1
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Yun SP, Kim HJ, Kim H, Park SW. Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice. Int J Mol Sci 2024; 25:12563. [PMID: 39684275 DOI: 10.3390/ijms252312563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768. After renal IR, P2Y2R KO mice showed greater increases in plasma creatinine, tubular damage and neutrophil infiltration, and significant induction of proinflammatory cytokines and apoptotic markers than wild-type (WT) mice. In contrast, treatment with MRS2768 reduced plasma creatinine levels, tubular damage and inflammation, and renal apoptosis in mice subjected to renal IR. In cultured human proximal tubular HK-2 cells, MRS2768 upregulated P2Y2R mRNA levels and decreased TNF-α/cycloheximide-induced apoptosis and inflammation. Importantly, P2Y2R activation by MRS2768 increased the phosphorylation of protein kinase C (PKC), Src, and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, the inhibition of PI3K/Akt abolished the protective effects of MRS2768 against TNF-α/cycloheximide-induced apoptosis and inflammation in HK-2 cells. In conclusion, activation of P2Y2R protects against tubular apoptosis and inflammation during renal IR via the PKC/Src/Akt pathway, suggesting P2Y2R is a promising therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| |
Collapse
|
2
|
Jia Y, Zhang K, Shi M, Guo D, Yang P, Bu X, Chen J, Wang A, Xu T, He J, Zhu Z, Zhang Y. Associations of Rheumatoid Factor, Rheumatoid Arthritis, and Interleukin-6 Inhibitor with the Prognosis of Ischemic Stroke: a Prospective Multicenter Cohort Study and Mendelian Randomization Analysis. Transl Stroke Res 2024; 15:750-760. [PMID: 37256492 DOI: 10.1007/s12975-023-01161-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
Rheumatoid factor (RF), an established diagnostic biomarker for rheumatoid arthritis (RA), is associated with cardiovascular diseases, but its impact on clinical outcomes of ischemic stroke remains unclear. We aimed to investigate the observational associations between serum RF and prognosis of ischemic stroke, and further examined the genetic associations of RA and its therapeutic strategy, interleukin-6 (IL-6) inhibitor, with prognosis of ischemic stroke. We measured serum RF levels in 3474 Chinese ischemic stroke patients from the China Antihypertensive Trial in Acute Ischemic Stroke. The primary outcome was the composite outcome of death or major disability (modified Rankin Scale score ≥3) at 3 months after stroke onset. Mendelian randomization (MR) analyses were performed to examine the associations of genetically predicted RA and IL-6 inhibition with prognosis of ischemic stroke. During 3 months of follow-up, 866 patients (25.43%) experienced death or major disability. After multivariate adjustment, RF-positive was significantly associated with a high risk of primary outcome (OR, 1.47; 95% CI, 1.08-2.00; P =0.016) compared with RF-negative. The two-sample MR analyses suggested that genetically predicted RA was associated with an increased risk of primary outcome (OR, 1.09; 95% CI, 1.01-1.18; P=0.021), while genetically predicted IL-6 inhibition was associated with a decreased risk of primary outcome (OR, 0.88; 95% CI, 0.77-0.99; P=0.041). We found that positive RF was associated with increased risks of adverse outcomes after atherosclerotic ischemic stroke, and genetically predicted RA and IL-6 inhibition increased and decreased the risks of adverse outcomes after ischemic stroke, respectively.
Collapse
Affiliation(s)
- Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China
| | - Kaixin Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public health, Chongqing Medical University, Chongqing, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China.
