1
|
Senan-Salinas A, Comas L, Esteban P, Garzón-Tituaña M, Cheng Z, Santiago L, Domingo MP, Ramírez-Labrada A, Paño-Pardo JR, Vendrell M, Pardo J, Arias MA, Galvez EM. Selective Detection of Active Extracellular Granzyme A by Using a Novel Fluorescent Immunoprobe with Application to Inflammatory Diseases. ACS Pharmacol Transl Sci 2024; 7:1474-1484. [PMID: 38751645 PMCID: PMC11092195 DOI: 10.1021/acsptsci.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Granzymes (Gzms), a family of serine proteases, expressed by immune and nonimmune cells, present perforin-dependent and independent intracellular and extracellular functions. When released in the extracellular space, GzmA, with trypsin-like activity, is involved in the pathophysiology of different inflammatory diseases. However, there are no validated specific systems to detect active forms of extracellular GzmA, making it difficult to assess its biological relevance and potential use as a biomarker. Here, we have developed fluorescence-energy resonance-transfer (FRET)-based peptide probes (FAM-peptide-DABCYL) to specifically detect GzmA activity in tissue samples and biological fluids in both mouse and human samples during inflammatory diseases. An initial probe was developed and incubated with GzmA and different proteases like GzmB and others with similar cleavage specificity as GzmA like GzmK, thrombin, trypsin, kallikrein, or plasmin. After measuring fluorescence, the probe showed very good specificity and sensitivity for human and mouse GzmA when compared to GzmB, its closest homologue GzmK, and with thrombin. The specificity of this probe was further refined by incubating the samples in a coated plate with a GzmA-specific antibody before adding the probe. The results show a high specific detection of soluble GzmA even when compared with other soluble proteases with very similar cleavage specificity like thrombin, GzmK, trypsin, kallikrein, or plasmin, which shows nearly no fluorescence signal. The high specific detection of GzmA was validated, showing that using pure proteins and serum and tissue samples from GzmA-deficient mice presented a significant reduction in the signal compared with WT mice. The utility of this system in humans was confirmed, showing that GzmA activity was significantly higher in serum samples from septic patients in comparison with healthy donors. Our results present a new immunoprobe with utility to detect extracellular GzmA activity in different biological fluids, confirming the presence of active forms of the soluble protease in vivo during inflammatory and infectious diseases.
Collapse
Affiliation(s)
| | - Laura Comas
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Patricia Esteban
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Zhiming Cheng
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | | | | | - Ariel Ramírez-Labrada
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Unidad
de Nanotoxicología e Inmunotoxicología (UNATI), Centro
de Investigación Biomédica de Aragón (CIBA),
Aragón Health Research Institute (IIS Aragón), 50009Zaragoza, Spain
| | - José Ramón Paño-Pardo
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Servicio
de Enfermedades Infecciosas, Hospital Clinico
Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Marc Vendrell
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
| | - Julián Pardo
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Maykel A. Arias
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Eva M. Galvez
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| |
Collapse
|
2
|
Qu X, Nie B, Zeng Y, Sun C, Li W, Li G. A peptides-based biosensor with target-triggered charge-switchable property for simple and sensitive detection of Granzyme B. Biosens Bioelectron 2023; 242:115748. [PMID: 37847984 DOI: 10.1016/j.bios.2023.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Granzyme B (GrB) is a serine protease released by natural killer cells and cytotoxic T lymphocytes during immune responses, which not only plays a role in tumor diagnosis but also provides valuable guidance during tumor treatment. In this work, we have designed a charge-switching peptide to fabricate an electrochemical biosensor for quantitative analysis of GrB. Specifically, the designed zwitterionic peptide is in an electrically neutral state before activation, and a door lock structure (proline) is constructed by utilizing the selectivity of carboxypeptidase A (CPA) to the carboxy-terminus of the peptide chain. The door lock is opened when the target is present, allowing CPA to hydrolyze the peptide. At this time, the peptide will convert from neutral to positive, triggering the assembly of a positively charged peptide layer on the electrode surface, resulting in a signal change. Studies have shown that the biosensor has good analytical performance, with a detection range of 0.01 pM-8 pM and a detection limit as low as 3.5 fM. Moreover, the developed biosensor has been effectively applied to the analysis of clinical samples, demonstrating its ability to monitor tumor progression and treatment with clinical applications.
