1
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. Proc Natl Acad Sci U S A 2024; 121:e2318619121. [PMID: 38657050 PMCID: PMC11067037 DOI: 10.1073/pnas.2318619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA94080
| | | | | | | | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | | | | | | |
Collapse
|
2
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562302. [PMID: 37873239 PMCID: PMC10592801 DOI: 10.1101/2023.10.13.562302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD to date. Despite its discovery twenty years ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA 94080, USA
| | | | | | - John Ferbas
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rati Verma
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | | |
Collapse
|
3
|
Choudhury A, Saha S, Maiti NC, Datta S. Exploring structural features and potential lipid interactions of Pseudomonas aeruginosa type three secretion effector PemB by spectroscopic and calorimetric experiments. Protein Sci 2023; 32:e4627. [PMID: 36916835 PMCID: PMC10044109 DOI: 10.1002/pro.4627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Type Three Secretion System (T3SS) is a sophisticated nano-scale weapon utilized by several gram negative bacteria under stringent spatio-temporal regulation to manipulate and evade host immune systems in order to cause infection. To the best of our knowledge, this present study is the first report where we embark upon characterizing inherent features of native type three secretion effector protein PemB through biophysical techniques. Herein, first, we demonstrate binding affinity of PemB for phosphoinositides through isothermal calorimetric titrations. Second, we shed light on its strong homo-oligomerization propensity in aqueous solution through multiple biophysical methods. Third, we also employ several spectroscopic techniques to delineate its disordered and helical conformation. Lastly, we perform a phylogenetic analysis of this new effector to elucidate evolutionary relationship with other organisms. Taken together, our results shall surely contribute to our existing knowledge of Pseudomonas aeruginosa secretome.
Collapse
Affiliation(s)
- Arkaprabha Choudhury
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| | - Saumen Saha
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
| | - Nakul Chandra Maiti
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| | - Saumen Datta
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| |
Collapse
|
4
|
Huang D, Luo J, OuYang X, Song L. Subversion of host cell signaling: The arsenal of Rickettsial species. Front Cell Infect Microbiol 2022; 12:995933. [PMID: 36389139 PMCID: PMC9659576 DOI: 10.3389/fcimb.2022.995933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 10/10/2023] Open
Abstract
Rickettsia is a genus of nonmotile, Gram-negative, non-spore-forming, highly pleomorphic bacteria that cause severe epidemic rickettsioses. The spotted fever group and typhi group are major members of the genus Rickettsia. Rickettsial species from the two groups subvert diverse host cellular processes, including membrane dynamics, actin cytoskeleton dynamics, phosphoinositide metabolism, intracellular trafficking, and immune defense, to promote their host colonization and intercellular transmission through secreted effectors (virulence factors). However, lineage-specific rickettsiae have exploited divergent strategies to accomplish such challenging tasks and these elaborated strategies focus on distinct host cell processes. In the present review, we summarized current understandings of how different rickettsial species employ their effectors' arsenal to affect host cellular processes in order to promote their own replication or to avoid destruction.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Constantino-Teles P, Jouault A, Touqui L, Saliba AM. Role of Host and Bacterial Lipids in Pseudomonas aeruginosa Respiratory Infections. Front Immunol 2022; 13:931027. [PMID: 35860265 PMCID: PMC9289105 DOI: 10.3389/fimmu.2022.931027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Pamella Constantino-Teles
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Albane Jouault
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Alessandra Mattos Saliba,
| |
Collapse
|
6
|
Expression of the GFP-mammalian pleckstrin homology (PH) domain of the phospholipase C δ1 in Saccharomyces cerevisiae BY4741. Mol Biol Rep 2022; 49:4123-4128. [DOI: 10.1007/s11033-022-07414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
7
|
Hardy KS, Tuckey AN, Housley NA, Andrews J, Patel M, Al-Mehdi AB, Barrington RA, Cassel SL, Sutterwala FS, Audia JP. The Pseudomonas aeruginosa Type III Secretion System Exoenzyme Effector ExoU Induces Mitochondrial Damage in a Murine Bone Marrow-Derived Macrophage Infection Model. Infect Immun 2022; 90:e0047021. [PMID: 35130452 PMCID: PMC8929383 DOI: 10.1128/iai.00470-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes nosocomial pneumonia, urinary tract infections, and bacteremia. A hallmark of P. aeruginosa pathogenesis is disruption of host cell function by the type III secretion system (T3SS) and its cognate exoenzyme effectors. The T3SS effector ExoU is phospholipase A2 (PLA2) that targets the host cell plasmalemmal membrane to induce cytolysis and is an important virulence factor that mediates immune