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
3
|
Praetorius H. The bacteria and the host: a story of purinergic signaling in urinary tract infections. Am J Physiol Cell Physiol 2021; 321:C134-C146. [PMID: 33979212 DOI: 10.1152/ajpcell.00054.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The local environment forces a selection of bacteria that might invade the urinary tract, allowing only the most virulent to access the kidney. Quite similar to the diet in setting the stage for the gut microbiome, renal function determines the conditions for bacteria-host interaction in the urinary tract. In the kidney, the term local environment or microenvironment is completely justified because the environment literally changes within a few micrometers. The precise composition of the urine is a function of the epithelium lining the microdomain, and the microenvironment in the kidney shows more variation in the content of nutrients, ion composition, osmolality, and pH than any other site of bacteria-host interaction. This review will cover some of the aspects of bacterial-host interaction in this unique setting and how uropathogenic bacteria can alter the condition for bacteria-host interaction. There will be a particular focus on the recent findings regarding how bacteria specifically trigger host paracrine signaling, via release of extracellular ATP and activation of P2 purinergic receptors. These finding will be discussed from the perspective of severe urinary tract infections, including pyelonephritis and urosepsis.
Collapse
|
4
|
Prevention of P2 Receptor-Dependent Thrombocyte Activation by Pore-Forming Bacterial Toxins Improves Outcome in A Murine Model of Urosepsis. Int J Mol Sci 2020; 21:ijms21165652. [PMID: 32781764 PMCID: PMC7460651 DOI: 10.3390/ijms21165652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Urosepsis is a potentially life-threatening, systemic reaction to uropathogenic bacteria entering the bloodstream of the host. One of the hallmarks of sepsis is early thrombocyte activation with a following fall in circulating thrombocytes as a result of intravascular aggregation and sequestering of thrombocytes in the major organs. Development of a thrombocytopenic state is associated with a poorer outcome of sepsis. Uropathogenic Escherichia coli frequently produce the pore-forming, virulence factor α-haemolysin (HlyA), of which the biological effects are mediated by ATP release and subsequent activation of P2 receptors. Thus, we speculated that inhibition of thrombocyte P2Y1 and P2Y12 receptors might ameliorate the septic response to HlyA-producing E. coli. The study combined in vitro measurements of toxin-induced thrombocyte activation assessed as increased membrane abundance of P-selectin, fibronectin and CD63 and data from in vivo murine model of sepsis-induced by HlyA-producing E. coli under infusion of P2Y1 and P2Y12 antagonists. Our data show that the P2Y1 receptor antagonist almost abolishes thrombocyte activation by pore-forming bacterial toxins. Inhibition of P2Y1, by constant infusion of MRS2500, markedly increased the survival in mice with induced sepsis. Moreover, MRS2500 partially prevented the sepsis-induced depletion of circulating thrombocytes and dampened the sepsis-associated increase in proinflammatory cytokines. In contrast, P2Y12 receptor inhibition had only a marginal effect in vivo and in vitro. Taken together, inhibition of the P2Y1 receptor gives a subtle dampening of the thrombocyte activation and the cytokine response to bacteraemia, which may explain the improved survival observed by P2Y1 receptor antagonists.
Collapse
|
5
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
7
|
Li M, Xi P, Xu Y, Wang Z, Han X, Ren W, Phouthapane V, Miao J. Taurine Attenuates Streptococcus uberis-Induced Bovine Mammary Epithelial Cells Inflammation via Phosphoinositides/Ca 2+ Signaling. Front Immunol 2019; 10:1825. [PMID: 31447841 PMCID: PMC6692464 DOI: 10.3389/fimmu.2019.01825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Taurine may alleviate the inflammatory injury induced by Streptococcus uberis (S. uberis) infection by regulating intracellular Ca2+ levels. However, the underlying mechanisms remain unclear. Infection leads to subversion of phosphoinositides (PIs) which are closely related to Ca2+ signaling. In order to investigate whether taurine regulates inflammation by means of PIs/ Ca2+ systems, competitive inhibitors of taurine (β-alanine) siTauT, siPAT1, siPLC, siCaN, siPKC, and inhibitors of PLC (U73122), PKC (RO31-8220), and CaN (FK 506) were used. The results indicate that taurine transfers the extracellular nutrient signal for intercellular innate immunity to phosphoinositides without a need to enter the cytoplasm while regulating intracellular Ca2+ levels during inflammation. Both the Ca2+-PKCα-NF-κB, and Ca2+-CaM-CaN-NFAT signaling pathways of S. uberis infection and the regulatory roles of taurine follow activation of PIs/Ca2+ systems. These data increase our understanding on the mechanisms of multifunctional nutrient, taurine attenuated inflammatory responses caused by S. uberis infection, and provide theoretical support for the prevention of this disease.