Collapse
Affiliation(s)
- Xinyu Qu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Beibei Nie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yujing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
3
|
Wang W, He Z. Gasdermins in sepsis. Front Immunol 2023; 14:1203687. [PMID: 38022612 PMCID: PMC10655013 DOI: 10.3389/fimmu.2023.1203687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a hyper-heterogeneous syndrome in which the systemic inflammatory response persists throughout the course of the disease and the inflammatory and immune responses are dynamically altered at different pathogenic stages. Gasdermins (GSDMs) proteins are pore-forming executors in the membrane, subsequently mediating the release of pro-inflammatory mediators and inflammatory cell death. With the increasing research on GSDMs proteins and sepsis, it is believed that GSDMs protein are one of the most promising therapeutic targets in sepsis in the future. A more comprehensive and in-depth understanding of the functions of GSDMs proteins in sepsis is important to alleviate the multi-organ dysfunction and reduce sepsis-induced mortality. In this review, we focus on the function of GSDMs proteins, the molecular mechanism of GSDMs involved in sepsis, and the regulatory mechanism of GSDMs-mediated signaling pathways, aiming to provide novel ideas and therapeutic strategies for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Melaccio A, Reale A, Saltarella I, Desantis V, Lamanuzzi A, Cicco S, Frassanito MA, Vacca A, Ria R. Pathways of Angiogenic and Inflammatory Cytokines in Multiple Myeloma: Role in Plasma Cell Clonal Expansion and Drug Resistance. J Clin Med 2022; 11:jcm11216491. [PMID: 36362718 PMCID: PMC9658666 DOI: 10.3390/jcm11216491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, and despite the introduction of innovative therapies, remains an incurable disease. Identifying early and minimally or non-invasive biomarkers for predicting clinical outcomes and therapeutic responses is an active field of investigation. Malignant plasma cells (PCs) reside in the bone marrow (BM) microenvironment (BMME) which comprises cells (e.g., tumour, immune, stromal cells), components of the extracellular matrix (ECM) and vesicular and non-vesicular (soluble) molecules, all factors that support PCs’ survival and proliferation. The interaction between PCs and BM stromal cells (BMSCs), a hallmark of MM progression, is based not only on intercellular interactions but also on autocrine and paracrine circuits mediated by soluble or vesicular components. In fact, PCs and BMSCs secrete various cytokines, including angiogenic cytokines, essential for the formation of specialized niches called “osteoblastic and vascular niches”, thus supporting neovascularization and bone disease, vital processes that modulate the pathophysiological PCs–BMME interactions, and ultimately promoting disease progression. Here, we aim to discuss the roles of cytokines and growth factors in pathogenetic pathways in MM and as prognostic and predictive biomarkers. We also discuss the potential of targeted drugs that simultaneously block PCs’ proliferation and survival, PCs–BMSCs interactions and BMSCs activity, which may represent the future goal of MM therapy.
Collapse
Affiliation(s)
- Assunta Melaccio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| | - Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne 3004, Australia
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Maria Antonia Frassanito
- General Pathology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| |
Collapse
|
5
|
Neumeister P, Schulz E, Pansy K, Szmyra M, Deutsch AJA. Targeting the Microenvironment for Treating Multiple Myeloma. Int J Mol Sci 2022; 23:ijms23147627. [PMID: 35886976 PMCID: PMC9317002 DOI: 10.3390/ijms23147627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a malignant, incurable disease characterized by the expansion of monoclonal terminally differentiated plasma cells in the bone marrow. MM is consistently preceded by an asymptomatic monoclonal gammopathy of undetermined significance, and in the absence of myeloma defining events followed by a stage termed smoldering multiple myeloma (SMM), which finally progresses to active myeloma if signs of organ damage are present. The reciprocal interaction between tumor cells and the tumor microenvironment plays a crucial role in the development of MM and the establishment of a tumor-promoting stroma facilitates tumor growth and myeloma progression. Since myeloma cells depend on signals from the bone marrow microenvironment (BMME) for their survival, therapeutic interventions targeting the BMME are a novel and successful strategy for myeloma care. Here, we describe the complex interplay between myeloma cells and the cellular components of the BMME that is essential for MM development and progression. Finally, we present BMME modifying treatment options such as anti-CD38 based therapies, immunomodulatory drugs (IMiDs), CAR T-cell therapies, bispecific antibodies, and antibody-drug conjugates which have significantly improved the long-term outcome of myeloma patients, and thus represent novel therapeutic standards.
