1
|
Liu X, Lam SM, Zheng Y, Mo L, Li M, Sun T, Long X, Peng S, Zhang X, Mei M, Shui G, Bao S. Palmitoyl-carnitine Regulates Lung Development by Promoting Pulmonary Mesenchyme Proliferation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0620. [PMID: 40104443 PMCID: PMC11914330 DOI: 10.34133/research.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 03/20/2025]
Abstract
Disruption of acylcarnitine homeostasis results in life-threatening outcomes in humans. Carnitine-acylcarnitine translocase deficiency (CACTD) is a scarce autosomal recessive genetic disease and may result in patients' death due to heart arrest or respiratory insufficiency. However, the reasons and mechanism of CACTD inducing respiratory insufficiency have never been elucidated. Herein, we employed lipidomic techniques to create comprehensive lipidomic maps of entire lungs throughout both prenatal and postnatal developmental stages in mice. We found that the acylcarnitines manifested notable variations and coordinated the expression levels of carnitine-acylcarnitine translocase (Cact) across these lung developmental stages. Cact-null mice were all dead with a symptom of respiratory distress and exhibited failed lung development. Loss of Cact resulted in an accumulation of palmitoyl-carnitine (C16-acylcarnitine) in the lungs and promoted the proliferation of mesenchymal progenitor cells. Mesenchymal cells with elevated C16-acylcarnitine levels displayed minimal changes in energy metabolism but, upon investigation, revealed an interaction with sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (Samhd1), leading to decreased protein abundance and enhanced cell proliferation. Thus, our findings present a mechanism addressing respiratory distress in CACTD, offering a valuable reference point for both the elucidation of pathogenesis and the exploration of treatment strategies for neonatal respiratory distress.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lesong Mo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Long
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Peng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Yang J, Duan C, Wang P, Zhang S, Gao Y, Lu S, Ji Y. 4-Octyl Itaconate Alleviates Myocardial Ischemia-Reperfusion Injury Through Promoting Angiogenesis via ERK Signaling Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411554. [PMID: 39836624 PMCID: PMC11904966 DOI: 10.1002/advs.202411554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/13/2024] [Indexed: 01/23/2025]
Abstract
Myocardial ischemia-reperfusion (IR) injury is a critical complication following revascularization therapy for ischemic heart disease. Itaconate, a macrophage-derived metabolite, has been implicated in inflammation and metabolic regulation. This study investigates the protective role of itaconate derivatives against IR injury. Using a mice model of IR injury, the impact of 7-day 4-Octyl itaconate (4-OI) administration on cardiac function is assessed. Exogenous administration of 4-OI significantly reduces myocardial damage, enhances angiogenesis, and alleviates myocardial hypoxia injury during reperfusion. RNA sequencing and molecular docking techniques are used to find the target of itaconate, and changes in cardiac function are observed in Immune-Responsive Gene1 (IRG1) global knockout mice. In cell culture studies, 4-OI promotes endothelial cell proliferation and migration, mediated by Mitogen-Activated Protein Kinases (MAPK) signaling pathway activation, particularly through Extracellular Signal-Regulated Kinase (ERK) signaling. Inhibition of ERK blocks these beneficial effects on endothelial cells. Furthermore, itaconate synthesis inhibition worsens myocardial damage, which is mitigated by 4-OI supplementation. The results indicate that 4-OI promotes angiogenesis by activating MAPK signaling via FMS-like tyrosine kinase 1 (Flt1), highlighting its potential as a therapeutic strategy for myocardial IR injury.
Collapse
Affiliation(s)
- Jiqin Yang
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Chenqi Duan
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Peng Wang
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Sijia Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Harbin Medical UniversityHarbinHeilongjiang150081P. R. China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Shan Lu
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Harbin Medical UniversityHarbinHeilongjiang150081P. R. China
| |
Collapse
|
3
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zhang Y, Kim G, Zhu Y, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Small Extracellular Vesicles. ACS NANO 2023; 17:10191-10205. [PMID: 37127891 DOI: 10.1021/acsnano.3c00305] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, small extracellular vesicles (sEVs) have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with sEV-based drug delivery systems, there are still challenges to drug loading into sEVs, which hinder the clinical applications of sEVs. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) sEV-loading platform, based on chirality matching with the sEV lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for doxorubicin and siRNA, which is significantly higher than other reported sEV loading techniques.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yini Zhu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runyao Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Zhang Y, Zhu Y, Kim G, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.523510. [PMID: 36711460 PMCID: PMC9882333 DOI: 10.1101/2023.01.20.523510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, exosomes have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with exosome-based drug delivery systems, there are still challenges to drug loading into exosome, which hinder the clinical applications of exosomes. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) exosome-loading platform, based on chirality matching with the exosome lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for Doxorubicin and siRNA, which is significantly higher than other reported exosome loading techniques.
