1
|
Tripathi DK, Naidu G, Nagar N, Pramanik SD, Roy P, Kumar D, Poluri KM. Deciphering the molecular interactions between monocyte chemoattractant protein and its potential inhibitor suramin. Int J Biol Macromol 2025; 307:141903. [PMID: 40064271 DOI: 10.1016/j.ijbiomac.2025.141903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Chemokines, in coordination with glycosaminoglycans (GAGs) and G protein-coupled receptors (GPCRs), play a critical role in regulating inflammatory responses. Among these, monocyte chemoattractant protein-1, also known as CCL2 stands out for its role in coordinating with other immune molecules to direct macrophage migration, infiltration, and recruitment to inflamed tissues, highlighting this pathway as a promising target for therapeutic intervention. In the present study, suramin, a polysulfonated napthylurea compound, having structure similarity with heparin, initially developed therapeutic for treating Human African Trypanosomas [HAT] was analyzed for its repressive action against CCL2 arbitrated macrophage migration. The study delves into the binding interaction between suramin (SUR) and CCL2 monomer, elucidating the molecular and biophysical underpinnings of their interaction through various techniques, including isothermal calorimetry, fluorescence spectroscopy, fluorescence lifetime studies, CD spectroscopy, and 2D NMR spectroscopy. Additionally, in-silico mechanistic studies employing molecular dynamic simulations, MMPBSA, and decomposition analysis unravel the intricacies of CCL2-SUR interactions. The molecule is observed to be attenuating the migration of macrophages by interacting with nanomolar affinity (119 ± 11 nM) on the CCL2 with the region overlapping with the CCR2/GAG binding pocket. Thus, this study comprehensively identified suramin, as a possible GAG mimetic for scheming structure-based drug molecules exhibiting anti-inflammatory action by aiming the CCL2-CCR2-GAG axis.
Collapse
Affiliation(s)
- Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Parween F, Singh SP, Kathuria N, Zhang HH, Ashida S, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Riley DJ, Myers TG, Pittaluga S, Bielekova B, Farber JM. Migration arrest and transendothelial trafficking of human pathogenic-like Th17 cells are mediated by differentially positioned chemokines. Nat Commun 2025; 16:1978. [PMID: 40000641 PMCID: PMC11861662 DOI: 10.1038/s41467-025-57002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Human Th17/type 17 cells express the chemokine receptor CCR6, but the functions of CCR6 and other chemokine receptors in human type 17 Th cell extravasation have not been fully delineated. Here we show that human peripheral blood CD4+CCR6+ T cells co-expressing CCR2 have a pathogenic Th17 signature, can produce inflammatory cytokines without T cell receptor activation, and show enhanced expression of pathogenicity-associated and activation-associated genes in the cerebrospinal fluid of patients with multiple sclerosis as compared to controls. In flow chambers with activated endothelial cell (EC) monolayers, CD4+CCR6+CCR2+ T cells are efficient at transendothelial migration (TEM). Ligands for CCR5, CCR6 and CXCR3 localize to EC surfaces and mediate only arrest, whereas CCR2 ligands fail to bind well to ECs and mediate only TEM. Conversely, expressing a chimeric CCR2 ligand engineered to bind glycosaminoglycans on ECs results in CCR2-mediated arrest but blocks TEM induction. Our results from human pathogenic-like type 17 cells thus suggest that T cell migration arrest requires chemokine bound to EC surfaces, whereas TEM requires a transendothelial chemokine gradient.
Collapse
Affiliation(s)
- Farhat Parween
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nausheen Kathuria
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongwei H Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shinji Ashida
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco A Otaizo-Carrasquero
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amirhossein Shamsaddini
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul J Gardina
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hernan A Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna J Riley
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Oliveira VLS, Queiroz-Junior CM, Hoorelbeke D, Santos FRDS, Chaves IDM, Teixeira MM, Russo RDC, Proost P, Costa VV, Struyf S, Amaral FA. The glycosaminoglycan-binding chemokine fragment CXCL9(74-103) reduces inflammation and tissue damage in mouse models of coronavirus infection. Front Immunol 2024; 15:1378591. [PMID: 38686377 PMCID: PMC11056509 DOI: 10.3389/fimmu.2024.1378591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.