Collapse
Affiliation(s)
- Peter Neumeister
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
- Correspondence:
| | - Eduard Schulz
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| | - Alexander JA Deutsch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| |
Collapse
|
6
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Affiliation(s)
- Huiling Wang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yong Huang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Jian He
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Liping Zhong
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yongxiang Zhao
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| |
Collapse
|
9
|
Jaime-Sanchez P, Uranga-Murillo I, Aguilo N, Khouili SC, Arias MA, Sancho D, Pardo J. Cell death induced by cytotoxic CD8 + T cells is immunogenic and primes caspase-3-dependent spread immunity against endogenous tumor antigens. J Immunother Cancer 2021; 8:jitc-2020-000528. [PMID: 32241808 PMCID: PMC7174069 DOI: 10.1136/jitc-2020-000528] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background Elimination of cancer cells by some stimuli like chemotherapy and radiotherapy activates anticancer immunity after the generation of damage‐associated molecular patterns, a process recently named immunogenic cell death (ICD). Despite the recent advances in cancer immunotherapy, very little is known about the immunological consequences of cell death activated by cytotoxic CD8+ T (Tc) cells on cancer cells, that is, if Tc cells induce ICD on cancer cells and the molecular mechanisms involved. Methods ICD induced by Tc cells on EL4 cells was analyzed in tumor by vaccinating mice with EL4 cells killed in vitro or in vivo by Ag-specific Tc cells. EL4 cells and mutants thereof overexpressing Bcl-XL or a dominant negative mutant of caspase-3 and wild-type mice, as well as mice depleted of Tc cells and mice deficient in perforin, TLR4 and BATF3 were used. Ex vivo cytotoxicity of spleen cells from immunized mice was analyzed by flow cytometry. Expression of ICD signals (calreticulin, HMGB1 and interleukin (IL)-1β) was analyzed by flow cytometry and ELISA. Results Mice immunized with EL4.gp33 cells killed in vitro or in vivo by gp33-specific Tc cells were protected from parental EL4 tumor development. This result was confirmed in vivo by using ovalbumin (OVA) as another surrogate antigen. Perforin and TLR4 and BATF3-dependent type 1 conventional dendritic cells (cDC1s) were required for protection against tumor development, indicating cross-priming of Tc cells against endogenous EL4 tumor antigens. Tc cells induced ICD signals in EL4 cells. Notably, ICD of EL4 cells was dependent on caspase-3 activity, with reduced antitumor immunity generated by caspase-3–deficient EL4 cells. In contrast, overexpression of Bcl-XL in EL4 cells had no effect on induction of Tc cell antitumor response and protection. Conclusions Elimination of tumor cells by Ag-specific Tc cells is immunogenic and protects against tumor development by generating new Tc cells against EL4 endogenous antigens. This finding helps to explain the enhanced efficacy of T cell-dependent immunotherapy and provide a molecular basis to explain the epitope spread phenomenon observed during vaccination and chimeric antigen receptor (CAR)-T cell therapy. In addition, they suggest that caspase-3 activity in the tumor may be used as a biomarker to predict cancer recurrence during T cell-dependent immunotherapies.
Collapse
Affiliation(s)
| | | | - Nacho Aguilo
- CIBA, Instituto de Investigacion Sanitaria Aragon, Zaragoza, Spain.,Microbiology, Preventive Medicine and Public Health, Medicine Faculty, University of Zaragoza, Zaragoza, Spain.,CIBER Respiratory Diseases, Madrid, Spain
| | - Sofia C Khouili
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Julian Pardo
- Fundacion ARAID / IIS Aragon / CIBA, Universidad de Zaragoza, Zaragoza, Spain .,CIBER-BBN, Madrid, Spain
| |
Collapse
|
10
|
Challenges for Immunotherapy in Multiple Myeloma: Bone Marrow Microenvironment-Mediated Immune Suppression and Immune Resistance. Cancers (Basel) 2020; 12:cancers12040988. [PMID: 32316450 PMCID: PMC7226482 DOI: 10.3390/cancers12040988] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The power of immunotherapy in the battle of Multiple Myeloma (MM) started with allogeneic stem cell transplantation, and was rediscovered with immunomodulatory drugs and extended with the outstanding results achieved with targeted antibodies. Today, next to powerful antibodies Elotuzumab and Daratumumab, several T-cell-based immunotherapeutic approaches, such as bispecific antibodies and chimeric antigen receptor-transduced T-cells (CAR T-cells) are making their successful entry in the immunotherapy arena with highly promising results in clinical trials. Nonetheless, similar to what is observed in chemotherapy, MM appears capable to escape from immunotherapy, especially through tight interactions with the cells of the bone marrow microenvironment (BM-ME). This review will outline our current understanding on how BM-ME protects MM-cells from immunotherapy through immunosuppression and through induction of intrinsic resistance against cytotoxic effector mechanisms of T- and NK-cells.
