1
|
Luo Y, Sun L, Peng Y. The structural basis of the G protein-coupled receptor and ion channel axis. Curr Res Struct Biol 2025; 9:100165. [PMID: 40083915 PMCID: PMC11904507 DOI: 10.1016/j.crstbi.2025.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Sensory neurons play an essential role in recognizing and responding to detrimental, irritating, and inflammatory stimuli from our surroundings, such as pain, itch, cough, and neurogenic inflammation. The transduction of these physiological signals is chiefly mediated by G protein-coupled receptors (GPCRs) and ion channels. The binding of ligands to GPCRs triggers a signaling cascade, recruiting G proteins or β-arrestins, which subsequently interact with ion channels (e.g., GIRK and TRP channels). This interaction leads to the sensitization and activation of these channels, initiating the neuron's protective mechanisms. This review delves into the complex interplay between GPCRs and ion channels that underpin these physiological processes, with a particular focus on the role of structural biology in enhancing our comprehension. Through unraveling the intricacies of the GPCR-ion channel axis, we aim to shed light on the sophisticated intermolecular dynamics within these pivotal membrane protein families, ultimately guiding the development of precise therapeutic interventions.
Collapse
Affiliation(s)
- Yulin Luo
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, L Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yao Peng
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| |
Collapse
|
2
|
Zhao Y, Wei J, Cheng P, Ma J, Liu B, Xiong M, Gao T, Yao J, Sun T, Li Z. The involvement of TRPV1 in the apoptosis of spermatogenic cells in the testis of mice with cryptorchidism. Cell Death Discov 2025; 11:135. [PMID: 40180900 PMCID: PMC11968804 DOI: 10.1038/s41420-025-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Cryptorchidism is associated with an increased risk of male infertility and testicular cancer. Persistent exposure to high temperature in cryptorchidism can lead to the apoptosis of spermatogenic cells. Transient receptor potential vanilloid 1 (TRPV1), a thermosensitive cation channel, has been found to have differential effects on various apoptosis processes. However, whether TRPV1 is involved in spermatogenic cell apoptosis induced by cryptorchidism remains unclear. Herein, we first observed the expression pattern of TRPV1 in the testes of mice with experimental cryptorchidism, and then investigated the role and mechanism of TRPV1 in spermatogenic cell apoptosis by using Trpv1-/- mice. The results showed that TRPV1 was highly expressed on the membrane of spermatocytes in mouse testis, and the expression increased significantly in the testis of mice with experimental cryptorchidism. After the operation, Trpv1-/- mice exhibited less reproductive damage and fewer spermatogenic cell apoptosis compared to the wild-type (WT) mice. Transcriptome sequencing revealed that the expression of apoptosis-related genes (Capn1, Capn2, Bax, Aifm1, Caspase 3, Map3k5, Itpr1 and Fas) was down-regulated in spermatocytes of cryptorchid Trpv1-/- mice. Our results suggest that TRPV1 promotes the apoptosis of spermatocytes in cryptorchid mice by regulating the expression of apoptosis-related genes.
Collapse
Affiliation(s)
- Yanqiu Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jinhua Wei
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Junxian Ma
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Bo Liu
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
- The Air Force Hospital of Central Theater of PLA, Datong, China
| | - Mingxiang Xiong
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Ting Gao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jingqi Yao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Tianchen Sun
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
Takayama Y. Interaction between thermosensitive TRP channels and anoctamin 1. J Physiol Sci 2025; 75:100015. [PMID: 40184917 PMCID: PMC11999596 DOI: 10.1016/j.jphyss.2025.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Some thermosensitive transient receptor potential (TRP) channels form a protein complex with anoctamin 1 (ANO1, also called TMEM16A). TRP channels have high calcium permeability, and the calcium entering cells through TRP channel activation activates ANO1, a calcium-activated chloride channel, involved in many physiological and pathological conditions. The physiological significance of TRP channels is often mediated by their ability to activate ANO1, which controls chloride flux across the plasma membrane. This review summarizes the latest understanding on the interactions between ANO1 and thermosensitive TRP channels, including TRPV1, TRPV3, and TRPV4, which are involved in pain sensitization in primary sensory neurons, proliferation and migration of human keratinocytes, and fluid secretion such as sweat, respectively.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Uchida K. TRPM3, TRPM4, and TRPM5 as thermo-sensitive channels. J Physiol Sci 2024; 74:43. [PMID: 39294615 PMCID: PMC11409758 DOI: 10.1186/s12576-024-00937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Temperature detection is essential for the survival and perpetuation of any species. Thermoreceptors in the skin sense body temperature as well as the temperatures of ambient air and objects. Since Dr. David Julius and his colleagues discovered that TRPV1 is expressed in small-diameter primary sensory neurons, and activated by temperatures above 42 °C, 11 of thermo-sensitive TRP channels have been identified. TRPM3 expressed in sensory neurons acts as a sensor for noxious heat. TRPM4 and TRPM5 are Ca2⁺-activated monovalent cation channels, and their activity is drastically potentiated by temperature increase. This review aims to summarize the expression patterns, electrophysiological properties, and physiological roles of TRPM3, TRPM4, and TRPM5 associated with thermosensation.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Laboratory of Functional Physiology, Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Suruga-Ku, Shizuoka, Shizuoka, 422-8526, Japan.
