The lower-fidelity HotStar DNA polymerase introduced mutations during the isolation and amplification processes, thus generating multiple mutant capsids with variable bioactivity compared to the input AAV gene. The Q5 polymerase enabled the successful discovery of novel AAV capsid sequences from human and nonhuman primate tissue sources. Novel AAV sequences from these sources showed evidence of positive evolutionary selection. This study highlights the importance of using the highest fidelity DNA polymerases available to accurately isolate and characterize AAV genomes from natural sources to ultimately develop more effective gene therapy vectors.
Collapse
Affiliation(s)
- Qiang Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kalyani Nambiar
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Abstract
Adeno-associated viruses utilize different glycans and the AAV receptor (AAVR) for cellular attachment and entry. Directed evolution has yielded new AAV variants; however, structure-function correlates underlying their improved transduction are generally overlooked. Here, we report that infectious cycling of structurally diverse AAV surface loop libraries yields functionally distinct variants. Newly evolved variants show enhanced cellular binding, uptake, and transduction, but through distinct mechanisms. Using glycan-based and genome-wide CRISPR knockout screens, we discover that one AAV variant acquires the ability to recognize sulfated glycosaminoglycans, while another displays receptor switching from AAVR to integrin β1 (ITGB1). A previously evolved variant, AAVhum.8, preferentially utilizes the ITGB1 receptor over AAVR. Visualization of the AAVhum.8 capsid by cryoelectron microscopy at 2.49-Å resolution localizes the newly acquired integrin recognition motif adjacent to the AAVR footprint. These observations underscore the new finding that distinct AAV surface epitopes can be evolved to exploit different cellular receptors for enhanced transduction. IMPORTANCE Understanding how viruses interact with host cells through cell surface receptors is central to discovery and development of antiviral therapeutics, vaccines, and gene transfer vectors. Here, we demonstrate that distinct epitopes on the surface of adeno-associated viruses can be evolved by infectious cycling to recognize different cell surface carbohydrates and glycoprotein receptors and solve the three-dimensional structure of one such newly evolved AAV capsid, which provides a roadmap for designing viruses with improved attributes for gene therapy applications.
Collapse
|
9
|
Xu X, Chen W, Zhu W, Chen J, Ma B, Ding J, Wang Z, Li Y, Wang Y, Zhang X. Adeno-associated virus (AAV)-based gene therapy for glioblastoma. Cancer Cell Int 2021; 21:76. [PMID: 33499886 PMCID: PMC7836184 DOI: 10.1186/s12935-021-01776-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant Grade IV primary craniocerebral tumor caused by glial cell carcinogenesis with an extremely poor median survival of 12–18 months. The current standard treatments for GBM, including surgical resection followed by chemotherapy and radiotherapy, fail to substantially prolong survival outcomes. Adeno-associated virus (AAV)-mediated gene therapy has recently attracted considerable interest because of its relatively low cytotoxicity, poor immunogenicity, broad tissue tropism, and long-term stable transgene expression. Furthermore, a range of gene therapy trials using AAV as vehicles are being investigated to thwart deadly GBM in mice models. At present, AAV is delivered to the brain by local injection, intracerebroventricular (ICV) injection, or systematic injection to treat experimental GBM mice model. In this review, we summarized the experimental trials of AAV-based gene therapy as GBM treatment and compared the advantages and disadvantages of different AAV injection approaches. We systematically introduced the prospect of the systematic injection of AAV as an approach for AAV-based gene therapy for GBM.
Collapse
Affiliation(s)
- Xin Xu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Wenli Chen
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, 222006, China
| | - Jing Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Bin Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianxia Ding
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zaichuan Wang
- School of Medicine, Yangzhou University, Yangzhou, 225600, China
| | - Yifei Li
- School of Medicine, Yangzhou University, Yangzhou, 225600, China
| | - Yeming Wang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu, China.