Collapse
|
6
|
Nuclear S6K1 Enhances Oncogenic Wnt Signaling by Inducing Wnt/β-Catenin Transcriptional Complex Formation. Int J Mol Sci 2022; 23:ijms232416143. [PMID: 36555784 PMCID: PMC9785994 DOI: 10.3390/ijms232416143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Ribosomal protein S6 kinase 1 (S6K1), a key downstream effector of the mammalian target of rapamycin (mTOR), regulates diverse functions, such as cell proliferation, cell growth, and protein synthesis. Because S6K1 was previously known to be localized in the cytoplasm, its function has been mainly studied in the cytoplasm. However, the nuclear localization and function of S6K1 have recently been elucidated and other nuclear functions are expected to exist but remain elusive. Here, we show a novel nuclear role of S6K1 in regulating the expression of the Wnt target genes. Upon activation of the Wnt signaling, S6K1 translocated from the cytosol into the nucleus and subsequently bound to β-catenin and the cofactors of the Wnt/β-catenin transcriptional complex, leading to the upregulation of the Wnt target genes. The depletion or repression of S6K1 downregulated the Wnt target gene expression by inhibiting the formation of the Wnt/β-catenin transcriptional complex. The S6K1-depleted colon cancer cell lines showed lower transcription levels of the Wnt/β-catenin target genes and a decrease in the cell proliferation and invasion compared to the control cell lines. Taken together, these results indicate that nuclear S6K1 positively regulates the expression of the Wnt target genes by inducing the reciprocal interaction of the subunits of the transcriptional complex.
Collapse
|
7
|
Samanta S, Mahata R, Santra MK. The Cross-Talk between Epigenetic Gene Regulation and Signaling Pathways Regulates Cancer Pathogenesis. Subcell Biochem 2022; 100:427-472. [PMID: 36301502 DOI: 10.1007/978-3-031-07634-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer begins due to uncontrolled cell division. Cancer cells are insensitive to the signals that control normal cell proliferation. This uncontrolled cell division is due to the accumulation of abnormalities in different factors associated with the cell division, including different cyclins, cell cycle checkpoint inhibitors, and cellular signaling. Cellular signaling pathways are aberrantly activated in cancer mainly due to epigenetic regulation and post-translational regulation. In this chapter, the role of epigenetic regulation in aberrant activation of PI3K/AKT, Ras, Wnt, Hedgehog, Notch, JAK/STAT, and mTOR signaling pathways in cancer progression is discussed. The role of epigenetic regulators in controlling the upstream regulatory proteins and downstream effector proteins responsible for abnormal cellular signaling-mediated cancer progression is covered in this chapter. Similarly, the role of signaling pathways in controlling epigenetic gene regulation-mediated cancer progression is also discussed. We have tried to ascertain the current status of potential epigenetic drugs targeting several epigenetic regulators to prevent different cancers.
Collapse
Affiliation(s)
- Snigdha Samanta
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rumpa Mahata
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manas Kumar Santra
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India.
| |
Collapse
|
8
|
He H, Chen J, Zhao J, Zhang P, Qiao Y, Wan H, Wang J, Mei M, Bao S, Li Q. PRMT7 targets of Foxm1 controls alveolar myofibroblast proliferation and differentiation during alveologenesis. Cell Death Dis 2021; 12:841. [PMID: 34497269 PMCID: PMC8426482 DOI: 10.1038/s41419-021-04129-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Although aberrant alveolar myofibroblasts (AMYFs) proliferation and differentiation are often associated with abnormal lung development and diseases, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF), epigenetic mechanisms regulating proliferation and differentiation of AMYFs remain poorly understood. Protein arginine methyltransferase 7 (PRMT7) is the only reported type III enzyme responsible for monomethylation of arginine residue on both histone and nonhistone substrates. Here we provide evidence for PRMT7's function in regulating AMYFs proliferation and differentiation during lung alveologenesis. In PRMT7-deficient mice, we found reduced AMYFs proliferation and differentiation, abnormal elastin deposition, and failure of alveolar septum formation. We further shown that oncogene forkhead box M1 (Foxm1) is a direct target of PRMT7 and that PRMT7-catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) directly associate with chromatin of Foxm1 to activate its transcription, and thereby regulate of cell cycle-related genes to inhibit AMYFs proliferation and differentiation. Overexpression of Foxm1 in isolated myofibroblasts (MYFs) significantly rescued PRMT7-deficiency-induced cell proliferation and differentiation defects. Thus, our results reveal a novel epigenetic mechanism through which PRMT7-mediated histone arginine monomethylation activates Foxm1 transcriptional expression to regulate AMYFs proliferation and differentiation during lung alveologenesis and may represent a potential target for intervention in pulmonary diseases.