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
5
|
Wang Y, Teng C, Xu Y, Chen D, Yin D, Yan L. Polypeptide nanoparticles conjugated with an NIR-II organic dye for TRPV1 channel blockade enhance mild phototheranostics. Acta Biomater 2024; 184:397-408. [PMID: 38960111 DOI: 10.1016/j.actbio.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Photothermal therapy (PTT) has attracted attention as a highly effective non-invasive treatment method. However, the high localized temperatures (>50 °C) required for its treatment will inevitably cause damage to the surrounding normal tissues. Therefore, it is important to develop novel and effective strategies to achieve mild photothermal therapy (mPTT). The overexpression of heat shock proteins (HSPs), a widespread heat stress protein, leads to the generation of heat resistance in cancer cells, which seriously affects the therapeutic effect. Thus, inhibiting the expression of HSPs to reduce the heat resistance of tumor cells is expected to enhance the therapeutic effect of mPTT. Here, we successfully synthesized a fluorescent probe bonded with an amphiphilic polypeptide to a cyanine dye and achieved physical encapsulation of the blocker SB705498 through a self-assembly process. SB705498 promotes transient receptor potential vanilloid member 1 (TRPV1) channel blockade that can inhibit the translocation of the heat shock transcription factor 1 (HSF 1) by blocking the influx of calcium and thus affecting the expression of HSPs, which has the potential to enhance the thermotherapy of cancer under mild conditions. In addition, the nanoparticles enabled NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Therefore, this study provides a new strategy for realizing precise mPTT(<45 °C) guided by NIR-II imaging. STATEMENT OF SIGNIFICANCE: Inhibition of overexpression of heat shock proteins (HSPs) in cancer photothermal therapy (PTT) is expected to enhance the therapeutic effect of mild photothermal therapy (mPTT). In this study, we synthesized a fluorescent probe bonded to cyanine dyes with amphiphilic polypeptides and physically wrapped the blocker SB705498 through a self-assembly process. As a transient receptor potential vanillin 1 (TRPV1) channel blocker, SB705498 inhibits heat shock transcription factor 1 (HSF1) translocation by blocking calcium ion influx, thereby improving mPTT efficacy by inhibiting the expression of HSPs. The nanoparticles also enable NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Thus, this study provides a new strategy for NIR-II mPTT.
Collapse
Affiliation(s)
- Yating Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dejia Chen
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China.
| |
Collapse
|
6
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Wang G. Thermo-ring basis for heat unfolding-induced inactivation in TRPV1. RESEARCH SQUARE 2024:rs.3.rs-3280283. [PMID: 37674717 PMCID: PMC10479453 DOI: 10.21203/rs.3.rs-3280283/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Transient receptor potential vanilloid-1 (TRPV1) is a capsaicin receptor and employs the use-dependent desensitization to protect mammals from noxious heat damage in response to repeated or constant heat stimuli. However, the underlying structural factor or motif has not been resolved precisely. In this computational study, the graph theory-based grid thermodynamic model was used to reveal how the temperature-dependent noncovalent interactions as identified in the 3D structures of rat TRPV1 could develop a well-organized fluidic grid-like mesh network, featuring various topological grids constrained as the thermo-rings that range in size from the biggest to the smallest to govern distinct structural and functional traits of the channel in response to varying temperature degrees. Following the findings that the heat unfolding of three specific biggest grids, one in the closed state and two in the open state, was respectively responsible for the reversible activation at 43 °C and thermal inactivation from 56 °C to 61 °C, a random smaller grid was further identified for the irreversible inactivation and the relevant use-dependent desensitization from the pre-open closed state between 43 °C and 61 °C. Thus, these two distinct inactivation pathways of TRPV1 may be involved in protecting mammals against noxious heat damages.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
- Department of Drug Research and Development, Institute of Biophysical Medico-chemistry, Reno, NV 89523, USA
| |
Collapse
|
8
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
9
|
Smutzer G, Lee E, Shahshahani S, Puwar V, Wilson JG. The detection and modulation of piperine in the human oral cavity. Physiol Behav 2024; 275:114448. [PMID: 38141751 DOI: 10.1016/j.physbeh.2023.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Piperine is an alkaloid that is responsible for the pungency of black pepper and long pepper. This hydrophobic compound causes a spicy sensation when it comes in contact with trigeminal neurons of the oral cavity. Piperine has low solubility in water, which presents difficulties in examining the psychophysical properties of this stimulus by standard aqueous chemosensory tests. This report describes approaches that utilize novel edible film formulations for delivering precise amounts of piperine to the human oral cavity. These films were then used to identify detection thresholds for piperine, and to identify the chemosensory properties of this compound at suprathreshold amounts. When incorporated into edible films, mean detection thresholds for piperine were approximately 35 nanomoles. For suprathreshold studies, edible films that contained 4000 nanomole amounts of piperine yielded variable intensity responses in subjects, with mean intensities in the moderate range. This amount of piperine caused significant self-desensitization, which was partially reversed after 60-90 min. In contrast, edible films that contained lower amounts of piperine yielded mean intensity ratings in the weak range and showed essentially no self-desensitization. The application of piperine to the circumvallate region of the tongue caused moderate intensity responses that were identified as primarily spicy, and rarely bitter. In addition, oral rinses with aqueous sucrose solutions decreased mean intensities for piperine by approximately twenty-five percent over sixty seconds. Blockage of nasal airflow significantly decreased piperine intensities in the oral cavity. These two findings indicate that oral sucrose or blockage of nasal airflow can modulate piperine perception in the human oral cavity. Finally, these results indicate that a variety of excipients can be included in edible film formulations for presenting piperine to the oral cavity at stimulus amounts that cause quantifiable chemosensory responses.
Collapse
Affiliation(s)
- Gregory Smutzer
- Department of Biology, Temple University, Philadelphia, PA, 19122, United States of America.
| | - Emilie Lee
- Department of Biology, Temple University, Philadelphia, PA, 19122, United States of America
| | - Saleh Shahshahani
- Department of Biology, Temple University, Philadelphia, PA, 19122, United States of America
| | - Visha Puwar
- Department of Biology, Temple University, Philadelphia, PA, 19122, United States of America
| | - Jeane Gama Wilson
- Department of Biology, Rowan University, Glassboro, NJ, 08028, United States of America
| |
Collapse
|
10
|
Uchida K. Temperature-Dependent Activation of Thermosensitive Transient Receptor Potential Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:47-59. [PMID: 39289273 DOI: 10.1007/978-981-97-4584-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Temperature detection is essential for the survival and perpetuation of any species. Thermoreceptors in the skin sense the body temperature and also the temperatures of the ambient air and the objects. In 1997, Dr. David Julius and his colleagues found that a receptor expressed in small-diameter primary sensory neurons was activated by capsaicin (the pungent chemical in hot pepper). This receptor was also activated by temperature above 42 °C. That was the first time that a thermal receptor in primary sensory neurons has been identified. This receptor is named transient receptor potential vanilloid 1 (TRPV1). Now, 11 thermosensitive TRP channels are known. In this chapter, we summarize the reports and analyze thermosensitive TRP channels in a variety of ways to clarify the activation mechanisms by which temperature changes are sensed.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Division of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
11
|
Wang G. Thermoring-based heat activation switches in the TRPV1 biothermometer. Int J Biol Macromol 2023; 248:125915. [PMID: 37481175 DOI: 10.1016/j.ijbiomac.2023.125915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Non-covalent interactions in bio-macromolecules are individually weak but collectively important. How they take a concerted action in a complex biochemical reaction network to realize their thermal stability and activity is still challenging to study. Here graph theory was used to investigate how the temperature-dependent non-covalent interactions as identified in the 3D structures of the thermo-gated capsaicin receptor TRPV1 could form a systemic fluidic grid-like mesh network with topological grids constrained as the thermo-rings to govern heat-sensing. The results showed that the heat-evoked melting of the biggest grid initiated a matched temperature threshold to release the lipid from the active vanilloid site for channel activation. Meanwhile, smaller grids were required to stabilize heat efficacy. Altogether, the change in the total grid sizes upon the change in the total noncovalent interactions along the lipid-dependent gating pathway was necessary for the matched temperature sensitivity. Therefore, this grid thermodynamic model may be broadly significant for the structural thermostability and the functional thermoactivity of bio-macromolecules.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA; Department of Drug Research and Development, Institute of Biophysical Medico-chemistry, Reno, NV 89523, USA.