avoidance. In addition, ExoU has been shown to subvert the host inflammatory response in a noncytolytic manner. In primary bone marrow-derived macrophages (BMDMs), P. aeruginosa infection is sensed by the nucleotide-binding domain containing leucine-rich repeats-like receptor 4 (NLRC4) inflammasome, which triggers caspase-1 activation and inflammation. ExoU transiently inhibits NLRC4 inflammasome-mediated activation of caspase-1 and its downstream target, interleukin 1β (IL-1β), to suppress activation of inflammation. In the present study, we sought to identify additional noncytolytic virulence functions for ExoU and discovered an unexpected association between ExoU, host mitochondria, and NLRC4. We show that infection of BMDMs with P. aeruginosa strains expressing ExoU elicited mitochondrial oxidative stress. In addition, mitochondria and mitochondrion-associated membrane fractions enriched from infected cells exhibited evidence of autophagy activation, indicative of damage. The observation that ExoU elicited mitochondrial stress and damage suggested that ExoU may also associate with mitochondria during infection. Indeed, ExoU phospholipase A2 enzymatic activity was present in enriched mitochondria and mitochondrion-associated membrane fractions isolated from P. aeruginosa-infected BMDMs. Intriguingly, enriched mitochondria and mitochondrion-associated membrane fractions isolated from infected Nlrc4 homozygous knockout BMDMs displayed significantly lower levels of ExoU enzyme activity, suggesting that NLRC4 plays a role in the ExoU-mitochondrion association. These observations prompted us to assay enriched mitochondria and mitochondrion-associated membrane fractions for NLRC4, caspase-1, and IL-1β. NLRC4 and pro-caspase-1 were detected in enriched mitochondria and mitochondrion-associated membrane fractions isolated from noninfected BMDMs, and active caspase-1 and active IL-1β were detected in response to P. aeruginosa infection. Interestingly, ExoU inhibited mitochondrion-associated caspase-1 and IL-1β activation. The implications of ExoU-mediated effects on mitochondria and the NLRC4 inflammasome during P. aeruginosa infection are discussed.
Collapse
Affiliation(s)
- Kierra S. Hardy
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Amanda N. Tuckey
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Nicole A. Housley
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Joel Andrews
- Mitchell Cancer Institute, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Mita Patel
- Department of Pharmcology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Abu-Bakr Al-Mehdi
- Department of Pharmcology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Robert A. Barrington
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Suzanne L. Cassel
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S. Sutterwala
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| |
Collapse
|
8
|
Hardy KS, Tuckey AN, Renema P, Patel M, Al-Mehdi AB, Spadafora D, Schlumpf CA, Barrington RA, Alexeyev MF, Stevens T, Pittet JF, Wagener BM, Simmons JD, Alvarez DF, Audia JP. ExoU Induces Lung Endothelial Cell Damage and Activates Pro-Inflammatory Caspase-1 during Pseudomonas aeruginosa Infection. Toxins (Basel) 2022; 14:toxins14020152. [PMID: 35202178 PMCID: PMC8878379 DOI: 10.3390/toxins14020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Gram-negative, opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system to inject exoenzyme effectors into a target host cell. Of the four best-studied exoenzymes, ExoU causes rapid cell damage and death. ExoU is a phospholipase A2 (PLA2) that hydrolyses host cell membranes, and P. aeruginosa strains expressing ExoU are associated with poor outcomes in critically ill patients with pneumonia. While the effects of ExoU on lung epithelial and immune cells are well studied, a role for ExoU in disrupting lung endothelial cell function has only recently emerged. Lung endothelial cells maintain a barrier to fluid and protein flux into tissue and airspaces and regulate inflammation. Herein, we describe a pulmonary microvascular endothelial cell (PMVEC) culture infection model to examine the effects of ExoU. Using characterized P. aeruginosa strains and primary clinical isolates, we show that strains expressing ExoU disrupt PMVEC barrier function by causing substantial PMVEC damage and lysis, in a PLA2-dependent manner. In addition, we show that strains expressing ExoU activate the pro-inflammatory caspase-1, in a PLA2-dependent manner. Considering the important roles for mitochondria and oxidative stress in regulating inflammatory responses, we next examined the effects of ExoU on reactive oxygen species production. Infection of PMVECs with P. aeruginosa strains expressing ExoU triggered a robust oxidative stress compared to strains expressing other exoenzyme effectors. We also provide evidence that, intriguingly, ExoU PLA2 activity was detectable in mitochondria and mitochondria-associated membrane fractions isolated from P. aeruginosa-infected PMVECs. Interestingly, ExoU-mediated activation of caspase-1 was partially inhibited by reactive oxygen species scavengers. Together, these data suggest ExoU exerts pleiotropic effects on PMVEC function during P. aeruginosa infection that may inhibit endothelial barrier and inflammatory functions.