Collapse
Affiliation(s)
- Vivian Louise Soares Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Delphine Hoorelbeke
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Felipe Rocha da Silva Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo de Castro Russo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paul Proost
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sofie Struyf
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Liu Q, Li L, Zheng D, Jin S, Guan X, Fu Z, Xiong Z, Ding H. Mechanism of ShuiJingDan in Treating Acute Gouty Arthritis Flares Based on Network Pharmacology and Molecular Docking. Drug Des Devel Ther 2023; 17:3493-3505. [PMID: 38034481 PMCID: PMC10683514 DOI: 10.2147/dddt.s436360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose This study examined the underlying mechanisms of SJD's anti-inflammatory and analgesic effects on acute GA flares. Methods This study used pharmacology network and molecular docking methods. The active ingredients of ShuiJingDan (SJD) were obtained from the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP), and the relevant targets of GA were obtained from the Online Mendelian Inheritance in Man (OMIM) database and Therapeutic Target Database (TTD). The core drug group-target-disease Venn diagram was formed by crossing the active ingredients of SJD and the relevant targets. Gene Ontology (GO) analysis was conducted for functional annotation, DAVID was used for Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis, and R was used to find the core targets. The accuracy of SJD network pharmacology analysis in GA treatment was verified by molecular docking simulations. Finally, a rat GA model was used to further verify the anti-inflammatory mechanism of SJD in the treatment of GA. Results SJD mainly acted on target genes including IL1B, PTGS2, CXCL8, EGF, and JUN, as well as signal pathways including NF-κB, Toll-like receptor (TLR), IL-17, and MAPK. The rat experiments showed that SJD could significantly relieve ankle swelling, reduce the local skin temperature, and increased the paw withdrawal threshold. SJD could also reduce synovial inflammation, reduced the concentrations of interleukin-1β (IL-1β), IL-8, and COX-2 in the synovial fluid, and suppressed the expression of IL1B, CXCL8, and PTGS2 mRNA in the synovial tissue. Conclusion SJD has a good anti-inflammatory effect to treat GA attacks, by acting on target genes such as IL-1β, PTGS2, and CXCL8.
Collapse
Affiliation(s)
- Qingsong Liu
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Lunyu Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Dan Zheng
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Songlin Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Xiaotian Guan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Zeting Fu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Zhigang Xiong
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Haili Ding
- Insititute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Ridley AJL, Ou Y, Karlsson R, Pun N, Birchenough HL, Mulholland IZ, Birch ML, MacDonald AS, Jowitt TA, Lawless C, Miller RL, Dyer DP. Chemokines form complex signals during inflammation and disease that can be decoded by extracellular matrix proteoglycans. Sci Signal 2023; 16:eadf2537. [PMID: 37934811 DOI: 10.1126/scisignal.adf2537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Chemokine-driven leukocyte recruitment is a key component of the immune response and of various diseases. Therapeutically targeting the chemokine system in inflammatory disease has been unsuccessful, which has been attributed to redundancy. We investigated why chemokines instead have specific, specialized functions, as demonstrated by multiple studies. We analyzed the expression of genes encoding chemokines and their receptors across species, tissues, and diseases. This analysis revealed complex expression patterns such that genes encoding multiple chemokines that mediated recruitment of the same leukocyte type were expressed in the same context, such as the genes encoding the CXCR3 ligands CXCL9, CXCL10, and CXCL11. Through biophysical approaches, we showed that these chemokines differentially interacted with extracellular matrix glycosaminoglycans (ECM GAGs), which was enhanced by sulfation of specific GAGs. Last, in vivo approaches demonstrated that GAG binding was critical for the CXCL9-dependent recruitment of specific T cell subsets but not of others, irrespective of CXCR3 expression. Our data demonstrate that interactions with ECM GAGs regulated whether chemokines were presented on cell surfaces or remained more soluble, thereby affecting chemokine availability and ensuring specificity of chemokine action. Our findings provide a mechanistic understanding of chemokine-mediated immune cell recruitment and identify strategies to target specific chemokines during inflammatory disease.
