1
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
2
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Shen B, Wada S, Nishioka H, Nagata T, Kawano-Yamashita E, Koyanagi M, Terakita A. Functional identification of an opsin kinase underlying inactivation of the pineal bistable opsin parapinopsin in zebrafish. ZOOLOGICAL LETTERS 2021; 7:1. [PMID: 33579376 PMCID: PMC7881645 DOI: 10.1186/s40851-021-00171-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
In the pineal organ of zebrafish larvae, the bistable opsin parapinopsin alone generates color opponency between UV and visible light. Our previous study suggested that dark inactivation of the parapinopsin photoproduct, which activates G-proteins, is important for the regulation of the amount of the photoproduct. In turn, the photoproduct is responsible for visible light sensitivity in color opponency. Here, we found that an opsin kinase or a G-protein-coupled receptor kinase (GRK) is involved in inactivation of the active photoproduct of parapinopsin in the pineal photoreceptor cells of zebrafish larvae. We investigated inactivation of the photoproduct in the parapinopsin cells of various knockdown larvae by measuring the light responses of the cells using calcium imaging. We found that GRK7a knockdown slowed recovery of the response of parapinopsin photoreceptor cells, whereas GRK1b knockdown or GRK7b knockdown did not have a remarkable effect, suggesting that GRK7a, a cone-type GRK, is mainly responsible for inactivation of the parapinopsin photoproduct in zebrafish larvae. We also observed a similar knockdown effect on the response of the parapinopsin photoreceptor cells of mutant larvae expressing the opsin SWS1, a UV-sensitive cone opsin, instead of parapinopsin, suggesting that the parapinopsin photoproduct was inactivated in a way similar to that described for cone opsins. We confirmed the immunohistochemical distribution of GRK7a in parapinopsin photoreceptor cells by comparing the immunoreactivity to GRK7 in GRK7a-knockdown and control larvae. These findings suggest that in pineal photoreceptor cells, the cone opsin kinase GRK7a contributes greatly to the inactivation of parapinopsin, which underlies pineal color opponency.
Collapse
Affiliation(s)
- Baoguo Shen
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Seiji Wada
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan
| | - Haruka Nishioka
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Emi Kawano-Yamashita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan.
| |
Collapse
|
4
|
Vinberg F, Kefalov VJ. Investigating the Ca 2+-dependent and Ca 2+-independent mechanisms for mammalian cone light adaptation. Sci Rep 2018; 8:15864. [PMID: 30367097 PMCID: PMC6203770 DOI: 10.1038/s41598-018-34073-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Vision is mediated by two types of photoreceptors: rods, enabling vision in dim light; and cones, which function in bright light. Despite many similarities in the components of their respective phototransduction cascades, rods and cones have distinct sensitivity, response kinetics, and adaptation capacity. Cones are less sensitive and have faster responses than rods. In addition, cones can function over a wide range of light conditions whereas rods saturate in moderately bright light. Calcium plays an important role in regulating phototransduction and light adaptation of rods and cones. Notably, the two dominant Ca2+-feedbacks in rods and cones are driven by the identical calcium-binding proteins: guanylyl cyclase activating proteins 1 and 2 (GCAPs), which upregulate the production of cGMP; and recoverin, which regulates the inactivation of visual pigment. Thus, the mechanisms producing the difference in adaptation capacity between rods and cones have remained poorly understood. Using GCAPs/recoverin-deficient mice, we show that mammalian cones possess another Ca2+-dependent mechanism promoting light adaptation. Surprisingly, we also find that, unlike in mouse rods, a unique Ca2+-independent mechanism contributes to cone light adaptation. Our findings point to two novel adaptation mechanisms in mouse cones that likely contribute to the great adaptation capacity of cones over rods.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA. .,John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
6
|
Frederiksen R, Nymark S, Kolesnikov AV, Berry JD, Adler L, Koutalos Y, Kefalov VJ, Cornwall MC. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods. J Gen Physiol 2017; 148:1-11. [PMID: 27353443 PMCID: PMC4924931 DOI: 10.1085/jgp.201511538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
G-protein receptor kinase and arrestin 1 are required for inactivation of photoactivated vertebrate rhodopsin. Frederiksen et al. show that they additionally regulate the subsequent decay of inactive rhodopsin into opsin and all-trans retinal and therefore dark adaptation. Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1−/−), Arr1-deficient (Arr1−/−), and Arr1-overexpressing (Arr1ox) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1−/− rods (τ of ∼27 min), whereas it accelerates in Arr1ox rods (τ of ∼8 min) and Grk1−/− rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Soile Nymark
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, 33720 Tampere, Finland
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Justin D Berry
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Leopold Adler
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - M Carter Cornwall
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
7
|
Indrischek H, Prohaska SJ, Gurevich VV, Gurevich EV, Stadler PF. Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes. BMC Evol Biol 2017; 17:163. [PMID: 28683816 PMCID: PMC5501109 DOI: 10.1186/s12862-017-1001-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The cytosolic arrestin proteins mediate desensitization of activated G protein-coupled receptors (GPCRs) via competition with G proteins for the active phosphorylated receptors. Arrestins in active, including receptor-bound, conformation are also transducers of signaling. Therefore, this protein family is an attractive therapeutic target. The signaling outcome is believed to be a result of structural and sequence-dependent interactions of arrestins with GPCRs and other protein partners. Here we elucidated the detailed evolution of arrestins in deuterostomes. RESULTS Identity and number of arrestin paralogs were determined searching deuterostome genomes and gene expression data. In contrast to standard gene prediction methods, our strategy first detects exons situated on different scaffolds and then solves the problem of assigning them to the correct gene. This increases both the completeness and the accuracy of the annotation in comparison to conventional database search strategies applied by the community. The employed strategy enabled us to map in detail the duplication- and deletion history of arrestin paralogs including tandem duplications, pseudogenizations and the formation of retrogenes. The two rounds of whole genome duplications in the vertebrate stem lineage gave rise to four arrestin paralogs. Surprisingly, visual arrestin ARR3 was lost in the mammalian clades Afrotheria and Xenarthra. Duplications in specific clades, on the other hand, must have given rise to new paralogs that show signatures of diversification in functional elements important for receptor binding and phosphate sensing. CONCLUSION The current study traces the functional evolution of deuterostome arrestins in unprecedented detail. Based on a precise re-annotation of the exon-intron structure at nucleotide resolution, we infer the gain and loss of paralogs and patterns of conservation, co-variation and selection.