| |
Collapse
|
12
|
Guo L, Mao Q, He J, Liu X, Piao X, Luo L, Hao X, Yu H, Song Q, Xiao B, Fan D, Gao Z, Jia Y. Disruption of ER ion homeostasis maintained by an ER anion channel CLCC1 contributes to ALS-like pathologies. Cell Res 2023; 33:497-515. [PMID: 37142673 PMCID: PMC10313822 DOI: 10.1038/s41422-023-00798-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/14/2023] [Indexed: 05/06/2023] Open
Abstract
Although anion channel activities have been demonstrated in sarcoplasmic reticulum/endoplasmic reticulum (SR/ER), their molecular identities and functions remain unclear. Here, we link rare variants of Chloride Channel CLIC Like 1 (CLCC1) to amyotrophic lateral sclerosis (ALS)-like pathologies. We demonstrate that CLCC1 is a pore-forming component of an ER anion channel and that ALS-associated mutations impair channel conductance. CLCC1 forms homomultimers and its channel activity is inhibited by luminal Ca2+ but facilitated by phosphatidylinositol 4,5-bisphosphate (PIP2). We identified conserved residues D25 and D181 in CLCC1 N-terminus responsible for Ca2+ binding and luminal Ca2+-mediated inhibition on channel open probability and K298 in CLCC1 intraluminal loop as the critical PIP2-sensing residue. CLCC1 maintains steady-state [Cl-]ER and [K+]ER and ER morphology and regulates ER Ca2+ homeostasis, including internal Ca2+ release and steady-state [Ca2+]ER. ALS-associated mutant forms of CLCC1 increase steady-state [Cl-]ER and impair ER Ca2+ homeostasis, and animals with the ALS-associated mutations are sensitized to stress challenge-induced protein misfolding. Phenotypic comparisons of multiple Clcc1 loss-of-function alleles, including ALS-associated mutations, reveal a CLCC1 dosage dependence in the severity of disease phenotypes in vivo. Similar to CLCC1 rare variations dominant in ALS, 10% of K298A heterozygous mice developed ALS-like symptoms, pointing to a mechanism of channelopathy dominant-negatively induced by a loss-of-function mutation. Conditional knockout of Clcc1 cell-autonomously causes motor neuron loss and ER stress, misfolded protein accumulation, and characteristic ALS pathologies in the spinal cord. Thus, our findings support that disruption of ER ion homeostasis maintained by CLCC1 contributes to ALS-like pathologies.
Collapse
Affiliation(s)
- Liang Guo
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaoling Liu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xuejiao Piao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Li Luo
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China
| | - Xiaoxu Hao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Hanzhi Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Song
- School of Medicine, Tsinghua University, Beijing, China
| | - Bailong Xiao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- School of Medicine, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China.
| |
Collapse
|
13
|
Li T, Jiang S, Zhang Y, Luo J, Li M, Ke H, Deng Y, Yang T, Sun X, Chen H. Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation. Nat Commun 2023; 14:2498. [PMID: 37120615 PMCID: PMC10148815 DOI: 10.1038/s41467-023-38128-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The survival of malignant tumors is highly dependent on their intrinsic self-defense pathways such as heat shock protein (HSP) during cancer therapy. However, precisely dismantling self-defenses to amplify antitumor potency remains unexplored. Herein, we demonstrate that nanoparticle-mediated transient receptor potential vanilloid member 1 (TRPV1) channel blockade potentiates thermo-immunotherapy via suppressing heat shock factor 1 (HSF1)-mediated dual self-defense pathways. TRPV1 blockade inhibits hyperthermia-induced calcium influx and subsequent nuclear translocation of HSF1, which selectively suppresses stressfully overexpressed HSP70 for enhancing thermotherapeutic efficacy against a variety of primary, metastatic and recurrent tumor models. Particularly, the suppression of HSF1 translocation further restrains the transforming growth factor β (TGFβ) pathway to degrade the tumor stroma, which improves the infiltration of antitumor therapeutics (e.g. anti-PD-L1 antibody) and immune cells into highly fibrotic and immunosuppressive pancreatic cancers. As a result, TRPV1 blockade retrieves thermo-immunotherapy with tumor-eradicable and immune memory effects. The nanoparticle-mediated TRPV1 blockade represents as an effective approach to dismantle self-defenses for potent cancer therapy.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuhui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jie Luo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Xiaohui Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Abstract
The ability to detect stimuli from the environment plays a pivotal role in our survival. The molecules that allow the detection of such signals include ion channels, which are proteins expressed in different cells and organs. Among these ion channels, the transient receptor potential (TRP) family responds to the presence of diverse chemicals, temperature, and osmotic changes, among others. This family of ion channels includes the TRPV or vanilloid subfamily whose members serve several physiological functions. Although these proteins have been studied intensively for the last two decades, owing to their structural and functional complexities, a number of controversies regarding their function still remain. Here, we discuss some salient features of their regulation in light of these controversies and outline some of the efforts pushing the field forward.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neuroscience Division, Institute for Cellular Physiology, National Autonomous University of Mexico, Coyoacán, México;
| | - León D Islas
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Coyoacán, México
| |
Collapse
|
15
|
Rosenbaum T, Morales-Lázaro SL. Regulation of ThermoTRP Channels by PIP2 and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:245-277. [PMID: 36988884 DOI: 10.1007/978-3-031-21547-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
16
|
The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. Nat Commun 2022; 13:6113. [PMID: 36253390 PMCID: PMC9576766 DOI: 10.1038/s41467-022-33876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
Collapse
|
17
|
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel that is intensively expressed in the peripheral nerve system and involved in a variety of physiological and pathophysiological processes in mammals. Its activity is of great significance in transmitting pain or itch signals from peripheral sensory neurons to the central nervous system. The alteration or hypersensitivity of TRPV1 channel is well evidenced under various pathological conditions. Moreover, accumulative studies have revealed that TRPV1-expressing (TRPV1+) sensory neurons mediate the neuroimmune crosstalk by releasing neuropeptides to innervated tissues as well as immune cells. In the central projection, TRPV1+ terminals synapse with the secondary neurons for the transmission of pain and itch signalling. The intense involvement of TRPV1 and TRPV1+ neurons in pain and itch makes it a potential pharmaceutical target. Over decades, the basis of TRPV1 channel structure, the nature of its activity, and its modulation in pathological processes have been broadly studied and well documented. Herein, we highlight the role of TRPV1 and its associated neurons in sensing pain and itch. The fundamental understandings of TRPV1-involved nociception, pruriception, neurogenic inflammation, and cell-specific modulation will help bring out more effective strategies of TRPV1 modulation in treating pain- and itch-related diseases.