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, 225600, China. .,Department of Oncology, Yangzhou Traditional Chinese Medical Hospital, Yangzhou, 225600, Jiangsu, China.
| |
Collapse
|
10
|
Structure comparison of the chimeric AAV2.7m8 vector with parental AAV2. J Struct Biol 2019; 209:107433. [PMID: 31859208 DOI: 10.1016/j.jsb.2019.107433] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
The AAV2.7m8 vector is an engineered capsid with a 10-amino acid insertion in adeno-associated virus (AAV) surface variable region VIII (VR-VIII) resulting in the alteration of an antigenic region of AAV2 and the ability to efficiently transduce retina cells following intravitreal administration. Directed evolution and in vivo screening in the mouse retina isolated this vector. In the present study, we sought to identify the structural differences between a recombinant AAV2.7m8 (rAAV2.7m8) vector packaging a GFP genome and its parental serotype, AAV2, by cryo-electron microscopy (cryo-EM) and image reconstruction. The structures of rAAV2.7m8 and AAV2 were determined to 2.91 and 3.02 Å resolution, respectively. The rAAV2.7m8 amino acid side-chains for residues 219-745 (the last C-terminal residue) were interpretable in the density map with the exception of the 10 inserted amino acids. While observable in a low sigma threshold density, side-chains were only resolved at the base of the insertion, likely due to flexibility at the top of the loop. A comparison to parental AAV2 (ordered from residues 217-735) showed the structures to be similar, except at some side-chains that had different orientations and, in VR-VIII containing the 10 amino acid insertion. VR-VIII is part of an AAV2 antigenic epitope, and the difference is consistent with rAAV2.7m8's escape from a known AAV2 monoclonal antibody, C37-B. The observations provide valuable insight into the configuration of inserted surface peptides on the AAV capsid and structural differences to be leveraged for future AAV vector rational design, especially for retargeted tropism and antibody escape.
Collapse
|
11
|
Guenther CM, Brun MJ, Bennett AD, Ho ML, Chen W, Zhu B, Lam M, Yamagami M, Kwon S, Bhattacharya N, Sousa D, Evans AC, Voss J, Sevick-Muraca EM, Agbandje-McKenna M, Suh J. Protease-Activatable Adeno-Associated Virus Vector for Gene Delivery to Damaged Heart Tissue. Mol Ther 2019; 27:611-622. [PMID: 30772143 DOI: 10.1016/j.ymthe.2019.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 01/08/2023] Open
Abstract
Adeno-associated virus (AAV) has emerged as a promising gene delivery vector because of its non-pathogenicity, simple structure and genome, and low immunogenicity compared to other viruses. However, its adoption as a safe and effective delivery vector for certain diseases relies on altering its tropism to deliver transgenes to desired cell populations. To this end, we have developed a protease-activatable AAV vector, named provector, that responds to elevated extracellular protease activity commonly found in diseased tissue microenvironments. The AAV9-based provector is initially inactive, but then it can be switched on by matrix metalloproteinases (MMP)-2 and -9. Cryo-electron microscopy and image reconstruction reveal that the provector capsid is structurally similar to that of AAV9, with a flexible peptide insertion at the top of the 3-fold protrusions. In an in vivo model of myocardial infarction (MI), the provector is able to deliver transgenes site specifically to high-MMP-activity regions of the damaged heart, with concomitant decreased delivery to many off-target organs, including the liver. The AAV provector may be useful in the future for enhanced delivery of transgenes to sites of cardiac damage.