Collapse
Affiliation(s)
- Huacheng He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jilin Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jian Zhao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Peizhun Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Yulong Qiao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Huajing Wan
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| | - Qiuling Li
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China.
| |
Collapse
|
9
|
GM130 regulates pulmonary surfactant protein secretion in alveolar type II cells. SCIENCE CHINA-LIFE SCIENCES 2021; 65:193-205. [PMID: 33740186 DOI: 10.1007/s11427-020-1875-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex secreted by alveolar type II epithelial cells and is essential for the maintenance of the delicate structure of mammalian alveoli to promote efficient gas exchange across the air-liquid barrier. The Golgi apparatus plays an important role in pulmonary surfactant modification and secretory trafficking. However, the physiological function of the Golgi apparatus in the transport of pulmonary surfactants is unclear. In the present study, deletion of GM130, which encodes for a matrix protein of the cis-Golgi cisternae, was shown to induce the disruption of the Golgi structure leading to impaired secretion of lung surfactant proteins and lipids. Specifically, the results of in vitro and in vivo analysis indicated that the loss of GM130 resulted in trapping of Sftpa in the endoplasmic reticulum, Sftpb and Sftpc accumulation in the Golgi apparatus, and an increase in the compensatory secretion of Sftpd. Moreover, global and epithelial-specific GM130 knockout in mice resulted in an enlargement of alveolar airspace and an increase in alveolar epithelial autophagy; however, surfactant repletion partially rescued the enlarged airspace defects in GM130-deficient mice. Therefore, our results demonstrate that GM130 and the mammalian Golgi apparatus play a critical role in the control of surfactant protein secretion in pulmonary epithelial cells.
Collapse
|
10
|
Chen Y, Shao X, Cao J, Zhu H, Yang B, He Q, Ying M. Phosphorylation regulates cullin-based ubiquitination in tumorigenesis. Acta Pharm Sin B 2021; 11:309-321. [PMID: 33643814 PMCID: PMC7893081 DOI: 10.1016/j.apsb.2020.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.
Collapse
Key Words
- AIRE, autoimmune regulator
- AKT, AKT serine/threonine kinase
- ATR, ataxia telangiectasia-mutated and Rad3-related
- BCL2, BCL2 apoptosis regulator
- BMAL1, aryl hydrocarbon receptor nuclear translocator like
- CDK2/4, cyclin dependent kinase 2/4
- CDT2, denticleless E3 ubiquitin protein ligase homolog
- CHK1, checkpoint kinase 1
- CK1/2, casein kinase I/II
- CLOCK, clock circadian regulator
- COMMD1, copper metabolism domain containing 1
- CRL, cullin-RING ligase
- CRY1, cryptochrome circadian regulator 1
- CSN, COP9 signalosome
- Ci, cubitus interruptus
- Crosstalk
- Cullin-RING ligases
- DDB1, damage specific DNA binding protein 1
- DYRK1A/B, dual-specificity tyrosine-phosphorylation-regulated kinases 1A/B
- Degradation
- EMT, epithelial–mesenchymal transition
- ERG, ETS transcription factor ERG
- ERK, mitogen-activated protein kinase 1
- EXO1, exonuclease 1
- FBW7, F-box and WD repeat domain containing 7
- FBXL3, F-box and leucine rich repeat protein
- FBXO3/31, F-box protein 3/31
- FZR1, fizzy and cell division cycle 20 related 1
- HCC, hepatocellular carcinomas
- HIB, Hedghog-induced MATH and BTB domain-containing protein
- HIF1α, NF-κB and hypoxia inducible factor 1 subunit alpha
- ID2, inhibitor of DNA binding 2
- JAB1, c-Jun activation domain binding protein-1
- KBTBD8, kelch repeat and BTB domain containing 8
- KDM2B, lysine demethylase 2B
- KEAP1, kelch like ECH associated protein 1
- KLHL3, kelch like family member 3
- KRAS, KRAS proto-oncogene, GTPase
- Kinases
- MYC, MYC proto-oncogene, bHLH transcription factor
- NEDD8, NEDD8 ubiquitin like modifier
- NOLC1, nucleolar and coiled-body phosphoprotein 1
- NRF2, nuclear factor, erythroid 2 like 2
- P-TEFb, positive transcription elongation factor b
- PDL1, programmed death ligand 1
- PKC, protein kinase C
- PKM2, pyruvate kinase M2 isoform
- PYGO2, pygopus 2
- Phosphorylation
- RA, retinoic acid
- RARα, RA receptor α
- RRM2, ribonucleotide reductase regulatory subunit M2
- SNAIL1, snail family transcriptional repressor 1
- SOCS6, suppressor of cytokine signaling 6
- SPOP, speckle-type POZ protein
- SRC-3, nuclear receptor coactivator 3