Collapse
Affiliation(s)
- Amanda J L Ridley
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Yaqing Ou
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nabina Pun
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Iashia Z Mulholland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Mary L Birch
- Biological Services Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M6 8HD, UK
| |
Collapse
|
6
|
Felli E, Felli E, Muttillo EM, Urade T, Laracca GG, Giannelli V, Famularo S, Geny B, Ettorre GM, Rombouts K, Pinzani M, Diana M, Gracia-Sancho J. Liver ischemia-reperfusion injury: From trigger loading to shot firing. Liver Transpl 2023; 29:1226-1233. [PMID: 37728488 DOI: 10.1097/lvt.0000000000000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
An ischemia-reperfusion injury (IRI) results from a prolonged ischemic insult followed by the restoration of blood perfusion, being a common cause of morbidity and mortality, especially in liver transplantation. At the maximum of the potential damage, IRI is characterized by 2 main phases. The first is the ischemic phase, where the hypoxia and vascular stasis induces cell damage and the accumulation of damage-associated molecular patterns and cytokines. The second is the reperfusion phase, where the local sterile inflammatory response driven by innate immunity leads to a massive cell death and impaired liver functionality. The ischemic time becomes crucial in patients with underlying pathophysiological conditions. It is possible to compare this process to a shooting gun, where the loading trigger is the ischemia period and the firing shot is the reperfusion phase. In this optic, this article aims at reviewing the main ischemic events following the phases of the surgical timeline, considering the consequent reperfusion damage.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Emanuele Felli
- Department of Digestive Surgery and Liver Transplantation, University Hospital of Tours, France
| | - Edoardo M Muttillo
- Department of Medical Surgical Science and Translational Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Takeshi Urade
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Giovanni G Laracca
- Department of Medical Surgical Science and Translational Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Valerio Giannelli
- Department of Transplantation and General Surgery, San Camillo Hospital, Italy
| | - Simone Famularo
- Department of Biomedical Science, Humanitas University Pieve Emanuele, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Research Institute Against Cancer of the Digestive System (IRCAD), France
| | - Bernard Geny
- Institute of Physiology, EA3072 Mitochondria Respiration and Oxidative Stress, University of Strasbourg, France
| | - Giuseppe M Ettorre
- Department of Transplantation and General Surgery, San Camillo Hospital, Italy
| | - Krista Rombouts
- University College London - Institute for Liver and Digestive Health, Royal Free Hospital, NW3 2PF London, United Kingdom
| | - Massimo Pinzani
- University College London - Institute for Liver and Digestive Health, Royal Free Hospital, NW3 2PF London, United Kingdom
| | - Michele Diana
- Research Institute Against Cancer of the Digestive System (IRCAD), France
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, Hospital Clínic Barcelona, CIBEREHD, Barcelona, Spain
| |
Collapse
|
7
|
Giblin SP, Ranawana S, Hassibi S, Birchenough HL, Mincham KT, Snelgrove RJ, Tsuchiya T, Kanegasaki S, Dyer D, Pease JE. CXCL17 binds efficaciously to glycosaminoglycans with the potential to modulate chemokine signaling. Front Immunol 2023; 14:1254697. [PMID: 37942327 PMCID: PMC10628517 DOI: 10.3389/fimmu.2023.1254697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction CXCL17 is a mucosally secreted protein, and the most recently identified human chemokine, an assignment based on protein fold prediction and chemotactic activity for leukocytes. However, these credentials have been the subject of much recent discussion and no experimental evidence has been presented regarding the definitive structure of CXCL17. In this study, we evaluated the structural and chemoattractant credentials of CXCL17 to better characterize this molecule, and gain deeper insights into its functional role as a glycosaminoglycan (GAG) binding protein. Methods In the absence of structural information, in silico modeling techniques assessed the likelihood of CXCL17 adopting a chemokine fold. Recombinant CXCL17 was synthesized in mammalian and prokaryotic systems. Modified Boyden chamber and real-time chemotaxis assays assessed the ability of CXCL17 to promote chemotaxis of murine splenocytes, human neutrophils, and CXCR1 transfectants. The efficacy of CXCL17 binding to GAGs was quantified with solid-phase assays and bio-layer interferometry techniques. Results All modeling efforts failed to support classification of CXCL17 as a chemokine based on its predicted conformation. Recombinant CXCL17 was observed to dimerize as a function of concentration, a characteristic of several chemokines. Contrary to a previous report, CXCL17 was not chemotactic for murine splenocytes, although it was a low-potency chemoattractant for human neutrophils at micromolar concentrations, several orders of magnitude higher than those required for CXCL8. As anticipated owing to its highly basic nature, CXCL17 bound to GAGs robustly, with key C-terminal motifs implicated in this process. While inactive via CXCR1, CXCL17 was found to inhibit CXCR1-mediated chemotaxis of transfectants to CXCL8 in a dose-dependent manner. Discussion In summary, despite finding little evidence for chemokine-like structure and function, CXCL17 readily bound GAGs, and could modulate chemotactic responses to another chemokine in vitro. We postulate that such modulation is a consequence of superior GAG binding, and that C-terminal fragments of CXCL17 may serve as prototypic inhibitors of chemokine function.
Collapse
Affiliation(s)
- Sean P. Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sashini Ranawana
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Shyreen Hassibi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Holly L. Birchenough
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kyle T. Mincham
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert J. Snelgrove
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Japan
| | | | - Douglas Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, United Kingdom
| | - James E. Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Parween F, Singh SP, Zhang HH, Kathuria N, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Myers TG, Farber JM. Chemokine positioning determines mutually exclusive roles for their receptors in extravasation of pathogenic human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525561. [PMID: 36789428 PMCID: PMC9928044 DOI: 10.1101/2023.01.25.525561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.