Collapse
Affiliation(s)
- Kierra S. Hardy
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda N. Tuckey
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
| | - Phoibe Renema
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama Mobile, Mobile, AL 36688, USA
| | - Mita Patel
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abu-Bakr Al-Mehdi
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Flow Cytometry Core Lab, College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| | - Cody A. Schlumpf
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Flow Cytometry Core Lab, College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| | - Mikhail F. Alexeyev
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Troy Stevens
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, Birmingham School of Medicine, University of Alabama, Birmingham, AL 35294, USA; (J.-F.P.); (B.M.W.)
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, Birmingham School of Medicine, University of Alabama, Birmingham, AL 35294, USA; (J.-F.P.); (B.M.W.)
| | - Jon D. Simmons
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Diego F. Alvarez
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Correspondence:
| |
Collapse
|
9
|
Hardy KS, Tessmer MH, Frank DW, Audia JP. Perspectives on the Pseudomonas aeruginosa Type III Secretion System Effector ExoU and Its Subversion of the Host Innate Immune Response to Infection. Toxins (Basel) 2021; 13:880. [PMID: 34941717 PMCID: PMC8708460 DOI: 10.3390/toxins13120880] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic, Gram-negative pathogen and an important cause of hospital acquired infections, especially in immunocompromised patients. Highly virulent P. aeruginosa strains use a type III secretion system (T3SS) to inject exoenzyme effectors directly into the cytoplasm of a target host cell. P. aeruginosa strains that express the T3SS effector, ExoU, associate with adverse outcomes in critically ill patients with pneumonia, owing to the ability of ExoU to rapidly damage host cell membranes and subvert the innate immune response to infection. Herein, we review the structure, function, regulation, and virulence characteristics of the T3SS effector ExoU, a highly cytotoxic phospholipase A2 enzyme.
Collapse
Affiliation(s)
- Kierra S. Hardy
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36608, USA;
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36608, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA;
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36608, USA;
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36608, USA
| |
Collapse
|
10
|
The bacterial toxin ExoU requires a host trafficking chaperone for transportation and to induce necrosis. Nat Commun 2021; 12:4024. [PMID: 34188051 PMCID: PMC8241856 DOI: 10.1038/s41467-021-24337-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa can cause nosocomial infections, especially in ventilated or cystic fibrosis patients. Highly pathogenic isolates express the phospholipase ExoU, an effector of the type III secretion system that acts on plasma membrane lipids, causing membrane rupture and host cell necrosis. Here, we use a genome-wide screen to discover that ExoU requires DNAJC5, a host chaperone, for its necrotic activity. DNAJC5 is known to participate in an unconventional secretory pathway for misfolded proteins involving anterograde vesicular trafficking. We show that DNAJC5-deficient human cells, or Drosophila flies knocked-down for the DNAJC5 orthologue, are largely resistant to ExoU-dependent virulence. ExoU colocalizes with DNAJC5-positive vesicles in the host cytoplasm. DNAJC5 mutations preventing vesicle trafficking (previously identified in adult neuronal ceroid lipofuscinosis, a human congenital disease) inhibit ExoU-dependent cell lysis. Our results suggest that, once injected into the host cytoplasm, ExoU docks to DNAJC5-positive secretory vesicles to reach the plasma membrane, where it can exert its phospholipase activity Phospholipase ExoU from Pseudomonas aeruginosa acts on plasma membrane lipids in infected cells, causing membrane rupture and host cell necrosis. Here, Deruelle et al. show that once injected into the host cytoplasm, ExoU requires a host chaperone found on secretory vesicles to reach the plasma membrane and exerts its phospholipase activity.