Collapse
Affiliation(s)
- Henrike Indrischek
- Computational EvoDevo Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, Leipzig, D-04107, Germany.
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, Leipzig, D-04107, Germany.
- Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, Leipzig, D-04107, Germany.
| | - Sonja J Prohaska
- Computational EvoDevo Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, Leipzig, D-04107, Germany
- Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, Leipzig, D-04107, Germany
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Nashville, TN 37232, USA
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, Leipzig, D-04107, Germany
- Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, Leipzig, D-04107, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, D-04103, Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna, A-1090, Austria
- Center for non-coding RNA in Technology and Health, Grønegårdsvej 3, Frederiksberg C, DK-1870, Denmark
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
8
|
Vinberg F, Wang T, De Maria A, Zhao H, Bassnett S, Chen J, Kefalov VJ. The Na +/Ca 2+, K + exchanger NCKX4 is required for efficient cone-mediated vision. eLife 2017; 6:e24550. [PMID: 28650316 PMCID: PMC5515578 DOI: 10.7554/elife.24550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca2+) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na+/Ca2+, K+ exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.
Collapse
Affiliation(s)
- Frans Vinberg
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Alicia De Maria
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| |
Collapse
|
9
|
Effects of NDRG1 family proteins on photoreceptor outer segment morphology in zebrafish. Sci Rep 2016; 6:36590. [PMID: 27811999 PMCID: PMC5095670 DOI: 10.1038/srep36590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
Rods and cones are functionally and morphologically distinct. We previously identified N-myc downstream-regulated gene 1b (ndrg1b) in carp as a cone-specific gene. Here, we show that NDRG1b and its paralog, NDRG1a-1, contribute to photoreceptor outer segment (OS) formation in zebrafish. In adult zebrafish photoreceptors, NDRG1a-1 was localized in the entire cone plasma membranes, and also in rod plasma membranes except its OS. NDRG1b was expressed specifically in cones in the entire plasma membranes. In a developing retina, NDRG1a-1 was expressed in the photoreceptor layer, and NDRG1b in the photoreceptor layer plus inner nuclear layer. Based on our primary knockdown study suggesting that both proteins are involved in normal rod and cone OS development, NDRG1a-1 was overexpressed or NDRG1b was ectopically expressed in rods. These forced-expression studies in the transgenic fish confirmed the effect of these proteins on the OS morphology: rod OS morphology changed from cylindrical to tapered shape. These taper-shaped rod OSs were not stained with N,N’-didansyl cystine that effectively labels infolded membrane structure of cone OS. The result shows that rod OS membrane structure is preserved in these taper-shaped OSs and therefore, suggests that tapered OS morphology is not related to the infolded membrane structure in cone OS.
Collapse
|
10
|
Yamaoka H, Tachibanaki S, Kawamura S. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes. J Biol Chem 2015; 290:24381-90. [PMID: 26286749 DOI: 10.1074/jbc.m115.674101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
On absorption of light by vertebrate visual pigment, the chromophore, 11-cis retinal, is isomerized to all-trans retinal to activate the phototransduction cascade, which leads to a hyperpolarizing light response. Activated pigment is inactivated by phosphorylation on the protein moiety, opsin. Isomerized all-trans retinal is ultimately released from opsin, and the pigment is regenerated by binding to 11-cis retinal. In this pigment regeneration cycle, the phosphates incorporated should be removed in order that the pigment regains the capability of activating the phototransduction cascade. However, it is not clear yet how pigment dephosphorylation takes place in the regeneration cycle. First in this study, we tried to estimate the dephosphorylation activity in living carp rods and cones and found that the activity, which is present mainly in the cytoplasm in both rods and cones, is three times higher in cones than in rods. Second, we examined at which stage the dephosphorylation takes place; before or after the release of all-trans retinal, during pigment regeneration, or after pigment regeneration. For this purpose we prepared three types of phosphorylated substrates in purified carp rod and cone membranes: phosphorylated bleaching intermediate, phosphorylated opsin, and phosphorylated and regenerated pigment. We also examined the effect of pigment regeneration on the dephosphorylation. The results showed that the dephosphorylation does not show substrate preference in the regeneration cycle and suggested that the dephosphorylation takes place constantly. The results also suggest that, under bright light, some of the regenerated visual pigment remains phosphorylated to reduce the light sensitivity in cones.
Collapse
Affiliation(s)
| | - Shuji Tachibanaki
- From the Graduate School of Frontier Biosciences and the Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| | - Satoru Kawamura
- From the Graduate School of Frontier Biosciences and the Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| |
Collapse
|