Collapse
Affiliation(s)
- Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology, Vientiane, Laos
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
P2X 1 receptor blockers reduce the number of circulating thrombocytes and the overall survival of urosepsis with haemolysin-producing Escherichia coli. Purinergic Signal 2019; 15:265-276. [PMID: 31129780 DOI: 10.1007/s11302-019-09658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 01/14/2023] Open
Abstract
Urosepsis is a severe condition often caused by Escherichia coli that spontaneously have ascended the urinary tract to the kidneys causing pyelonephritis and potentially bacteraemia. The number of sepsis cases has been steadily increasing over the last decades, and there are still no specific, molecular supportive therapies for sepsis to supplement antibiotic treatment. P2X1 receptors are expressed by a number of immune cells including thrombocytes, which presently have been established as an important player in the acute immune response to bacterial infections. P2X1 receptor-deficient mice have been shown to be relatively protected against urosepsis, with markedly reduced levels of circulating proinflammatory cytokines and intravascular coagulation. However, here we show that continuous intravenous infusion with P2X1 receptor antagonist markedly accelerates development of a septic response to induced bacteraemia with uropathogenic E. coli. Mice exposed to the P2X1 receptor antagonists die very early with haematuria, substantially elevated plasma levels of proinflammatory cytokines, massive intravascular coagulation and a concomitant reduction in circulating thrombocytes. Interestingly, infusion of P2X1 receptor antagonists causes a marked acute reduction in circulating thrombocytes and a higher number of bacteria in the blood. These data support the notion that the number of functional thrombocytes is important for the acute defence against bacteria in the circulation and that the P2X1 receptor potentially could be essential for this response.
Collapse
|
9
|
Tellez Freitas CM, Burrell HR, Valdoz JC, Hamblin GJ, Raymond CM, Cox TD, Johnson DK, Andersen JL, Weber KS, Bridgewater LC. The nuclear variant of bone morphogenetic protein 2 (nBMP2) is expressed in macrophages and alters calcium response. Sci Rep 2019; 9:934. [PMID: 30700748 PMCID: PMC6353957 DOI: 10.1038/s41598-018-37329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
We previously identified a nuclear variant of bone morphogenetic protein 2 (BMP2), named nBMP2, that is translated from an alternative start codon. Decreased nuclear localization of nBMP2 in the nBmp2NLStm mouse model leads to muscular, neurological, and immune phenotypes-all of which are consistent with aberrant intracellular calcium (Ca2+) response. Ca2+ response in these mice, however, has yet to be measured directly. Because a prior study suggested impairment of macrophage function in nBmp2NLStm mutant mice, bone marrow derived (BMD) macrophages and splenic macrophages were isolated from wild type and nBmp2NLStm mutant mice. Immunocytochemistry revealed that nuclei of both BMD and splenic macrophages from wild type mice contain nBMP2, while the protein is decreased in nuclei of nBmp2NLStm mutant macrophages. Live-cell Ca2+ imaging and engulfment assays revealed that Ca2+ response and phagocytosis in response to bacterial supernatant are similar in BMD macrophages isolated from naïve (uninfected) nBmp2NLStm mutant mice and wild type mice, but are deficient in splenic macrophages isolated from mutant mice after secondary systemic infection with Staphylococcus aureus, suggesting progressive impairment as macrophages respond to infection. This direct evidence of impaired Ca2+ handling in nBMP2 mutant macrophages supports the hypothesis that nBMP2 plays a role in Ca2+ response.