Collapse
|
18
|
Hamers A, Primus CP, Whitear C, Kumar NA, Masucci M, Montalvo Moreira SA, Rathod K, Chen J, Bubb K, Colas R, Khambata RS, Dalli J, Ahluwalia A. 20-HETE is a pivotal endogenous ligand for TRPV1-mediated neurogenic inflammation in the skin. Br J Pharmacol 2021; 179:1450-1469. [PMID: 34755897 DOI: 10.1111/bph.15726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential cation channel subfamily V member 1 (TRPV1) is localised to sensory C-fibres and its opening leads to membrane depolarization, resulting in neuropeptide release and neurogenic inflammation. However, the identity of the endogenous activator of TRPV1 in this setting is unknown. The arachidonic acid (AA) metabolites 12-hydroperoxyeicosatetraenoyl acid (12-HpETE) and 20-hydroxyeicosatetraenoic acid (20-HETE) have emerged as potential endogenous activators of TRPV1 however, whether these lipids underlie TRPV1-mediated neurogenic inflammation remains unknown. EXPERIMENTAL APPROACH we analysed human cantharidin-induced blister samples and inflammatory responses in TRPV1 transgenic mice. KEY RESULTS In a human cantharidin-blister model the potent TRPV1 activators 20-HETE but not 12-HETE (stable metabolite of 12-HpETE) correlated with AA levels. Similarly, in mice levels of 20-HETE (but not 12-HETE) and AA were strongly positively correlated within the inflammatory milieu. Furthermore, LPS-induced oedema formation and neutrophil recruitment were substantially and significantly attenuated by pharmacological block or genetic deletion of TRPV1 channels, inhibition of 20-HETE formation or SP receptor neurokinin 1 (NK1 ) blockade. LPS treatment also increased cytochrome-P450 ώ-hydroxylase gene expression, the enzyme responsible for 20-HETE production. CONCLUSIONS AND IMPLICATIONS Taken together, our findings suggest that endogenously generated 20-HETE activates TRPV1 causing C-fibre activation and consequent oedema formation. These findings identify a novel pathway that may be useful in the therapeutics of diseases/conditions characterized by a prominent neurogenic inflammation, as in several skin diseases.
Collapse
Affiliation(s)
- Alexander Hamers
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Christopher P Primus
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Charlotte Whitear
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Nitin Ajit Kumar
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Michael Masucci
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Shanik A Montalvo Moreira
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Krishnaraj Rathod
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Jianmin Chen
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Kristen Bubb
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Romain Colas
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Jesmond Dalli
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| |
Collapse
|
19
|
Luu DD, Owens AM, Mebrat MD, Van Horn WD. A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation. Temperature (Austin) 2021; 10:67-101. [PMID: 37187836 PMCID: PMC10177694 DOI: 10.1080/23328940.2021.1983354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
TRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes. Additional insights from TRPV1 isoforms and non-rodent/non-human TRPV1 ortholog studies are also discussed in this context. While the molecular mechanism of heat activation is still emerging, it is clear that TRPV1 thermosensing is modulated allosterically, i.e., at a distance, with contributions from many distinct regions of the channel. Similarly, current studies identify cross-talk between heat and other TRPV1 activation modes, such as protons and capsaicin, and that these modes can generally be selectively disentangled. In aggregate, this suggests that future TRPV1 molecular studies should define allosteric pathways and provide mechanistic insight, thereby enabling mode-selective manipulation of the polymodal receptor. These advances are anticipated to have significant implications in both basic and applied biomedical sciences.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Aerial M. Owens
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Mubark D. Mebrat
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| |
Collapse
|
20
|
Yazici AT, Gianti E, Kasimova MA, Lee BH, Carnevale V, Rohacs T. Dual regulation of TRPV1 channels by phosphatidylinositol via functionally distinct binding sites. J Biol Chem 2021; 296:100573. [PMID: 33766560 PMCID: PMC8095115 DOI: 10.1016/j.jbc.2021.100573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/11/2022] Open
Abstract
Regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channel by phosphoinositides is complex and controversial. In the most recent TRPV1 cryo-EM structure, endogenous phosphatidylinositol (PtdIns) was detected in the vanilloid binding site, and phosphoinositides were proposed to act as competitive vanilloid antagonists. This model is difficult to reconcile with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] being a well-established positive regulator of TRPV1. Here we show that in the presence of PtdIns(4,5)P2 in excised patches, PtdIns, but not PtdIns(4)P, partially inhibited TRPV1 activity at low, but not at high capsaicin concentrations. This is consistent with PtdIns acting as a competitive vanilloid antagonist. However, in the absence of PtdIns(4,5)P2, PtdIns partially stimulated TRPV1 activity. We computationally identified residues, which are in contact with PtdIns, but not with capsaicin in the vanilloid binding site. The I703A mutant of TRPV1 showed increased sensitivity to capsaicin, as expected when removing the effect of an endogenous competitive antagonist. I703A was not inhibited by PtdIns in the presence of PtdIns(4,5)P2, but it was still activated by PtdIns in the absence of PtdIns(4,5)P2 indicating that inhibition, but not activation by PtdIns proceeds via the vanilloid binding site. In molecular dynamics simulations, PtdIns was more stable than PtdIns(4,5)P2 in this inhibitory site, whereas PtdIns(4,5)P2 was more stable than PtdIns in a previously identified, nonoverlapping, putative activating binding site. Our data indicate that phosphoinositides regulate channel activity via functionally distinct binding sites, which may explain some of the complexities of the effects of these lipids on TRPV1.