Collapse
Affiliation(s)
- Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Nausheen Kathuria
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Francisco A. Otaizo-Carrasquero
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Paul J. Gardina
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hernan A. Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Timothy G. Myers
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
9
|
A stabilized CXCL9(74-103)-derived peptide selectively inhibits proliferation, adhesion and metastasis of tumor cells that express high levels of heparan sulfate. Int J Biol Macromol 2022; 222:2808-2822. [PMID: 36272565 DOI: 10.1016/j.ijbiomac.2022.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
10
|
Yu X, Chen Y, Cui L, Yang K, Wang X, Lei L, Zhang Y, Kong X, Lao W, Li Z, Liu Y, Li Y, Bi C, Wu C, Zhai A. CXCL8, CXCL9, CXCL10, and CXCL11 as biomarkers of liver injury caused by chronic hepatitis B. Front Microbiol 2022; 13:1052917. [PMID: 36504808 PMCID: PMC9730243 DOI: 10.3389/fmicb.2022.1052917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Chronic hepatitis B (CHB) remains a significant global health problem, leading to recurrent inflammation and liver-damaging diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, although diagnostic markers for CHB are well established, the indicators for predicting liver injury caused by hepatitis B virus (HBV) infection still need to be further explored. Thus, the identification of credible infectious indicators is urgently needed to facilitate timely clinical intervention and avoid the progression of disease malignancy. Methods The Gene Expression Omnibus (GEO) database GSE83148 data set was used to explore the hub genes for HBV infection. The quantitative real-time polymerase chain reaction (qPCR) was used to identify the impact of HBV infection on the expression of hub gene at the cell level. At the same time, serum samples and clinical information were collected from healthy, HBV-free and CHB patients. The enzyme-linked immunosorbent assay (ELISA) was used to verify the results of cell experiments and Pearson correlation analysis was used to clarify hub genes correlation with HBV infection indicators and liver injury-related indicators. Finally, the Gene Expression Profiling Interactive Analysis (GEPIA) database was used to analyze the differences in the expression of hub gene in liver injury diseases. Results Chemokine (C-X-C motif) ligand (CXCL)8, CXCL9, CXCL10, and CXCL11 were identified as hub genes in HBV infection. After HBV infection, the expression of the four chemokines was significantly increased and the concentrations secreted into serum were also increased. Moreover, the four chemokines were significantly correlated with HBV infection-related indicators and liver injury-related indicators, which were positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatitis B e antigen (HBeAg), and negatively correlated with AST/ALT ratio and hepatitis B core antibody (HBcAb). In addition, the expression of CXCL9, CXCL10, and CXCL11 in HCC tissues was significantly higher than in normal tissues. Conclusion Using a combination of bioinformatics, cell experiments, and clinical correlation analysis, this study showed that CXCL8, CXCL9, CXCL10, and CXCL11 can be used as serum biomarkers to forecast liver injury caused by HBV infection.
Collapse
Affiliation(s)
- Xin Yu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lele Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xumeng Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,Department of Microbiology, Harbin Medical University, Harbin, China
| | - Linyuan Lei
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanping Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Changlong Bi,
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,Chao Wu,
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,Aixia Zhai, ;
| |
Collapse
|
11
|
Chen S, Zhan Y, Chen J, Wu J, Gu Y, Huang Q, Deng Z, Wu X, Lv Y, Xie J. Identification and validation of genetic signature associated with aging in chronic obstructive pulmonary disease. Aging (Albany NY) 2022; 14:8568-8580. [DOI: 10.18632/aging.204358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jinkun Chen
- Department of Science, Western University, London, Ontario N6A 3K7, Canada
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430022, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
12
|
Oliveira THC, Vanheule V, Vandendriessche S, Poosti F, Teixeira MM, Proost P, Gouwy M, Marques PE. The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice. Int J Mol Sci 2022; 23:ijms23179715. [PMID: 36077113 PMCID: PMC9456047 DOI: 10.3390/ijms23179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) drives graft rejection and is the main cause of mortality after liver transplantation. During IRI, an intense inflammatory response marked by chemokine production and neutrophil recruitment occurs. However, few strategies are available to restrain this excessive response. Here, we aimed to interfere with chemokine function during IRI in order to disrupt neutrophil recruitment to the injured liver. For this, we utilized a potent glycosaminoglycan (GAG)-binding peptide containing the 30 C-terminal amino acids of CXCL9 (MIG30) that is able to inhibit the binding of chemokines to GAGs in vitro. We observed that mice subjected to IRI and treated with MIG30 presented significantly lower liver injury and dysfunction as compared to vehicle-treated mice. Moreover, the levels of chemokines CXCL1, CXCL2 and CXCL6 and of proinflammatory cytokines TNF-α and IL-6 were significantly reduced in MIG30-treated mice. These events were associated with a marked inhibition of neutrophil recruitment to the liver during IRI. Lastly, we observed that MIG30 is unable to affect leukocytes directly nor to alter the stimulation by either CXCL8 or lipopolysaccharide (LPS), suggesting that its protective properties derive from its ability to inhibit chemokine activity in vivo. We conclude that MIG30 holds promise as a strategy to treat liver IRI and inflammation.