Collapse
Affiliation(s)
- Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Haley R Burrell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jonard C Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Garrett J Hamblin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Carlee M Raymond
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Tyler D Cox
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Laura C Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America.
| |
Collapse
|
10
|
Rennert L, Zschiedrich S, Sandner L, Hartleben B, Cicko S, Ayata CK, Meyer C, Zech A, Zeiser R, Huber TB, Idzko M, Grahammer F. P2Y2R Signaling Is Involved in the Onset of Glomerulonephritis. Front Immunol 2018; 9:1589. [PMID: 30061884 PMCID: PMC6054981 DOI: 10.3389/fimmu.2018.01589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Endogenously released adenosine-5’-triphosphate (ATP) is a key regulator of physiological function and inflammatory responses in the kidney. Genetic or pharmacological inhibition of purinergic receptors has been linked to attenuation of inflammatory disorders and hence constitutes promising new avenues for halting and reverting inflammatory renal diseases. However, the involvement of purinergic receptors in glomerulonephritis (GN) has only been incompletely mapped. Here, we demonstrate that induction of GN in an experimental antibody-mediated GN model results in a significant increase of urinary ATP-levels and an upregulation of P2Y2R expression in resident kidney cells as well as infiltrating leukocytes pointing toward a possible role of the ATP/P2Y2R-axis in glomerular disease initiation. In agreement, decreasing extracellular ATP-levels or inhibition of P2R during induction of antibody-mediated GN leads to a reduction in all cardinal features of GN such as proteinuria, glomerulosclerosis, and renal failure. The specific involvement of P2Y2R could be further substantiated by demonstrating the protective effect of the lack of P2Y2R in antibody-mediated GN. To systematically differentiate between the function of P2Y2R on resident renal cells versus infiltrating leukocytes, we performed bone marrow-chimera experiments revealing that P2Y2R on hematopoietic cells is the main driver of the ATP/P2Y2R-mediated disease progression in antibody-mediated GN. Thus, these data unravel an important pro-inflammatory role for P2Y2R in the pathogenesis of GN.
Collapse
Affiliation(s)
- Laura Rennert
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Zschiedrich
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Sandner
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Björn Hartleben
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanja Cicko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Cemil Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Charlotte Meyer
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Zech
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany.,Division of Pulmonology, Department of Medicine II, Medical University Vienna, Vienna, Austria
| | - Florian Grahammer
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Svendsen SL, Isidor S, Praetorius HA, Leipziger J. P2X Receptors Inhibit NaCl Absorption in mTAL Independently of Nitric Oxide. Front Physiol 2017; 8:18. [PMID: 28174542 PMCID: PMC5258741 DOI: 10.3389/fphys.2017.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of basolateral P2X receptors markedly reduces NaCl absorption in mouse medullary thick ascending limb (mTAL). Here we tested the role of nitric oxide (NO) in the ATP-mediated (P2X) transport inhibition. We used isolated, perfused mTALs from mice to electrically measure NaCl absorption. By microelectrodes we determined the transepithelial voltage (Vte) and transepithelial resistance (Rte). Via these two parameters, we calculated the equivalent short circuit current, I'sc as a measure of the transepithelial Na+ absorption. Basolateral ATP (100 μM) acutely induced reversible inhibition of Na+ absorption (24 ± 4%, n = 10). Addition of L-arginine (100 μM) had no apparent effect on the ATP-induced transport inhibition. Acute reduction of extracellular [Ca2+] to either 100 nM or 0 nM by addition of EGTA had no effect on the ATP-induced transport inhibition. In the presence of the NO synthase (NOS) inhibitor L-NAME (100 μM) and/or ODQ to inhibit the guanylyl cyclase, the ATP effect remained unaffected. Increasing the concentration and incubation time for L-NAME (1 mM) still did not reveal any effect on the ATP-mediated transport inhibition. Acute addition of the NO donors SNAP (100 μM) and Spermine NONOate (10 μM) did not alter tubular transport. High concentrations of L-NAME (1 mM) in itself, however, reduced the transepithelial transport significantly. Thus, we find no evidence for nitric oxide (NO) as second messenger for P2X receptor-dependent transport inhibition in mTAL. Moreover, Ca2+ signaling appears not involved in the ATP-mediated effect. It remains undefined how P2X receptors trigger the marked reduction of transport in the TAL.