Collapse
Affiliation(s)
- Caitlin M Guenther
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Mitchell J Brun
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Antonette D Bennett
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Michelle L Ho
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Banghe Zhu
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 6767 Bertner Avenue, Houston, TX 77225, USA
| | - Michael Lam
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Momona Yamagami
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Sunkuk Kwon
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 6767 Bertner Avenue, Houston, TX 77225, USA
| | - Nilakshee Bhattacharya
- Biological Science Imaging facility (BSIR), Department of Biology, 89 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA
| | - Duncan Sousa
- Biological Science Imaging facility (BSIR), Department of Biology, 89 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA
| | - Annicka C Evans
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Julie Voss
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 6767 Bertner Avenue, Houston, TX 77225, USA
| | - Eva M Sevick-Muraca
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 6767 Bertner Avenue, Houston, TX 77225, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Junghae Suh
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| |
Collapse
|
12
|
Wang D, Li S, Gessler DJ, Xie J, Zhong L, Li J, Tran K, Van Vliet K, Ren L, Su Q, He R, Goetzmann JE, Flotte TR, Agbandje-McKenna M, Gao G. A Rationally Engineered Capsid Variant of AAV9 for Systemic CNS-Directed and Peripheral Tissue-Detargeted Gene Delivery in Neonates. Mol Ther Methods Clin Dev 2018; 9:234-246. [PMID: 29766031 PMCID: PMC5948233 DOI: 10.1016/j.omtm.2018.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 02/05/2023]
Abstract
Adeno-associated virus (AAV) has provided the gene therapy field with the most powerful in vivo gene delivery vector to realize safe, efficacious, and sustainable therapeutic gene expression. Because many clinically relevant properties of AAV-based vectors are governed by the capsid, much research effort has been devoted to the development of AAV capsids for desired features. Here, we combine AAV capsid discovery from nature and rational engineering to report an AAV9 capsid variant, designated as AAV9.HR, which retains AAV9's capability to traverse the blood-brain barrier and transduce neurons. This variant shows reduced transduction in peripheral tissues when delivered through intravascular (IV) injection into neonatal mice. Therefore, when IV AAV delivery is used to treat CNS diseases, AAV9.HR has the advantage of mitigating potential off-target effects in peripheral tissues compared to AAV9. We also demonstrate that AAV9.HR is suitable for peripheral tissue-detargeted CNS-directed gene therapy in a mouse model of a fatal pediatric leukodystrophy. In light of recent success with profiling diversified natural AAV capsid repertoires and the understanding of AAV capsid sequence-structure-function relationship, such a combinatory approach to AAV capsid development is expected to further improve vector targeting and expand the vector toolbox for therapeutic gene delivery.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shaoyong Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dominic J. Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Li Zhong
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen Tran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kim Van Vliet
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qin Su
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ran He
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason E. Goetzmann
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
- West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Site Specific Modification of Adeno-Associated Virus Enables Both Fluorescent Imaging of Viral Particles and Characterization of the Capsid Interactome. Sci Rep 2017; 7:14766. [PMID: 29116194 PMCID: PMC5676692 DOI: 10.1038/s41598-017-15255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Adeno-associated viruses (AAVs) are attractive gene therapy vectors due to their low toxicity, high stability, and rare integration into the host genome. Expressing ligands on the viral capsid can re-target AAVs to new cell types, but limited sites have been identified on the capsid that tolerate a peptide insertion. Here, we incorporated a site-specific tetracysteine sequence into the AAV serotype 9 (AAV9) capsid, to permit labelling of viral particles with either a fluorescent dye or biotin. We demonstrate that fluorescently labelled particles are detectable in vitro, and explore the utility of the method in vivo in mice with time-lapse imaging. We exploit the biotinylated viral particles to generate two distinct AAV interactomes, and identify several functional classes of proteins that are highly represented: actin/cytoskeletal protein binding, RNA binding, RNA splicing/processing, chromatin modifying, intracellular trafficking and RNA transport proteins. To examine the biological relevance of the capsid interactome, we modulated the expression of two proteins from the interactomes prior to AAV transduction. Blocking integrin αVβ6 receptor function reduced AAV9 transduction, while reducing histone deacetylase 4 (HDAC4) expression enhanced AAV transduction. Our method demonstrates a strategy for inserting motifs into the AAV capsid without compromising viral titer or infectivity.