Collapse
Affiliation(s)
- Thiago Henrique Caldeira Oliveira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
13
|
Boff D, Russo RC, Crijns H, de Oliveira VLS, Mattos MS, Marques PE, Menezes GB, Vieira AT, Teixeira MM, Proost P, Amaral FA. The Therapeutic Treatment with the GAG-Binding Chemokine Fragment CXCL9(74-103) Attenuates Neutrophilic Inflammation and Lung Dysfunction during Klebsiella pneumoniae Infection in Mice. Int J Mol Sci 2022; 23:ijms23116246. [PMID: 35682923 PMCID: PMC9181286 DOI: 10.3390/ijms23116246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74–103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74–103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74–103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1β (IL-1β) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74–103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Vivian Louise Soares de Oliveira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Gustavo Batista Menezes
- Center of Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Mauro Martins Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
- Correspondence: (P.P.); (F.A.A.)
| | - Flávio Almeida Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Correspondence: (P.P.); (F.A.A.)
| |
Collapse
|
14
|
Poosti F, Soebadi MA, Crijns H, De Zutter A, Metzemaekers M, Berghmans N, Vanheule V, Albersen M, Opdenakker G, Van Damme J, Sprangers B, Proost P, Struyf S. Inhibition of renal fibrosis with a human CXCL9‐derived glycosaminoglycan‐binding peptide. Clin Transl Immunology 2022; 11:e1370. [PMID: 35140938 PMCID: PMC8810938 DOI: 10.1002/cti2.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/18/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Renal fibrosis accompanies all chronic kidney disorders, ultimately leading to end‐stage kidney disease and the need for dialysis or even renal replacement. As such, renal fibrosis poses a major threat to global health and the search for effective therapeutic strategies to prevent or treat fibrosis is highly needed. We evaluated the applicability of a highly positively charged human peptide derived from the COOH‐terminal domain of the chemokine CXCL9, namely CXCL9(74–103), for therapeutic intervention. Because of its high density of net positive charges at physiological pH, CXCL9(74–103) competes with full‐length chemokines for glycosaminoglycan (GAG) binding. Consequently, CXCL9(74–103) prevents recruitment of inflammatory leucocytes to sites of inflammation. Methods CXCL9(74–103) was chemically synthesised and tested in vitro for anti‐fibrotic properties on human fibroblasts and in vivo in the unilateral ureteral obstruction (UUO) mouse model. Results CXCL9(74–103) significantly reduced the mRNA and/or protein expression of connective tissue growth factor (CTGF), alpha‐smooth muscle actin (α‐SMA) and collagen III by transforming growth factor (TGF)‐β1‐stimulated human fibroblasts. In addition, administration of CXCL9(74–103) inhibited fibroblast migration towards platelet‐derived growth factor (PDGF), without affecting cell viability. In the UUO model, CXCL9(74–103) treatment significantly decreased renal α‐SMA, vimentin, and fibronectin mRNA and protein expression. Compared with vehicle, CXCL9(74–103) attenuated mRNA expression of TGF‐β1 and the inflammatory markers/mediators MMP‐9, F4/80, CCL2, IL‐6 and TNF‐α. Finally, CXCL9(74–103) treatment resulted in reduced influx of leucocytes in the UUO model and preserved tubular morphology. The anti‐fibrotic and anti‐inflammatory effects of CXCL9(74–103) were mediated by competition with chemokines and growth factors for GAG binding. Conclusions Our findings provide a scientific rationale for targeting GAG–protein interactions in renal fibrotic disease.