Collapse
Affiliation(s)
- Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| | - Eleonora Gianti
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, USA
| | - Marina A Kasimova
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, USA
| | - Bo-Hyun Lee
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, USA.
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
21
|
Deficiency of Inositol Monophosphatase Activity Decreases Phosphoinositide Lipids and Enhances TRPV1 Function In Vivo. J Neurosci 2020; 41:408-423. [PMID: 33239401 PMCID: PMC7821860 DOI: 10.1523/jneurosci.0803-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022] Open
Abstract
Membrane remodeling by inflammatory mediators influences the function of sensory ion channels. The capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1) channel contributes to neurogenic inflammation and pain hypersensitivity, in part because of its potentiation downstream of phospholipase C-coupled receptors that regulate phosphoinositide lipid content. Here, we determined the effect of phosphoinositide lipids on TRPV1 function by combining genetic dissection, diet supplementation, and behavioral, biochemical, and functional analyses in Caenorhabditis elegans As capsaicin elicits heat and pain sensations in mammals, transgenic TRPV1 worms exhibit an aversive response to capsaicin. TRPV1 worms with low levels of phosphoinositide lipids display an enhanced response to capsaicin, whereas phosphoinositide lipid supplementation reduces TRPV1-mediated responses. A worm carrying a TRPV1 construct lacking the distal C-terminal domain features an enhanced response to capsaicin, independent of the phosphoinositide lipid content. Our results demonstrate that TRPV1 activity is enhanced when the phosphoinositide lipid content is reduced, and the C-terminal domain is key to determining agonist response in vivo.
Collapse
|
22
|
Balleza D, Rosas ME, Romero-Romero S. Voltage vs. Ligand I: Structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels (Austin) 2019; 13:455-476. [PMID: 31647368 PMCID: PMC6833973 DOI: 10.1080/19336950.2019.1674242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We systematically predict the internal flexibility of the S3 segment, one of the most mobile elements in the voltage-sensor domain. By analyzing the primary amino acid sequences of V-sensor containing proteins, including Hv1, TPC channels and the voltage-sensing phosphatases, we established correlations between the local flexibility and modes of activation for different members of the VGIC superfamily. Taking advantage of the structural information available, we also assessed structural aspects to understand the role played by the flexibility of S3 during the gating of the pore. We found that S3 flexibility is mainly determined by two specific regions: (1) a short NxxD motif in the N-half portion of the helix (S3a), and (2) a short sequence at the beginning of the so-called paddle motif where the segment has a kink that, in some cases, divide S3 into two distinct helices (S3a and S3b). A good correlation between the flexibility of S3 and the reported sensitivity to temperature and mechanical stretch was found. Thus, if the channel exhibits high sensitivity to heat or membrane stretch, local S3 flexibility is low. On the other hand, high flexibility of S3 is preferentially associated to channels showing poor heat and mechanical sensitivities. In contrast, we did not find any apparent correlation between S3 flexibility and voltage or ligand dependence. Overall, our results provide valuable insights into the dynamics of channel-gating and its modulation.
Collapse
Affiliation(s)
- Daniel Balleza
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Mario E Rosas
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. Current address: Department of Biochemistry, University of Bayreuth , Bayreuth , Germany
| |
Collapse
|
23
|
Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nat Commun 2019; 10:4180. [PMID: 31519888 PMCID: PMC6744473 DOI: 10.1038/s41467-019-12121-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
Algae produce the largest amount of oxygen on earth and are invaluable for human nutrition and biomedicine, as well as for the chemical industry, energy production and agriculture. The mechanisms by which algae can detect and respond to changes in their environments can rely on membrane receptors, including TRP ion channels. Here we present a 3.5-Å resolution cryo-EM structure of the transient receptor potential (TRP) channel crTRP1 from the alga Chlamydomonas reinhardtii that opens in response to increased temperature and is positively regulated by the membrane lipid PIP2. The structure of crTRP1 significantly deviates from the structures of other TRP channels and has a unique 2-fold symmetrical rose-shape architecture with elbow domains and ankyrin repeat domains submerged and dipping into the membrane, respectively. Our study provides a structure of a TRP channel from a micro-organism and a structural framework for better understanding algae biology and TRP channel evolution.
Collapse
|
24
|
Uchida K, Fukuta N, Yamazaki J, Tominaga M. Identification and classification of a new TRPM3 variant (γ subtype). J Physiol Sci 2019; 69:623-634. [PMID: 31011981 PMCID: PMC6583685 DOI: 10.1007/s12576-019-00677-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 01/16/2023]
Abstract
TRPM3 is a non-selective cation channel that is activated by neural steroids such as pregnenolone sulfate, nifedipine, and clotrimazole. Despite the number of TRPM3 variants, few reports have described functional analyses of these different TRPM3 types. Here we identified a new TRPM variant from mouse dorsal root ganglion, termed TRPM3γ3. We classified TRPM3γ3 and another known variant (variant 6) into the γ subtype, and analyzed the TRPM3γ variants. mRNA expression of TRPM3γ was higher than that of TRPM3α variants in the mouse dorsal root ganglion. In Ca2+-imaging of HEK293 cells expressing either the TRPM3γ variants or TRPM3α2, increases in cytosolic Ca2+ concentrations ([Ca2+]i) induced by pregnenolone sulfate or nifedipine were smaller in cells expressing the TRPM3γ variants compared to those expressing TRPM3α2. On the other hand, co-expression of TRPM3γ variants had no effect on [Ca2+]i increases induced by pregnenolone sulfate or nifedipine treatment of HEK293 cells expressing TRPM3α2. In Xenopus oocytes, small responses of TRPM3γ variants to chemical agonists compared to TRPM3α2 were also observed. Interestingly, Xenopus oocytes expressing TRPM3α2 displayed heat-evoked currents with clear thresholds of about 40 °C that were larger than those evoked in oocytes expressing TRPM3γ variants. Overall, these findings indicate that TRPM3γ variants have low channel activity compared to TRPM3α.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Departments of Physiological Science and Molecular Biology and Morphological Biology, Fukuoka Dental College, Sawara-ku, Fukuoka, 814-0193, Japan.