Collapse
|
14
|
Brillault L, Jutras PV, Dashti N, Thuenemann EC, Morgan G, Lomonossoff GP, Landsberg MJ, Sainsbury F. Engineering Recombinant Virus-like Nanoparticles from Plants for Cellular Delivery. ACS NANO 2017; 11:3476-3484. [PMID: 28198180 DOI: 10.1021/acsnano.6b07747] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding capsid assembly following recombinant expression of viral structural proteins is critical to the design and modification of virus-like nanoparticles for biomedical and nanotechnology applications. Here, we use plant-based transient expression of the Bluetongue virus (BTV) structural proteins, VP3 and VP7, to obtain high yields of empty and green fluorescent protein (GFP)-encapsidating core-like particles (CLPs) from leaves. Single-particle cryo-electron microscopy of both types of particles revealed considerable differences in CLP structure compared to the crystal structure of infection-derived CLPs; in contrast, the two recombinant CLPs have an identical external structure. Using this insight, we exploited the unencumbered pore at the 5-fold axis of symmetry and the absence of encapsidated RNA to label the interior of empty CLPs with a fluorescent bioconjugate. CLPs containing 120 GFP molecules and those containing approximately 150 dye molecules were both shown to bind human integrin via a naturally occurring Arg-Gly-Asp motif found on an exposed loop of the VP7 trimeric spike. Furthermore, fluorescently labeled CLPs were shown to interact with a cell line overexpressing the surface receptor. Thus, BTV CLPs present themselves as a useful tool in targeted cargo delivery. These results highlight the importance of detailed structural analysis of VNPs in validating their molecular organization and the value of such analyses in aiding their design and further modification.
Collapse
Affiliation(s)
| | | | | | - Eva C Thuenemann
- Department of Biological Chemistry, John Innes Centre , Norwich Research Park, Colney, Norfolk NR4 7UH, United Kingdom
| | | | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre , Norwich Research Park, Colney, Norfolk NR4 7UH, United Kingdom
| | | | | |
Collapse
|
15
|
Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging. J Virol 2016; 90:8542-51. [PMID: 27440903 DOI: 10.1128/jvi.00575-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. IMPORTANCE The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production.
Collapse
|
16
|
Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol 2016; 21:75-80. [PMID: 27596608 DOI: 10.1016/j.coviro.2016.08.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
In this review, a brief account of the historical perspective of the discovery of the first cellular receptor and co-receptor of the prototype adeno-associated virus serotype 2 (AAV2) will be presented. The Subsequent discovery of a number of AAV serotypes, and attempts to identify the cellular receptors and co-receptors for these serotype vectors has had significant implications in their use in human gene therapy. As additional AAV serotypes are discovered and isolated, a detailed understanding of their tropism is certainly likely to play a key role in all future studies, both basic science as well as clinical.
Collapse
Affiliation(s)
- Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32611, United States; Department of Molecular Genetics & Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32611, United States.