Collapse
Affiliation(s)
- Fariba Poosti
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Mohammad Ayodhia Soebadi
- Laboratory of Experimental Urology University Hospitals Leuven Leuven Belgium
- Department of Urology Faculty of Medicine Universitas Airlangga Surabaya Indonesia
| | - Helena Crijns
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Maarten Albersen
- Laboratory of Experimental Urology University Hospitals Leuven Leuven Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Ben Sprangers
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
- Department of Nephrology University Hospitals Leuven Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| |
Collapse
|
15
|
Affinity and Specificity for Binding to Glycosaminoglycans Can Be Tuned by Adapting Peptide Length and Sequence. Int J Mol Sci 2021; 23:ijms23010447. [PMID: 35008874 PMCID: PMC8745253 DOI: 10.3390/ijms23010447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Although glycosaminoglycan (GAG)–protein interactions are important in many physiological and pathological processes, the structural requirements for binding are poorly defined. Starting with GAG-binding peptide CXCL9(74-103), peptides were designed to elucidate the contribution to the GAG-binding affinity of different: (1) GAG-binding motifs (i.e., BBXB and BBBXXB); (2) amino acids in GAG-binding motifs and linker sequences; and (3) numbers of GAG-binding motifs. The affinity of eight chemically synthesized peptides for various GAGs was determined by isothermal fluorescence titration (IFT). Moreover, the binding of peptides to cellular GAGs on Chinese hamster ovary (CHO) cells was assessed using flow cytometry with and without soluble GAGs. The repetition of GAG-binding motifs in the peptides contributed to a higher affinity for heparan sulfate (HS) in the IFT measurements. Furthermore, the presence of Gln residues in both GAG-binding motifs and linker sequences increased the affinity of trimer peptides for low-molecular-weight heparin (LMWH), partially desulfated (ds)LMWH and HS, but not for hyaluronic acid. In addition, the peptides bound to cellular GAGs with differential affinity, and the addition of soluble HS or heparin reduced the binding of CXCL9(74-103) to cellular GAGs. These results indicate that the affinity and specificity of peptides for GAGs can be tuned by adapting their amino acid sequence and their number of GAG-binding motifs.
Collapse
|
16
|
Duckworth BC, Qin RZ, Groom JR. Spatial determinates of effector and memory CD8 + T cell fates. Immunol Rev 2021; 306:76-92. [PMID: 34882817 DOI: 10.1111/imr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
The lymph node plays a critical role in mounting an adaptive immune response to infection, clearance of foreign pathogens, and cancer immunosurveillance. Within this complex structure, intranodal migration is vital for CD8+ T cell activation and differentiation. Combining tissue clearing and volumetric light sheet fluorescent microscopy of intact lymph nodes has allowed us to explore the spatial regulation of T cell fates. This has determined that short-lived effector (TSLEC ) are imprinted in peripheral lymph node interfollicular regions, due to CXCR3 migration. In contrast, stem-like memory cell (TSCM ) differentiation is determined in the T cell paracortex. Here, we detail the inflammatory and chemokine regulators of spatially restricted T cell differentiation, with a focus on how to promote TSCM . We propose a default pathway for TSCM differentiation due to CCR7-directed segregation of precursors away from the inflammatory effector niche. Although volumetric imaging has revealed the consequences of intranodal migration, we still lack knowledge of how this is orchestrated within a complex chemokine environment. Toward this goal, we highlight the potential of combining microfluidic chambers with pre-determined complexity and subcellular resolution microscopy.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Raymond Z Qin
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
17
|
Endothelial Heparan Sulfate Mediates Hepatic Neutrophil Trafficking and Injury during Staphylococcus aureus Sepsis. mBio 2021; 12:e0118121. [PMID: 34544271 PMCID: PMC8546592 DOI: 10.1128/mbio.01181-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic failure is an important risk factor for poor outcome in septic patients. Using a chemical tagging workflow and high-resolution mass spectrometry, we demonstrate that rapid proteome remodeling of the vascular surfaces precedes hepatic damage in a murine model of Staphylococcus aureus sepsis. These early changes include vascular deposition of neutrophil-derived proteins, shedding of vascular receptors, and altered levels of heparin/heparan sulfate-binding factors. Modification of endothelial heparan sulfate, a major component of the vascular glycocalyx, diminishes neutrophil trafficking to the liver and reduces hepatic coagulopathy and organ damage during the systemic inflammatory response to infection. Modifying endothelial heparan sulfate likewise reduces neutrophil trafficking in sterile hepatic injury, reflecting a more general role of heparan sulfate contribution to the modulation of leukocyte behavior during inflammation. IMPORTANCE Vascular glycocalyx remodeling is critical to sepsis pathology, but the glycocalyx components that contribute to this process remain poorly characterized. This article shows that during Staphylococcus aureus sepsis, the liver vascular glycocalyx undergoes dramatic changes in protein composition associated with neutrophilic activity and heparin/heparan sulfate binding, all before organ damage is detectable by standard circulating liver damage markers or histology. Targeted manipulation of endothelial heparan sulfate modulates S. aureus sepsis-induced hepatotoxicity by controlling the magnitude of neutrophilic infiltration into the liver in both nonsterile and sterile injury. These data identify an important vascular glycocalyx component that impacts hepatic failure during nonsterile and sterile injury.