Collapse
Affiliation(s)
- Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| | - Søren Isidor
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| | - Helle A Praetorius
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| |
Collapse
|
12
|
Inhibition of P2X Receptors Protects Human Monocytes against Damage by Leukotoxin from Aggregatibacter actinomycetemcomitans and α-Hemolysin from Escherichia coli. Infect Immun 2016; 84:3114-3130. [PMID: 27528275 DOI: 10.1128/iai.00674-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/14/2023] Open
Abstract
α-Hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans are important virulence factors in ascending urinary tract infections and aggressive periodontitis, respectively. The extracellular signaling molecule ATP is released immediately after insertion of the toxins into plasma membranes and, via P2X receptors, is essential for the erythrocyte damage inflicted by these toxins. Moreover, ATP signaling is required for the ensuing recognition and phagocytosis of damaged erythrocytes by the monocytic cell line THP-1. Here, we investigate how these toxins affect THP-1 monocyte function. We demonstrate that both toxins trigger early ATP release and a following increase in the intracellular Ca2+ concentration ([Ca2+]i) in THP-1 monocytes. The HlyA- and LtxA-induced [Ca2+]i response is diminished by the P2 receptor antagonist in a pattern that fits the functional P2 receptor expression in these cells. Both toxins are capable of lysing THP-1 cells, with LtxA being more aggressive. Either desensitization or blockage of P2X1, P2X4, or P2X7 receptors markedly reduces toxin-induced cytolysis. This pattern is paralleled in freshly isolated human monocytes from healthy volunteers. Interestingly, only a minor fraction of the toxin-damaged THP-1 monocytes eventually lyse. P2X7 receptor inhibition generally prevents cell damage, except from a distinct cell shrinkage that prevails in response to the toxins. Moreover, we find that preexposure to HlyA preserves the capacity of THP-1 monocytes to phagocytose damaged erythrocytes and may induce readiness to discriminate between damaged and healthy erythrocytes. These findings suggest a new pharmacological target for protecting monocytes during exposure to pore-forming cytolysins during infection or injury.
Collapse
|
13
|
Dai B, Zhang J, Liu M, Lu J, Zhang Y, Xu Y, Miao J, Yin Y. The role of Ca(2+) mediated signaling pathways on the effect of taurine against Streptococcus uberis infection. Vet Microbiol 2016; 192:26-33. [PMID: 27527761 DOI: 10.1016/j.vetmic.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023]
Abstract
To provide insight into the mechanisms of taurine attenuation of pro-inflammatory response in mouse mammary epithelial cell line (EpH4-Ev, purchased by ATCC, USA) after Streptococcus uberis (S. uberis, 0140J) challenge, we infected MECs with S. uberis (2.5×10(7)cfumL(-1), MOI=10) for 3h and quantified changes in TLR-2 and calcium (Ca(2+)) mediated signaling pathways. The results indicate that S. uberis infection significantly increases the expression of TLR-2, intracellular Ca(2+) levels, PLC-γ1 and PKC-α, the activities of transcription factors NF-κB and NFAT, and related cytokines (TNF-α, IL-1β, IL-6, G-CSF, IL-2, KC, IL-15, FasL, MCP-1, and LIX) in culture supernatants. Taurine administration downregulated all these indices, the activities of NF-κB and NFAT. Cytokine secretions were similar using special PKC inhibitor Go 6983 and NFAT inhibitor VIVIT. Our data indicate that S. uberis infection induces pro-inflammatory response of MECs through a TLR-2 mediated signaling pathway. In addition, taurine can prevent MEC damage by affecting both PLC-γ1-Ca(2+)-PKC-α-NF-κB and PLC-γ1-Ca(2+)-NFATs signaling pathways. This is the first report to demonstrate the mechanisms of taurine attenuated pro-inflammatory response in MECs after S. uberis challenge.
Collapse
Affiliation(s)
- Bin Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinye Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yuanshu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center for Animal & Poultry Science, Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|