Collapse
|
11
|
Lee YS, Yeo IJ, Kim KC, Han SB, Hong JT. Inhibition of Lung Tumor Development in ApoE Knockout Mice via Enhancement of TREM-1 Dependent NK Cell Cytotoxicity. Front Immunol 2019; 10:1379. [PMID: 31275318 PMCID: PMC6592261 DOI: 10.3389/fimmu.2019.01379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein E (ApoE) is known to regulate lipid homeostasis and associated with atherosclerogenesis. Eventhough atherosclerogenesis is associated with tumor development, the role of ApoE in lung tumorigenesis and metastasis is not clear. Thus, the tumor growth and metastasis were compared in WT and ApoE knockout (KO) mice. Urethane-induced lung tumor incidence and B16F10 lung metastasis in ApoE knockout (KO) mice were significantly reduced in comparison to that in WT mice. Knockdown of ApoE expression in lung cancer cells and B16F10 cells also decreased cancer cell growth and metastasis. The inhibitory effect of ApoE KO on tumor development and metastasis was associated with increase of infiltration of NK cells. NK cells derived from ApoE KO mice showed much greater cytotoxicity than those from WT mice. These cytotoxic effect of NK cells derived from ApoE KO mice was associated with higher expression of Granzyme B, Fas Ligand, IFN-γ, TNF-α, NKG2D, NKp46, and DNAM-1 expression. Triggering receptor expressed on myeloid cell (TREM)-1 is a proinflammatory mediator expressed on NK cells, and is known to be associated with NK cell cytotoxicity. Thus, we investigated the role of TREM-1 on ApoE KO mice originated NK cell mediated cytotoxicity for cancer cells. Blockade of TREM-1 expression with a TREM-1 antagonist prevented NK cell-mediated cytotoxicity. TREM-1 antibody recovered cytotoxic effect of NK cells derived from KO mice of T-bet, which upregulating gene for TREM-1. These data indicate that ApoE KO suppressed lung tumor development and metastasis via increase of TREM-1-dependent anti-tumor activity of NK cells.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Ki Cheon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
12
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Mannose-6-phosphate receptor: a novel regulator of T cell immunity. Cell Mol Immunol 2018; 15:986-988. [PMID: 29769659 DOI: 10.1038/s41423-018-0031-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
|
14
|
Jaime-Sánchez P, Catalán E, Uranga-Murillo I, Aguiló N, Santiago L, M Lanuza P, de Miguel D, A Arias M, Pardo J. Antigen-specific primed cytotoxic T cells eliminate tumour cells in vivo and prevent tumour development, regardless of the presence of anti-apoptotic mutations conferring drug resistance. Cell Death Differ 2018; 25:1536-1548. [PMID: 29743559 DOI: 10.1038/s41418-018-0112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic CD8+ T (Tc) cells are the main executors of transformed and cancer cells during cancer immunotherapy. The latest clinical results evidence a high efficacy of novel immunotherapy agents that modulate Tc cell activity against bad prognosis cancers. However, it has not been determined yet whether the efficacy of these treatments can be affected by selection of tumoural cells with mutations in the cell death machinery, known to promote drug resistance and cancer recurrence. Here, using a model of prophylactic tumour vaccination based on the LCMV-gp33 antigen and the mouse EL4 T lymphoma, we analysed the molecular mechanism employed by Tc cells to eliminate cancer cells in vivo and the impact of mutations in the apoptotic machinery on tumour development. First of all, we found that Tc cells, and perf and gzmB are required to efficiently eliminate EL4.gp33 cells after LCMV immunisation during short-term assays (1-4 h), and to prevent tumour development in the long term. Furthermore, we show that antigen-pulsed chemoresistant EL4 cells overexpressing Bcl-XL or a dominant negative form of caspase-3 are specifically eliminated from the peritoneum of infected animals, as fast as parental EL4 cells. Notably, antigen-specific Tc cells control the tumour growth of the mutated cells, as efficiently as in the case of parental cells. Altogether, expression of the anti-apoptotic mutations does not confer any advantage for tumour cells neither in the short-term survival nor in long-term tumour formation. Although the mechanism involved in the elimination of the apoptosis-resistant tumour cells is not completely elucidated, neither necroptosis nor pyroptosis seem to be involved. Our results provide the first experimental proof that chemoresistant cancer cells with mutations in the main cell death pathways are efficiently eliminated by Ag-specific Tc cells in vivo during immunotherapy and, thus, provide the molecular basis to treat chemoresistant cancer cells with CD8 Tc-based immunotherapy.