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Naomi Fukuta
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Jun Yamazaki
- Departments of Physiological Science and Molecular Biology and Morphological Biology, Fukuoka Dental College, Sawara-ku, Fukuoka, 814-0193, Japan
- Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, Kanagawa, 252-0880, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, SOKENDAI (The Graduated University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan.
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Chiba, 279-0021, Japan.
| |
Collapse
|
25
|
Sugimoto N, Matsuzaki K, Katakura M, Nakamura H, Ueda Y, Yachie A, Shido O. Heat attenuates sensitivity of mammalian cells to capsaicin. J Biochem Mol Toxicol 2019; 33:e22288. [PMID: 30672650 DOI: 10.1002/jbt.22288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/14/2018] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) channels are thermo-sensors, and transient receptor potential vanilloid (TRPV)1 and V4 are widely expressed in primary afferent neurons and nonneuronal cells. Although heat acclimation is considered as changes of thermoregulatory responses by thermo-effectors to heat, functional changes of TRP channels in heat acclimation has not been fully elucidated. Here, we investigated whether heat acclimation induces capsaicin tolerance. NIH3T3 cells were incubated at 39.5°C. We determined the expression level of TRPV1 and TRPV4 messenger RNA (mRNA), performed cellular staining of TRPV1 and TRPV4, and investigated actin assembly and activation of the extracellular signal-regulated kinase (ERK). Exposure to moderate heat decreased the levels of TRPV1 but not TRPV4 mRNA. It also induced stress fiber formation and the intensity of TRPV1 seemed to be decreased by chronic heat stimuli. In addition, heat acclimation attenuated the capsaicin-induced activation of ERK. Heat acclimation may induce capsaicin tolerance via the downregulation of TRPV1.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| | - Masanori Katakura
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.,Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Hiroyuki Nakamura
- Department of Public Health, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshibumi Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
26
|
Abstract
The family of the transient receptor potential (TRP) proteins presents a diverse group of polymodal ion channels intertwined in the regulation of various physiological processes. Currently, TRP channels are well established in temperature-sensation, thermoregulation, pain sensation, and mineral homeostasis. Furthermore, new evidence suggests that TRP channels are also implicated in hormonal signaling, where the channels are responsible for propagating hormone-induced signals along the neural circuitry and also regulating cellular processes of nonexcitable cells. Due to this wide assortment of actions, TRP channels have been attracting immense scientific interest in various fields.In this chapter, I describe incorporation and characterization of several TRP channels using an electrophysiological approach known as planar lipid bilayers. This technique features measurements of functional activities of ion channels in a well-defined reconstituted system. The priority of this electrophysiological approach is identifying intrinsic properties of ion channels, which is particularly valuable in appreciating intrinsic temperature sensitivity concerning thermo-TRP channels, but also direct mechanisms of channels agonists, antagonists, cofactors, and other modifiers.
Collapse
Affiliation(s)
- Eleonora Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA.
| |
Collapse
|
27
|
Smutzer G, Jacob JC, Tran JT, Shah DI, Gambhir S, Devassy RK, Tran EB, Hoang BT, McCune JF. Detection and modulation of capsaicin perception in the human oral cavity. Physiol Behav 2018; 194:120-131. [DOI: 10.1016/j.physbeh.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|
28
|
Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1. Cell Rep 2018; 21:1681-1691. [PMID: 29117570 DOI: 10.1016/j.celrep.2017.10.063] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/21/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Oxytocin is a hormone with various actions. Oxytocin-containing parvocellular neurons project to the brainstem and spinal cord. Oxytocin release from these neurons suppresses nociception of inflammatory pain, the molecular mechanism of which remains unclear. Here, we report that the noxious stimulus receptor TRPV1 is an ionotropic oxytocin receptor. Oxytocin elicits TRPV1 activity in native and heterologous expression systems, regardless of the presence of the classical oxytocin receptor. In TRPV1 knockout mice, DRG neurons exhibit reduced oxytocin sensitivity relative to controls, and oxytocin injections significantly attenuate capsaicin-induced nociception in in vivo experiments. Furthermore, oxytocin potentiates TRPV1 in planar lipid bilayers, supporting a direct agonistic action. Molecular modeling and simulation experiments provide insight into oxytocin-TRPV1 interactions, which resemble DkTx. Together, our findings suggest the existence of endogenous regulatory pathways that modulate nociception via direct action of oxytocin on TRPV1, implying its analgesic effect via channel desensitization.
Collapse
|
29
|
Song S, Ayon RJ, Yamamura A, Yamamura H, Dash S, Babicheva A, Tang H, Sun X, Cordery AG, Khalpey Z, Black SM, Desai AA, Rischard F, McDermott KM, Garcia JGN, Makino A, Yuan JXJ. Capsaicin-induced Ca 2+ signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH. Am J Physiol Lung Cell Mol Physiol 2016; 312:L309-L325. [PMID: 27979859 DOI: 10.1152/ajplung.00357.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/24/2022] Open
Abstract
Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca2+ concentration ([Ca2+]cyt). A rise in [Ca2+]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca2+]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca2+]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca2+]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca2+]cyt, and the hypo-osmolarity-induced rise in [Ca2+]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca2+]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca2+]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca2+]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca2+ influx and excessive PASMC proliferation in patients with IPAH.
Collapse
Affiliation(s)
- Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan; and
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Swetaleena Dash
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Aleksandra Babicheva
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Xutong Sun
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Arlette G Cordery
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Zain Khalpey
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Kimberly M McDermott
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona; .,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
30
|
Sugimoto N, Katakura M, Matsuzaki K, Nakamura H, Yachie A, Shido O. Capsaicin partially mimics heat in mouse fibroblast cells in vitro. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:281-289. [PMID: 27975298 DOI: 10.1007/s00210-016-1331-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Capsaicin activates transient receptor potential vanilloid 1 (TRPV1), a cation channel in the transient receptor potential family, resulting in the transient entry of Ca2+ and Mg2+ and a warm sensation. However, the effects of capsaicin on cells have not fully elucidated in fibroblasts. In this study, we investigated whether capsaicin could induce signal transduction in mouse fibroblast cells and compared the effect with that of heat-induced signal transduction. The activation of the mitogen-activated protein kinases (MAPKs) ERK and p38 MAPK, expression levels of heat shock protein 70 (HSP70) and HSP90, actin assembly, and cell proliferation were analyzed in NIH3T3 mouse fibroblast cells. A 15-min stimulation with capsaicin (∼100 μM) phosphorylated ERK and p38 MAPK and induced actin assembly. A 2-day stimulation with capsaicin increased the level of HSP70, but not HSP90, and the 2-day stimulation with capsaicin (∼100 μM) did not affect cell proliferation. A 15-min exposure to moderate heat (39.5 °C) phosphorylated both ERK and p38 MAPK and induced actin assembly to similar degrees as stimulation with capsaicin. A 2-day exposure to moderate heat increased the levels of both HSP70 and HSP90 and prevented cell proliferation. However, the 2-day stimulation with capsaicin (100 μM) failed to prevent heat shock-induced cell death. Thus, our results suggest that the effects of capsaicin on fibroblast cells partially differ from those of heat. Notably, the 2-day stimulation with capsaicin was not sufficient to develop heat tolerance in fibroblast cells.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan. .,Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan.