Collapse
|
11
|
A pipeline to evaluate inhibitors of the Pseudomonas aeruginosa exotoxin U. Biochem J 2021; 478:647-668. [PMID: 33459338 PMCID: PMC7886320 DOI: 10.1042/bcj20200780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa has recently been highlighted by the World Health Organisation (WHO) as a major threat with high priority for the development of new therapies. In severe P. aeruginosa infections, the phospholipase activity of the type 3 secretion system toxin, ExoU, induces lysis of target host cells and results in the poorest clinical outcomes. We have developed an integrated pipeline to evaluate small molecule inhibitors of ExoU in vitro and in cultured cell models, including a disease-relevant corneal epithelial (HCE-T) scratch and infection model using florescence microscopy and cell viability assays. Compounds Pseudolipasin A, compound A and compound B were effective in vitro inhibitors of ExoU and mitigated P. aeruginosa ExoU-dependent cytotoxicity after infection of HCE-T cells at concentrations as low as 0.5 µM. Addition of the antimicrobial moxifloxacin controlled bacterial load, allowing these assays to be extended from 6 h to 24 h. P. aeruginosa remained cytotoxic to HCE-T cells with moxifloxacin, present at the minimal inhibitory concentration for 24 h, but, when used in combination with either Pseudolipasin A, compound A or compound B, a greater amount of viable cells and scratch healing were observed. Thus, our pipeline provides evidence that ExoU inhibitors could be used in combination with certain antimicrobials as a novel means to treat infections due to ExoU producing P. aeruginosa, as well as the means to identify more potent ExoU inhibitors for future therapeutics.
Collapse
|
12
|
Malcova I, Bumba L, Uljanic F, Kuzmenko D, Nedomova J, Kamanova J. Lipid binding by the N-terminal motif mediates plasma membrane localization of Bordetella effector protein BteA. J Biol Chem 2021; 296:100607. [PMID: 33789161 PMCID: PMC8100071 DOI: 10.1016/j.jbc.2021.100607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
The respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ a type III secretion system (T3SS) to inject a 69-kDa BteA effector protein into host cells. This effector is known to contain two functional domains, including an N-terminal lipid raft targeting (LRT) domain and a cytotoxic C-terminal domain that induces nonapoptotic and caspase-1–independent host cell death. However, the exact molecular mechanisms underlying the interaction of BteA with plasma membrane (PM) as well as its cytotoxic activity in the course of Bordetella infections remain poorly understood. Using a protein–lipid overlay assay and surface plasmon resonance, we show here that the recombinant LRT domain binds negatively charged membrane phospholipids. Specifically, we determined that the dissociation constants of the LRT domain–binding liposomes containing phosphatidylinositol 4,5-bisphosphate, phosphatidic acid, and phosphatidylserine were ∼450 nM, ∼490 nM, and ∼1.2 μM, respectively. Both phosphatidylserine and phosphatidylinositol 4,5-bisphosphate were required to target the LRT domain and/or full-length BteA to the PM of yeast cells. The membrane association further involved electrostatic and hydrophobic interactions of LRT and depended on a leucine residue in the L1 loop between the first two helices of the four-helix bundle. Importantly, charge-reversal substitutions within the L1 region disrupted PM localization of the BteA effector without hampering its cytotoxic activity during B. bronchiseptica infection of HeLa cells. The LRT-mediated targeting of BteA to the cytosolic leaflet of the PM of host cells is, therefore, dispensable for effector cytotoxicity.
Collapse
Affiliation(s)
- Ivana Malcova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Uljanic
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Darya Kuzmenko
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Nedomova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
13
|
Tessmer MH, DeCero SA, Del Alamo D, Riegert MO, Meiler J, Frank DW, Feix JB. Characterization of the ExoU activation mechanism using EPR and integrative modeling. Sci Rep 2020; 10:19700. [PMID: 33184362 PMCID: PMC7665212 DOI: 10.1038/s41598-020-76023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
ExoU, a type III secreted phospholipase effector of Pseudomonas aeruginosa, serves as a prototype to model large, dynamic, membrane-associated proteins. ExoU is synergistically activated by interactions with membrane lipids and ubiquitin. To dissect the activation mechanism, structural homology was used to identify an unstructured loop of approximately 20 residues in the ExoU amino acid sequence. Mutational analyses indicate the importance of specific loop amino acid residues in mediating catalytic activity. Engineered disulfide cross-links show that loop movement is required for activation. Site directed spin labeling EPR and DEER (double electron-electron resonance) studies of apo and holo states demonstrate local conformational changes at specific sites within the loop and a conformational shift of the loop during activation. These data are consistent with the formation of a substrate-binding pocket providing access to the catalytic site. DEER distance distributions were used as constraints in RosettaDEER to construct ensemble models of the loop in both apo and holo states, significantly extending the range for modeling a conformationally dynamic loop.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Samuel A DeCero
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Diego Del Alamo
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Molly O Riegert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig SAC, Germany
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Varela-Chavez C, Blondel A, Popoff MR. Bacterial intracellularly active toxins: Membrane localisation of the active domain. Cell Microbiol 2020; 22:e13213. [PMID: 32353188 DOI: 10.1111/cmi.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras-GTPases, certain virulence factors of Gram negative bacteria, Rho-GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G-proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four-helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.