Collapse
Affiliation(s)
- Paula Jaime-Sánchez
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Elena Catalán
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Nacho Aguiló
- Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Pilar M Lanuza
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Maykel A Arias
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain.
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain. .,Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain. .,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain. .,Aragon I+D Foundation, Zaragoza, Spain.
| |
Collapse
|
15
|
Shen M, Sun Q, Wang J, Pan W, Ren X. Positive and negative functions of B lymphocytes in tumors. Oncotarget 2018; 7:55828-55839. [PMID: 27331871 PMCID: PMC5342456 DOI: 10.18632/oncotarget.10094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicated that B lymphocytes exerted complex functions in tumor immunity. On the one hand, B lymphocytes can inhibit tumor development through antibody generation, antigen presentation, tumor tissue interaction, and direct killing. On the other hand, B lymphocytes have tumor-promoting functions. A typical type of B lymphocytes, termed regulatory B cells, is confirmed to attenuate immune response in a tumor environment. In this paper, we summarize the current understanding of B-cell functions in tumor immunology, which may shed light on potential therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wei Pan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
16
|
Jaime P, García-Guerrero N, Estella R, Pardo J, García-Álvarez F, Martinez-Lostao L. CD56 +/CD16 - Natural Killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis Cartilage 2017; 25:1708-1718. [PMID: 28668542 DOI: 10.1016/j.joca.2017.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Natural killer (NK) cells have been involved in the pathology of different inflammatory and autoimmune disorders. Inflammation is an important regulator of osteoarthritis (OA), but the molecular and cellular mechanisms regulating this process are not well defined. DESIGN To understand the role of NK cells in OA, we have compared the phenotype (CD56 subsets and perforin and granzyme expression) and cytotoxic function of NK cells in peripheral blood and synovial fluid from patients with OA undergoing total knee arthroplasty. RESULTS In contrast to peripheral blood lymphocytes (PBLs), the majority of NK cells from the synovial fluid were CD56brightCD16(-) cells. As expected the expression of the cytolytic mediators perforin and granzyme B in CD56brightCD16(-) cells was low and correlated with a poor cytotoxic potential against K562 sensitive target cells. Surprisingly, this low cytotoxic NK cell subset expressed high levels of granzyme A (a protease recently characterized as a key modulator of inflammation in mouse models) in synovial fluid but not in peripheral blood. The presence of the CD56(+)brightCD16(-) cells expressing granzyme A correlated with increased levels of pro-inflammatory cytokines in synovial fluid from OA patients. CONCLUSION Our results indicate that NK cells from the synovium of patients with OA, which present an immunoregulatory non-cytotoxic phenotype, show different phenotype comparing with NK cells from peripheral blood, especially expressing granzyme A, a pro-inflammatory molecule which may contribute to the establishment of chronic articular inflammation in this type of patients.
Collapse
Affiliation(s)
- P Jaime
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (ISS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica de Aragón (CIBA), Instituto de Investigaciones Sanitarias de Aragón (ISS Aragon), Zaragoza, Spain
| | - N García-Guerrero
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (ISS Aragón), Zaragoza, Spain
| | - R Estella
- Centro de Investigación Biomédica de Aragón (CIBA), Instituto de Investigaciones Sanitarias de Aragón (ISS Aragon), Zaragoza, Spain; Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - J Pardo
- Centro de Investigación Biomédica de Aragón (CIBA), Instituto de Investigaciones Sanitarias de Aragón (ISS Aragon), Zaragoza, Spain; Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Nanociencia de Aragón, IIS Aragón/Universidad de Zaragoza, Spain; Fundación Aragón I+D (ARAID), Gobierno de Aragón, Zaragoza, Spain.
| | - F García-Álvarez
- Centro de Investigación Biomédica de Aragón (CIBA), Instituto de Investigaciones Sanitarias de Aragón (ISS Aragon), Zaragoza, Spain; Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - L Martinez-Lostao
- Instituto de Investigación Sanitaria de Aragón (ISS Aragón), Zaragoza, Spain; Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Nanociencia de Aragón, IIS Aragón/Universidad de Zaragoza, Spain; Servicio de Inmunología Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain.
| |
Collapse
|
17
|
Wang EHC, DeStefano GM, Patel AV, Drill E, Harel S, Cela C, Tavazoie M, Christiano AM. Identification of differentially expressed miRNAs in alopecia areata that target immune-regulatory pathways. Genes Immun 2017; 18:100-104. [DOI: 10.1038/gene.2017.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
|
19
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
20
|
Hébert MJ, Jevnikar AM. The Impact of Regulated Cell Death Pathways on Alloimmune Responses and Graft Injury. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0067-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|