Collapse
|
18
|
The Chemokine-Based Peptide, CXCL9(74-103), Inhibits Angiogenesis by Blocking Heparan Sulfate Proteoglycan-Mediated Signaling of Multiple Endothelial Growth Factors. Cancers (Basel) 2021; 13:cancers13205090. [PMID: 34680238 PMCID: PMC8534003 DOI: 10.3390/cancers13205090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Major angiogenic growth factors activate downstream signaling cascades by interacting with both receptor tyrosine kinases (RTKs) and cell surface proteoglycans, such as heparan sulfate proteoglycans (HSPGs). As current anti-angiogenesis regimens in cancer are often faced with resistance, alternative therapeutic strategies are highly needed. The aim of our study was to investigate the impact on angiogenic signaling when we interfered with growth factor-HSPG interactions using a CXCL9 chemokine-derived peptide with high affinity for HS. Abstract Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.
Collapse
|
19
|
Marques PE, Vandendriessche S, de Oliveira THC, Crijns H, Lopes ME, Blanter M, Schuermans S, Yu K, Poosti F, Vanheule V, Janssens R, Boff D, Kungl AJ, Menezes GB, Teixeira MM, Proost P. Inhibition of Drug-Induced Liver Injury in Mice Using a Positively Charged Peptide That Binds DNA. Hepatol Commun 2021; 5:1737-1754. [PMID: 34532999 PMCID: PMC8485890 DOI: 10.1002/hep4.1759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatic cell death occurs in response to diverse stimuli such as chemical and physical damage. The exposure of intracellular contents such as DNA during necrosis induces a severe inflammatory response that has yet to be fully explored therapeutically. Here, we sought means to neutralize the ability of extracellular DNA to induce deleterious tissue inflammation when drug-induced liver injury had already ensued. DNA exposure and inflammation were investigated in vivo in drug-induced liver injury using intravital microscopy. The necrotic DNA debris was studied in murine livers in vivo and in DNA debris models in vitro by using a positively charged chemokine-derived peptide (MIG30; CXCL9[74-103]). Acetaminophen-induced liver necrosis was associated with massive DNA accumulation, production of CXC chemokines, and neutrophil activation inside the injured tissue. The MIG30 peptide bound the healthy liver vasculature and, to a much greater extent, to DNA-rich necrotic tissue. Moreover, MIG30 bound extracellular DNA directly in vivo in a charge-dependent manner and independently of glycosaminoglycans and chemokines. Post-treatment of mice with MIG30 reduced mortality, liver damage, and inflammation significantly. These effects were not observed with a control peptide that does not bind DNA. Mechanistically, MIG30 inhibited the interaction between DNA and histones, and promoted the dissociation of histones from necrotic debris. MIG30 also inhibited the pro-inflammatory effect of CpG DNA, as measured by a reduction in CXCL8 production, indicating that MIG30 disturbs the ability of DNA to induce hepatic inflammation. Conclusion: The use of DNA-binding peptides reduces necrotic liver injury and inflammation, even at late timepoints.
Collapse
Affiliation(s)
- Pedro E Marques
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium.,Immunopharmacology LaboratoryDepartment of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Sofie Vandendriessche
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Thiago H C de Oliveira
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium.,Immunopharmacology LaboratoryDepartment of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Helena Crijns
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Mateus E Lopes
- Center for Gastrointestinal BiologyDepartment of MorphologyUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Marfa Blanter
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Sara Schuermans
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Karen Yu
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Fariba Poosti
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Vincent Vanheule
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Rik Janssens
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Daiane Boff
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium.,Immunopharmacology LaboratoryDepartment of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Andreas J Kungl
- Department of Pharmaceutical ChemistryInstitute of Pharmaceutical SciencesKarl-Franzens UniversitätGrazAustria
| | - Gustavo B Menezes
- Center for Gastrointestinal BiologyDepartment of MorphologyUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Mauro M Teixeira
- Immunopharmacology LaboratoryDepartment of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paul Proost
- Laboratory of Molecular ImmunologyDepartment of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| |
Collapse
|
20
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
21
|
S. mansoni SmKI-1 Kunitz-domain: Leucine point mutation at P1 site generates enhanced neutrophil elastase inhibitory activity. PLoS Negl Trop Dis 2021; 15:e0009007. [PMID: 33465126 PMCID: PMC7846107 DOI: 10.1371/journal.pntd.0009007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/29/2021] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Schistosoma mansoni SmKI-1 protein is composed of two domains: a Kunitz-type serine protease inhibitor motif (KD) and a C-terminus domain with no similarity outside the genera. Our previous work has demonstrated that KD plays an essential role in neutrophil elastase (NE) binding blockage, in neutrophil influx and as a potential anti-inflammatory molecule. In order to enhance NE blocking capacity, we analyzed the KD sequence from a structure-function point of view and designed specific point mutations in order to enhance NE affinity. We substituted the P1 site residue at the reactive site for a leucine (termed RL-KD), given its central role for KD's inhibition to NE. We have also substituted a glutamic acid that strongly interacts with the P1 residue for an alanine, to help KD to be buried on NE S1 site (termed EA-KD). KD and the mutant proteins were evaluated in silico by molecular docking to human NE, expressed in Escherichia coli and tested towards its NE inhibitory activity. Both mutated proteins presented enhanced NE inhibitory activity in vitro and RL-KD presented the best performance. We further tested RL-KD in vivo in an experimental model of monosodium urate (MSU)-induced acute arthritis. RL-KD showed reduced numbers of total cells and neutrophils in the mouse knee cavity when compared to KD. Nevertheless, both RL-KD and KD reduced mice hypernociception in a similar fashion. In summary, our results demonstrated that both mutated proteins showed enhanced NE inhibitory activity in vitro. However, RL-KD had a prominent effect in diminishing inflammatory parameters in vivo.