Collapse
Affiliation(s)
| | - Arnaud Blondel
- Unité de Bio-Informatique Structurale, Institut Pasteur, Paris, France
| | | |
Collapse
|
15
|
Pseudomonas aeruginosa Toxin ExoU as a Therapeutic Target in the Treatment of Bacterial Infections. Microorganisms 2019; 7:microorganisms7120707. [PMID: 31888268 PMCID: PMC6955817 DOI: 10.3390/microorganisms7120707] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs the type III secretion system (T3SS) and four effector proteins, ExoS, ExoT, ExoU, and ExoY, to disrupt cellular physiology and subvert the host’s innate immune response. Of the effector proteins delivered by the T3SS, ExoU is the most toxic. In P. aeruginosa infections, where the ExoU gene is expressed, disease severity is increased with poorer prognoses. This is considered to be due to the rapid and irreversible damage exerted by the phospholipase activity of ExoU, which cannot be halted before conventional antibiotics can successfully eliminate the pathogen. This review will discuss what is currently known about ExoU and explore its potential as a therapeutic target, highlighting some of the small molecule ExoU inhibitors that have been discovered from screening approaches.
Collapse
|
16
|
Yahalom A, Davidov G, Kolusheva S, Shaked H, Barber-Zucker S, Zarivach R, Chill JH. Structure and membrane-targeting of a Bordetella pertussis effector N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183054. [DOI: 10.1016/j.bbamem.2019.183054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
|
17
|
Springer TI, Reid TE, Gies SL, Feix JB. Interactions of the effector ExoU from Pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. J Biol Chem 2019; 294:19012-19021. [PMID: 31662432 DOI: 10.1074/jbc.ra119.010278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic multidrug-resistant pathogen and a common cause of infection in cystic fibrosis and ventilator-associated pneumonia and in burn and wound patients. P. aeruginosa uses its type III secretion system to secrete various effector proteins directly into mammalian host cells. ExoU is a potent type III secretion system effector that, after secretion, localizes to the inner cytoplasmic membrane of eukaryotic cells, where it exerts its phospholipase A2 activity upon interacting with ubiquitin and/or ubiquitinated proteins. In this study, we used site-directed spin-labeling electron paramagnetic resonance spectroscopy to examine the interaction of ExoU with soluble analogs of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). We found that dioctanoyl PI(4,5)P2 binds to and induces conformational changes in a C-terminal four-helix bundle (4HB) domain of ExoU implicated previously in membrane binding. Other soluble phosphoinositides also interacted with the 4HB but less effectively. Molecular modeling and ligand docking studies indicated the potential for numerous hydrogen bond interactions within and between interhelical loops of the 4HB and suggested several potential interaction sites for PI(4,5)P2 Site-directed mutagenesis experiments confirmed that the side chains of Gln-623 and Arg-661 play important roles in mediating PI(4,5)P2-induced conformational changes in ExoU. These results support a mechanism in which direct interactions with phosphatidylinositol-containing lipids play an essential role in targeting ExoU to host membrane bilayers. Molecules or peptides that block this interaction may prove useful in preventing the cytotoxic effects of ExoU to mitigate the virulence of P. aeruginosa strains that express this potent phospholipase toxin.