| |
Collapse
|
17
|
Khabou H, Desrosiers M, Winckler C, Fouquet S, Auregan G, Bemelmans AP, Sahel JA, Dalkara D. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant -7m8. Biotechnol Bioeng 2016; 113:2712-2724. [PMID: 27259396 DOI: 10.1002/bit.26031] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/20/2023]
Abstract
Recently, we described a modified AAV2 vector-AAV2-7m8-having a capsid-displayed peptide insertion of 10 amino acids with enhanced retinal transduction properties. The insertion of the peptide referred to as 7m8 is responsible for high-level gene delivery into deep layers of the retina when virus is delivered into the eye's vitreous. Here, we further characterize AAV2-7m8 mediated gene delivery to neural tissue and investigate the mechanisms by which the inserted peptide provides better transduction away from the injection site. First, in order to understand if the peptide exerts its effect on its own or in conjunction with the neighboring amino acids, we inserted the 7m8 peptide at equivalent positions on three other AAV capsids, AAV5, AAV8, and AAV9, and evaluated its effect on their infectivity. Intravitreal delivery of these peptide insertion vectors revealed that only AAV9 benefited from 7m8 insertion in the context of the retina. We then investigated AAV2-7m8 and AAV9-7m8 properties in the brain, to better evaluate the spread and efficacy of viral transduction in view of the peptide insertion. While 7m8 insertion led to higher intensity gene expression, the spread of gene expression remained unchanged compared to the parental serotypes. Our results indicate that the 7m8 peptide insertion acts by increasing efficacy of cellular entry, with little effect on the spread of viral particles in neural tissue. The effects of peptide insertion are capsid and tissue dependent, highlighting the importance of the microenvironment in gene delivery using AAV. Biotechnol. Bioeng. 2016;113: 2712-2724. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanen Khabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Mélissa Desrosiers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Céline Winckler
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Stéphane Fouquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Gwenaëlle Auregan
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, Paris, France
| | - Deniz Dalkara
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.
| |
Collapse
|
18
|
Madigan VJ, Asokan A. Engineering AAV receptor footprints for gene therapy. Curr Opin Virol 2016; 18:89-96. [PMID: 27262111 PMCID: PMC6537878 DOI: 10.1016/j.coviro.2016.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 11/24/2022]
Abstract
Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.
Collapse
Affiliation(s)
- Victoria J Madigan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
19
|
Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther 2015; 24:726-35. [PMID: 26708003 DOI: 10.1038/mt.2015.231] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.
Collapse
|
20
|
Halder S, Van Vliet K, Smith JK, Duong TTP, McKenna R, Wilson JM, Agbandje-McKenna M. Structure of neurotropic adeno-associated virus AAVrh.8. J Struct Biol 2015; 192:21-36. [PMID: 26334681 PMCID: PMC4617535 DOI: 10.1016/j.jsb.2015.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/22/2015] [Accepted: 08/30/2015] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus rhesus isolate 8 (AAVrh.8) is a leading vector for the treatment of neurological diseases due to its efficient transduction of neuronal cells and reduced peripheral tissue tropism. Toward identification of the capsid determinants for these properties, the structure of AAVrh.8 was determined by X-ray crystallography to 3.5 Å resolution and compared to those of other AAV isolates. The capsid viral protein (VP) structure consists of an αA helix and an eight-stranded anti-parallel β-barrel core conserved in parvoviruses, and large insertion loop regions between the β-strands form the capsid surface topology. The AAVrh.8 capsid exhibits the surface topology conserved in all AAVs: depressions at the icosahedral twofold axis and surrounding the cylindrical channel at the fivefold axis, and three protrusions around the threefold axis. A structural comparison to serotypes AAV2, AAV8, and AAV9, to which AAVrh.8 shares ∼ 84%, ∼ 91%, and ∼ 87% VP sequence identity, respectively, revealed differences in the surface loops known to affect receptor binding, transduction efficiency, and antigenicity. Consistent with this observation, biochemical assays showed that AAVrh.8 is unable to bind heparin and does not cross-react with conformational monoclonal antibodies and human donor serum directed against the other AAVs compared. This structure of AAVrh.8 thus identified capsid surface differences which can serve as template regions for rational design of vectors with enhanced transduction for specific tissues and escape pre-existing antibody recognition. These features are essential for the creation of an AAV vector toolkit that is amenable to personalized disease treatment.
Collapse
Affiliation(s)
- Sujata Halder
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Kim Van Vliet
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, Gainesville, FL 32610, USA
| | - J Kennon Smith
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Thao Thi Phuong Duong
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Robert McKenna
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, Gainesville, FL 32610, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mavis Agbandje-McKenna
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, Gainesville, FL 32610, USA.
| |
Collapse
|