- TCN, triciribine hydrate
- TCOF1, treacle ribosome biogenesis factor 1
- TRF1, telomeric repeat binding factor 1
- Targeted therapy
- Tumorigenesis
- USP37, ubiquitin specific peptidase 37
- Ubiquitination
- VHL, von Hippel-Lindau tumor suppressor
- Vps34, phosphatidylinositol 3-kinase catalytic subunit type 3
- XBP1, X-box binding protein 1
- ZBTB16, zinc finger and BTB domain containing 16
- c-Fos, Fos proto-oncogene, AP-1 transcription factor subunit
- p130Cas, BCAR1 scaffold protein, Cas family member
Collapse
|
11
|
Yang Q, Jiang W, Hou P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol 2019; 59:112-124. [DOI: 10.1016/j.semcancer.2019.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
|
12
|
Zhang Q, Zhang P, Qi GJ, Zhang Z, He F, Lv ZX, Peng X, Cai HW, Li TX, Wang XM, Tian B. Cdk5 suppression blocks SIRT1 degradation via the ubiquitin-proteasome pathway in Parkinson's disease models. Biochim Biophys Acta Gen Subj 2018; 1862:1443-1451. [PMID: 29571747 DOI: 10.1016/j.bbagen.2018.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD. In this study, the results demonstrated that SIRT1 knockout markedly worsened the movement function in MPTP-lesioned animal model of PD. SIRT1 expression was found to be markedly decreased not only in environmental factor PD models, neurotoxin MPP+-treated primary culture neurons and MPTP-induced mice but also in genetic factor PD models, overexpressed α-synuclein-A30PA53T SH-SY5Y stable cell line and hm2α-SYN-39 transgenic mouse strain. Importantly, the degradation of SIRT1 during MPP+ treatment was mediated by the ubiquitin-proteasome pathway. Furthermore, the results indicated that cyclin-dependent kinase 5 (Cdk5) was also involved in the decrease of SIRT1 expression, which could be efficiently blocked by the inhibition of Cdk5. In conclusion, our findings revealed that the Cdk5-dependent ubiquitin-proteasome pathway mediated degradation of SIRT1 plays a vital role in the progression of PD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Guang-Jian Qi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Zheng Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Feng He
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Ze-Xi Lv
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Xiang Peng
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Hong-Wei Cai
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Tong-Xia Li
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Xue-Min Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province 510515, PR China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China.
| |
Collapse
|
13
|
Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, Jiang M, Kan S, Sun T, Ren J, Pan Q, Li X, Zhang P, Hu G, Wang Y, Wang X, Li Q, Qin J. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest 2017; 127:1284-1302. [PMID: 28319045 DOI: 10.1172/jci91144] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/19/2017] [Indexed: 01/10/2023] Open
Abstract
Loss of phosphatase and tensin homolog (PTEN) and activation of the PI3K/AKT signaling pathway are hallmarks of prostate cancer (PCa). However, these alterations alone are insufficient for cells to acquire metastatic traits. Here, we have shown that the histone dimethyl transferase WHSC1 critically drives indolent PTEN-null tumors to become metastatic PCa. In a PTEN-null murine PCa model, WHSC1 overexpression in prostate epithelium cooperated with Pten deletion to produce a metastasis-prone tumor. Conversely, genetic ablation of Whsc1 prevented tumor progression in PTEN-null mice. Molecular characterization revealed that increased AKT activity due to PTEN loss directly phosphorylates WHSC1 at S172, preventing WHSC1 degradation by CRL4Cdt2 E3 ligase. Increased WHSC1 expression transcriptionally upregulates expression of RICTOR, a pivotal component of mTOR complex 2 (mTORC2), to further enhance AKT activity. Therefore, the AKT/WHSC1/mTORC2 signaling cascade represents a vicious feedback loop that elicits unrestrained AKT signaling. Furthermore, we determined that WHSC1 positively regulates Rac1 transcription to increase tumor cell motility. The biological importance of a WHSC1-mediated signaling cascade is substantiated by patient sample analysis in which WHSC1 signaling is tightly correlated with disease progression and recurrence. Taken together, our findings highlight a pivotal link between an epigenetic regulator, WHSC1, and key intracellular signaling molecules, AKT, RICTOR, and Rac1, to drive PCa metastasis.
Collapse
|