Collapse
Affiliation(s)
- Tzvia I Springer
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, Wisconsin 53097
| | - Terry-Elinor Reid
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, Wisconsin 53097
| | - Samantha L Gies
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
18
|
Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J, Newton HJ, Knodler LA. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog 2019; 15:e1007959. [PMID: 31339948 PMCID: PMC6682159 DOI: 10.1371/journal.ppat.1007959] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/05/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The enteric bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilizes two type III secretion systems (T3SSs) to invade host cells, survive and replicate intracellularly. T3SS1 and its dedicated effector proteins are required for bacterial entry into non-phagocytic cells and establishment and trafficking of the nascent Salmonella-containing vacuole (SCV). Here we identify the first T3SS1 effector required to maintain the integrity of the nascent SCV as SopF. SopF associates with host cell membranes, either when translocated by bacteria or ectopically expressed. Recombinant SopF binds to multiple phosphoinositides in protein-lipid overlays, suggesting that it targets eukaryotic cell membranes via phospholipid interactions. In yeast, the subcellular localization of SopF is dependent on the activity of Mss4, a phosphatidylinositol 4-phosphate 5-kinase that generates PI(4,5)P2 from PI(4)P, indicating that membrane recruitment of SopF requires specific phospholipids. Ectopically expressed SopF partially colocalizes with specific phosphoinositide pools present on the plasma membrane in mammalian cells and with cytoskeletal-associated markers at the leading edge of cells. Translocated SopF concentrates on plasma membrane ruffles and around intracellular bacteria, presumably on the SCV. SopF is not required for bacterial invasion of non-phagocytic cells but is required for maintenance of the internalization vacuole membrane as infection with a S. Typhimurium ΔsopF mutant led to increased lysis of the SCV compared to wild type bacteria. Our structure-function analysis shows that the carboxy-terminal seven amino acids of SopF are essential for its membrane association in host cells and to promote SCV membrane stability. We also describe that SopF and another T3SS1 effector, SopB, act antagonistically to modulate nascent SCV membrane dynamics. In summary, our study highlights that a delicate balance of type III effector activities regulates the stability of the Salmonella internalization vacuole.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Brittany J. O’Keeffe
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Eleanor A. Latomanski
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Hayley J. Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (LAK); (HJN)
| | - Leigh A. Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- * E-mail: (LAK); (HJN)
| |
Collapse
|
19
|
Li P, Wang J, Zou Y, Sun Z, Zhang M, Geng Z, Xu W, Wang D. Interaction of Hsp90AA1 with phospholipids stabilizes membranes under stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:457-465. [DOI: 10.1016/j.bbamem.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 01/29/2023]
|
20
|
Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases. J Bacteriol 2019; 201:JB.00623-18. [PMID: 30455285 DOI: 10.1128/jb.00623-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
ExoU is a potent type III secretion system effector that is injected directly into mammalian cells by the opportunistic pathogen Pseudomonas aeruginosa As a ubiquitin-activated phospholipase A2 (PLA2), ExoU exhibits cytotoxicity by cleaving membrane phospholipids, resulting in lysis of the host cells and inhibition of the innate immune response. Recently, ExoU has been established as a model protein for a group of ubiquitin-activated PLA2 enzymes encoded by a variety of bacteria. Bioinformatic analyses of homologous proteins is a powerful approach that can complement and enhance the overall understanding of protein structure and function. To conduct homology studies, it is important to have efficient and effective tools to screen and to validate the putative homologs of interest. Here we make use of an Escherichia coli-based dual expression system to screen putative ubiquitin-activated PLA2 enzymes from a variety of bacteria that are known to colonize humans and to cause human infections. The screen effectively identified multiple ubiquitin-activated phospholipases, which were validated using both biological and biochemical techniques. In this study, two new ExoU orthologs were identified and the ubiquitin activation of the rickettsial enzyme RP534 was verified. Conversely, ubiquitin was not found to regulate the activity of several other tested enzymes. Based on structural homology analyses, functional properties were predicted for AxoU, a unique member of the group expressed by Achromobacter xylosoxidans IMPORTANCE Bacterial phospholipases act as intracellular and extracellular enzymes promoting the destruction of phospholipid barriers and inflammation during infections. Identifying enzymes with a common mechanism of activation is an initial step in understanding structural and functional properties. These properties serve as critical information for the design of specific inhibitors to reduce enzymatic activity and ameliorate host cell death. In this study, we identify and verify cytotoxic PLA2 enzymes from several bacterial pathogens. Similar to the founding member of the group, ExoU, these enzymes share the property of ubiquitin-mediated activation. The identification and validation of potential toxins from multiple bacterial species provide additional proteins from which to derive structural insights that could lead to paninhibitors useful for treating a variety of infections.