| | - Masanori Katakura
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan.,Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, 350-0295, Japan
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan
| | - Hiroyuki Nakamura
- Department of Public Health Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan
| |
Collapse
|
31
|
Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Sci Rep 2016; 6:33112. [PMID: 27612191 PMCID: PMC5017144 DOI: 10.1038/srep33112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Heat-activated transient receptor potential channel TRPV1 is one of the most studied eukaryotic proteins involved in temperature sensation. Upon heating, it exhibits rapid reversible pore gating, which depolarizes neurons and generates action potentials. Underlying molecular details of such effects in the pore region of TRPV1 is of a crucial importance to control temperature responses of the organism. Despite the spatial structure of the channel in both open (O) and closed (C) states is known, microscopic nature of channel gating and mechanism of thermal sensitivity are still poorly understood. In this work, we used unrestrained atomistic molecular dynamics simulations of TRPV1 (without N- and C-terminal cytoplasmic domains) embedded into explicit lipid bilayer in its O- and C-states. We found that the pore domain with its neighboring loops undergoes large temperature-dependent conformational transitions in an asymmetric way, when fragments of only one monomer move with large amplitude, freeing the pore upon heating. Such an asymmetrical gating looks rather biologically relevant because it is faster and more reliable than traditionally proposed “iris-like” symmetric scheme of channel opening. Analysis of structural, dynamic, and hydrophobic organization of the pore domain revealed entropy growth upon TRPV1 gating, which is in line with current concepts of thermal sensitivity.
Collapse
|
32
|
Nanoscale analysis reveals agonist-sensitive and heterogeneous pools of phosphatidylinositol 4-phosphate in the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1298-305. [DOI: 10.1016/j.bbamem.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
|
33
|
Belanger-Willoughby N, Linehan V, Hirasawa M. Thermosensing mechanisms and their impairment by high-fat diet in orexin neurons. Neuroscience 2016; 324:82-91. [PMID: 26964685 DOI: 10.1016/j.neuroscience.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/12/2023]
Abstract
In homeotherms, the hypothalamus controls thermoregulatory and adaptive mechanisms in energy balance, sleep-wake and locomotor activity to maintain optimal body temperature. Orexin neurons may be involved in these functions as they promote thermogenesis, food intake and behavioral arousal, and are sensitive to temperature and metabolic status. How thermal and energy balance signals are integrated in these neurons is unknown. Thus, we investigated the cellular mechanisms of thermosensing in orexin neurons and their response to a change in energy status using whole-cell patch clamp on rat brain slices. We found that warming induced an increase in miniature excitatory postsynaptic current (EPSC) frequency, which was blocked by the transient receptor potential vanilloid-1 (TRPV1) receptor antagonist AMG9810 and mimicked by its agonist capsaicin, suggesting that the synaptic effect is mediated by heat-sensitive TRPV1 channels. Furthermore, warming inhibits orexin neurons by activating ATP-sensitive potassium (KATP) channels, an effect regulated by uncoupling protein 2 (UCP2), as the UCP2 inhibitor genipin abolished this response. These properties are unique to orexin neurons in the lateral hypothalamus, as neighboring melanin-concentrating hormone neurons showed no response to warming within the physiological temperature range. Interestingly, in rats fed with western diet for 1 or 11weeks, orexin neurons had impaired synaptic and KATP response to warming. In summary, this study reveals several mechanisms underlying thermosensing in orexin neurons and their attenuation by western diet. Overeating induced by western diet may in part be due to impaired orexin thermosensing, as post-prandial thermogenesis may promote satiety and lethargy by inhibiting orexin neurons.
Collapse
Affiliation(s)
- N Belanger-Willoughby
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland A1B 3V6, Canada
| | - V Linehan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland A1B 3V6, Canada
| | - M Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland A1B 3V6, Canada.
| |
Collapse
|
34
|
Demirkhanyan L, Uchida K, Tominaga M, Zakharian E. TRPM3 gating in planar lipid bilayers defines peculiar agonist specificity. Channels (Austin) 2016; 10:258-60. [PMID: 26901668 PMCID: PMC4954575 DOI: 10.1080/19336950.2016.1155900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Lusine Demirkhanyan
- a Department of Cancer Biology and Pharmacology , University of Illinois College of Medicine , Peoria , IL , USA
| | - Kunitoshi Uchida
- a Department of Cancer Biology and Pharmacology , University of Illinois College of Medicine , Peoria , IL , USA.,b Division of Cell Signaling, National Institute of Physiological Sciences (Okazaki Institute of Integrative Bioscience) , Okazaki , Aichi , Japan.,c Department of Physiological Sciences , The Graduate University of Advanced Studies , Shonan Village, Hayama , Kanagawa , Japan
| | - Makoto Tominaga
- b Division of Cell Signaling, National Institute of Physiological Sciences (Okazaki Institute of Integrative Bioscience) , Okazaki , Aichi , Japan.,c Department of Physiological Sciences , The Graduate University of Advanced Studies , Shonan Village, Hayama , Kanagawa , Japan
| | - Eleonora Zakharian
- a Department of Cancer Biology and Pharmacology , University of Illinois College of Medicine , Peoria , IL , USA
| |
Collapse
|
35
|
Abstract
The detection of temperature is one of the most fundamental sensory functions across all species, and is critical for animal survival. Animals have thus evolved a diversity of thermosensory mechanisms allowing them to sense and respond to temperature changes (thermoreception). A key process underlying thermoreception is the translation of thermal energy into electrical signals, a process mediated by thermal sensors (thermoreceptors) that are sensitive to a specific range of temperatures. In disease conditions, the temperature sensitivity of thermoreceptors is altered, leading to abnormal temperature sensation such as heat hyperalgesia. Therefore, the identification of thermal sensors and understanding their functions and regulation hold great potential for developing novel therapeutics against many medical conditions such as pain.