Collapse
|
21
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Abstract
ExoU is a type III-secreted cytotoxin expressing A2 phospholipase activity when injected into eukaryotic target cells by the bacterium Pseudomonas aeruginosa The enzymatic activity of ExoU is undetectable in vitro unless ubiquitin, a required cofactor, is added to the reaction. The role of ubiquitin in facilitating ExoU enzymatic activity is poorly understood but of significance for designing inhibitors to prevent tissue injury during infections with strains of P. aeruginosa producing this toxin. Most ubiquitin-binding proteins, including ExoU, demonstrate a low (micromolar) affinity for monoubiquitin (monoUb). Additionally, ExoU is a large and dynamic protein, limiting the applicability of traditional structural techniques such as NMR and X-ray crystallography to define this protein-protein interaction. Recent advancements in computational methods, however, have allowed high-resolution protein modeling using sparse data. In this study, we combine double electron-electron resonance (DEER) spectroscopy and Rosetta modeling to identify potential binding interfaces of ExoU and monoUb. The lowest-energy scoring model was tested using biochemical, biophysical, and biological techniques. To verify the binding interface, Rosetta was used to design a panel of mutations to modulate binding, including one variant with enhanced binding affinity. Our analyses show the utility of computational modeling when combined with sensitive biological assays and biophysical approaches that are exquisitely suited for large dynamic proteins.
Collapse
|
23
|
Li P, Zhang M, Zou Y, Sun Z, Sun C, Geng Z, Xu W, Wang D. Interaction of heat shock protein 90 B1 (Hsp90B1) with liposome reveals its potential role in protection the integrity of lipid membranes. Int J Biol Macromol 2018; 106:1250-1257. [DOI: 10.1016/j.ijbiomac.2017.08.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
|
24
|
Phosphatidylinositol 4,5-Bisphosphate-Dependent Oligomerization of the Pseudomonas aeruginosa Cytotoxin ExoU. Infect Immun 2017; 86:IAI.00402-17. [PMID: 28993456 DOI: 10.1128/iai.00402-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022] Open
Abstract
The Pseudomonas aeruginosa type III secretion system delivers effector proteins directly into target cells, allowing the bacterium to modulate host cell functions. ExoU is the most cytotoxic of the known effector proteins and has been associated with more severe infections in humans. ExoU is a patatin-like A2 phospholipase requiring the cellular host factors phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and ubiquitin for its activation in vitro We demonstrated that PI(4,5)P2 also induces the oligomerization of ExoU and that this PI(4,5)P2-mediated oligomerization does not require ubiquitin. Single amino acid substitutions in the C-terminal membrane localization domain of ExoU reduced both its activity and its ability to form higher-order complexes in transfected cells and in vitro Combining inactive truncated ExoU proteins partially restored phospholipase activity and cytotoxicity, indicating that ExoU oligomerization may have functional significance. Our results indicate that PI(4,5)P2 induces the oligomerization of ExoU, which may be a mechanism by which this coactivator enhances the phospholipase activity of ExoU.
Collapse
|
25
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
26
|
Pazos MA, Lanter BB, Yonker LM, Eaton AD, Pirzai W, Gronert K, Bonventre JV, Hurley BP. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration. PLoS Pathog 2017; 13:e1006548. [PMID: 28771621 PMCID: PMC5557605 DOI: 10.1371/journal.ppat.1006548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/15/2017] [Accepted: 07/22/2017] [Indexed: 12/21/2022] Open
Abstract
Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment. Pseudomonas aeruginosa is an opportunistic pathogen that causes acute pneumonia in immune compromised patients, and infects 70–80% of patients suffering from cystic fibrosis. Infections can result in excessive airway inflammation, which lead to immune-mediated lung damage, in particular through the action of recruited white blood cells known as neutrophils. Certain strains of P. aeruginosa produce the exotoxin ExoU, which has been associated with increased virulence. ExoU causes host cell lysis by hydrolyzing host membrane lipids through its phospholipase activity. However, host phospholipases play a key role in immune signaling by mediating the production of lipids known as eicosanoids. We investigated whether separate from its cytolytic activity, ExoU could modulate host immune responses through its phospholipase activity by hijacking eicosanoid production. Using in vitro and in vivo models of neutrophil recruitment, we find that ExoU producing strains of P. aeruginosa elicit higher levels of the eicosanoid chemoattractant leukotriene B4 from migrated neutrophils. This results in increased neutrophil transepithelial migration. This work reveals a new mechanism for how bacterial pathogens alter our immune function, and highlights a new potential therapeutic strategy for moderating Pseudomonas pathogenesis in patients with cystic fibrosis and acute pneumonia.
Collapse
Affiliation(s)
- Michael A. Pazos
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernard B. Lanter
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lael M. Yonker
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex D. Eaton
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
| | - Waheed Pirzai
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, United States of America
| | - Joseph V. Bonventre
- Renal Division and Biomedical Engineering Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan P. Hurley
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Fischer AW, Anderson DM, Tessmer MH, Frank DW, Feix JB, Meiler J. Structure and Dynamics of Type III Secretion Effector Protein ExoU As determined by SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding. ACS OMEGA 2017; 2:2977-2984. [PMID: 28691114 PMCID: PMC5494639 DOI: 10.1021/acsomega.7b00349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 05/24/2023]
Abstract
ExoU is a 74 kDa cytotoxin that undergoes substantial conformational changes as part of its function, that is, it has multiple thermodynamically stable conformations that interchange depending on its environment. Such flexible proteins pose unique challenges to structural biology: (1) not only is it often difficult to determine structures by X-ray crystallography for all biologically relevant conformations because of the flat energy landscape (2) but also experimental conditions can easily perturb the biologically relevant conformation. The first challenge can be overcome by applying orthogonal structural biology techniques that are capable of observing alternative, biologically relevant conformations. The second challenge can be addressed by determining the structure in the same biological state with two independent techniques under different experimental conditions. If both techniques converge to the same structural model, the confidence that an unperturbed biologically relevant conformation is observed increases. To this end, we determine the structure of the C-terminal domain of the effector protein, ExoU, from data obtained by electron paramagnetic resonance spectroscopy in conjunction with site-directed spin labeling and in silico de novo structure determination. Our protocol encompasses a multimodule approach, consisting of low-resolution topology sampling, clustering, and high-resolution refinement. The resulting model was compared with an ExoU model in complex with its chaperone SpcU obtained previously by X-ray crystallography. The two models converged to a minimal RMSD100 of 3.2 Å, providing evidence that the unbound structure of ExoU matches the fold observed in complex with SpcU.
Collapse
Affiliation(s)
- Axel W. Fischer
- Department
of Chemistry and Center for Structural Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - David M. Anderson
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Maxx H. Tessmer
- Department of Biophysics and Department of
Microbiology and Immunology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Dara W. Frank
- Department of Biophysics and Department of
Microbiology and Immunology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jimmy B. Feix
- Department of Biophysics and Department of
Microbiology and Immunology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jens Meiler
- Department
of Chemistry and Center for Structural Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| |
Collapse
|
28
|
Zhang J, Wang Y, Guo H, Mao Z, Ge C. Identification and characterization of a phospholipase A1 activity type three secreted protein, PP_ExoU from Pseudomonas plecoglossicida NB2011, the causative agent of visceral granulomas disease in large yellow croaker (Larimichthys crocea). JOURNAL OF FISH DISEASES 2017; 40:831-840. [PMID: 27734506 DOI: 10.1111/jfd.12565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Pseudomonas plecoglossicida NB2011, the causative agent of visceral granulomas disease in farmed Larimichthys crocea in China, encodes a predicted type three effector PP_ExoU, a homolog of the cytotoxin ExoU of Pseudomonas aeruginosa. In this study, secretion of PP_ExoU was tested in various broth, the protein was expressed with the pET30a prokaryotic system, the phospholipase A (PLA) activity of the recombinant protein was determined with fluorogenic phospholipid substrates, fusion expression with green fluorescent protein in transfected HeLa cells was investigated, and the lactate dehydrogenase (LDH) level was measured. The results showed the protein was type three secreted in several media; the recombinant protein displayed significant PLA1 activity with ubiquitin. Fluorescence was observed on the cell membrane and scattered in the cytoplasm of HeLa cells expressing catalytic wild-type PP_ExoU, blebbing and stretching developed in the cell membranes indicating of membrane damage. Fluorescence scattered in the cytoplasm of cells expressing the catalytic inactive protein. A significant LDH level was detected in HeLa cells expressing wild-type PP_exoU, but not in the Ser/Asp-mutated protein, suggestion mutation of predicted catalytic residues abolished the PLA activity. This is the first report on the function of a secreted type three protein from P. plecoglossicida.
Collapse
Affiliation(s)
- J Zhang
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Y Wang
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - H Guo
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Z Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - C Ge
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
29
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
30
|
Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa. J Mol Biol 2016; 428:1790-803. [DOI: 10.1016/j.jmb.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
|