Collapse
Affiliation(s)
- Xuming Zhang
- a Rowett Institute of Nutrition and Health & Institute of Medical Sciences ; University of Aberdeen , Foresterhill , Aberdeen , UK
| |
Collapse
|
36
|
Uchida K, Demirkhanyan L, Asuthkar S, Cohen A, Tominaga M, Zakharian E. Stimulation-dependent gating of TRPM3 channel in planar lipid bilayers. FASEB J 2015; 30:1306-16. [PMID: 26655382 DOI: 10.1096/fj.15-281576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
The transient receptor potential melastatin (TRPM)-3 channel is critical for various physiologic processes. In somatosensory neurons, TRPM3 has been implicated in temperature perception and inflammatory hyperalgesia, whereas in pancreatic β-cells the channel has been linked to glucose-induced insulin release. As a typical representative of the TRP family, TRPM3 is highly polymodal. In cells, it is activated by heat and chemical agonists, including pregnenolone sulfate (PS) and nifedipine (Nif). To define the nuances of TRPM3 channel activity and its modulators, we succeeded in incorporating the TRPM3 protein into planar lipid bilayers. We found that phosphatidylinositol-4,5-bisphosphate (PIP2) or clotrimazole is necessary for channel opening by PS. Unlike PS, the presence of Nif alone sufficed to induce TRPM3 activity and demonstrated distinct gating behavior. We also performed an extensive thermodynamic analysis of TRPM3 activation and found that TRPM3 exhibited slight temperature sensitivity in the bilayers. In the absence of other agonists TRPM3 channels remained closed upon heat-induced stimulation, but opened in the presence of PIP2, although with only a low open-probability profile. Together, our results elucidate the details peculiar to TRPM3 channel function in an isolated system. We confirmed its direct gating by PS and PIP2, but found a lack of the strong intrinsic temperature sensitivity common to other thermosensitive TRP channels.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- *Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA; Division of Cell Signaling, National Institute of Physiological Sciences, Okazaki Institute of Integrative Bioscience, Aichi, Japan; Department of Physiological Sciences, The Graduate University of Advanced Studies, Kanagawa, Japan; and Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lusine Demirkhanyan
- *Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA; Division of Cell Signaling, National Institute of Physiological Sciences, Okazaki Institute of Integrative Bioscience, Aichi, Japan; Department of Physiological Sciences, The Graduate University of Advanced Studies, Kanagawa, Japan; and Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Swapna Asuthkar
- *Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA; Division of Cell Signaling, National Institute of Physiological Sciences, Okazaki Institute of Integrative Bioscience, Aichi, Japan; Department of Physiological Sciences, The Graduate University of Advanced Studies, Kanagawa, Japan; and Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alejandro Cohen
- *Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA; Division of Cell Signaling, National Institute of Physiological Sciences, Okazaki Institute of Integrative Bioscience, Aichi, Japan; Department of Physiological Sciences, The Graduate University of Advanced Studies, Kanagawa, Japan; and Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Makoto Tominaga
- *Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA; Division of Cell Signaling, National Institute of Physiological Sciences, Okazaki Institute of Integrative Bioscience, Aichi, Japan; Department of Physiological Sciences, The Graduate University of Advanced Studies, Kanagawa, Japan; and Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eleonora Zakharian
- *Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA; Division of Cell Signaling, National Institute of Physiological Sciences, Okazaki Institute of Integrative Bioscience, Aichi, Japan; Department of Physiological Sciences, The Graduate University of Advanced Studies, Kanagawa, Japan; and Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
37
|
Vijayvergiya V, Acharya S, Wilson SP, Schmidt JJ. Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers. PLoS One 2015; 10:e0141366. [PMID: 26513481 PMCID: PMC4626236 DOI: 10.1371/journal.pone.0141366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Electrophysiological characterization of ion channels is useful for elucidation of channel function as well as quantitative assessment of pharmaceutical effects on ion channel conductance. We used droplet bilayers to measure ensemble ion channel currents from membrane preparations made from TRPV1-expressing HEK cells. Conductance measurements showed rectification, activation by acid and capsaicin, and inhibition by capsazepine, SB 452533, and JNJ 17293212. We also quantitatively measured concentration-dependent inhibition of channel conductance through determination of capsazepine IC50 in agreement with previously published studies using patch clamp. These results, combined with the reduced apparatus and material requirements of droplet bilayers, indicate that this platform could be used for study of other physiologically relevant ion channels.
Collapse
Affiliation(s)
- Viksita Vijayvergiya
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shiv Acharya
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sidney P. Wilson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacob J. Schmidt
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Rohacs T. Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch 2015; 467:1851-69. [PMID: 25754030 PMCID: PMC4537841 DOI: 10.1007/s00424-015-1695-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 01/22/2023]
Abstract
The heat- and capsaicin-sensitive transient receptor potential vanilloid 1 ion channel (TRPV1) is regulated by plasma membrane phosphoinositides. The effects of these lipids on this channel have been controversial. Recent articles re-ignited the debate and also offered resolution to place some of the data in a coherent picture. This review summarizes the literature on this topic and provides a detailed and critical discussion on the experimental evidence for the various effects of phosphatidylinositol 4,5-bisphosphayte [PI(4,5)P2 or PIP2] on TRPV1. We conclude that PI(4,5)P2 and potentially its precursor PI(4)P are positive cofactors for TRPV1, acting via direct interaction with the channel, and their depletion by Ca(2+)-induced activation of phospholipase Cδ isoforms (PLCδ) limits channel activity during capsaicin-induced desensitization. Other negatively charged lipids at higher concentrations can also support channel activity, which may explain some controversies in the literature. PI(4,5)P2 also partially inhibits channel activity in some experimental settings, and relief from this inhibition upon PLCβ activation may contribute to sensitization. The negative effect of PI(4,5)P2 is more controversial and its mechanism is less well understood. Other TRP channels from the TRPV and TRPC families may also undergo similar dual regulation by phosphoinositides, thus the complexity of TRPV1 regulation is not unique to this channel.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology Rutgers, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, USA,
| |
Collapse
|