Collapse
|
22
|
Liu N, Meng B, Zeng L, Yin S, Hu Y, Li S, Fu Y, Zhang X, Xie C, Shu L, Yang M, Wang Y, Yang X. Discovery of a novel rice-derived peptide with significant anti-gout potency. Food Funct 2020; 11:10542-10553. [PMID: 33185232 DOI: 10.1039/d0fo01774d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As a metabolic disease, gout, which seriously affects the normal life of patients, has become increasingly common in modern society. However, the existing medicines cannot completely meet the clinical needs. In the current study, a novel short peptide (named rice-derived-peptide-2 (RDP2), AAAAGAMPK-NH2, 785.97 Da) was isolated and identified from water extract of shelled Oryza sativa fruits, without toxic side effects but excellent stability. Our results indicated that RDP2 (the minimum effective concentration is 5 μg kg-1) induced a significant reduction in serum uric acid levels in hyperuricemic mice via suppressing xanthine oxidase activity and urate transporter 1 expression, as well as alleviated renal damage through inhibiting the activation of NLRP3 inflammasome. In addition, RDP2 can also alleviate paw swelling and inflammatory reactions in mice after subcutaneous injection of monosodium urate crystals. As mentioned above, we obtained a novel peptide which could work through all stages of gout, not only reducing uric acid levels and renal damage in hyperuricemic mice, but also alleviating inflammatory responses associated with acute gout attack, and thus provided a new peptide molecular template for the development of anti-gout drugs.
Collapse
Affiliation(s)
- Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Groover MK, Richmond JM. Potential therapeutic manipulations of the CXCR3 chemokine axis for the treatment of inflammatory fibrosing diseases. F1000Res 2020; 9:1197. [PMID: 33145014 PMCID: PMC7590900 DOI: 10.12688/f1000research.26728.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chemokines play important roles in homeostasis and inflammatory processes. While their roles in leukocyte recruitment are well-appreciated, chemokines play additional roles in the body, including mediating or regulating angiogenesis, tumor metastasis and wound healing. In this opinion article, we focus on the role of CXCR3 and its ligands in fibrotic processes. We emphasize differences of the effects of each ligand, CXCL9, CXCL10 and CXCL11, on fibroblasts in different tissues of the body. We include discussions of differences in signaling pathways that may account for protective or pro-fibrotic effects of each ligand in different experimental models and ex vivo analysis of human tissues. Our goal is to highlight potential reasons why there are disparate findings in different models, and to suggest ways in which this chemokine axis could be manipulated for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan K. Groover
- Department of Dermatology, University of Massachussetts Medical School, Worcester, MA, 01605, USA
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachussetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
24
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments in the mechanisms of allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part I. Clin Exp Allergy 2020; 49:1541-1549. [PMID: 31833127 DOI: 10.1111/cea.13532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2018. Experimental models of allergic disease, basic mechanisms and clinical mechanisms are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - Julian Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Simon P Hogan
- Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ben Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | - Segal Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Judith A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
25
|
Dyer DP. Understanding the mechanisms that facilitate specificity, not redundancy, of chemokine-mediated leukocyte recruitment. Immunology 2020; 160:336-344. [PMID: 32285441 PMCID: PMC7370109 DOI: 10.1111/imm.13200] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Chemokines (chemotactic cytokines) and their receptors are critical to recruitment and positioning of cells during development and the immune response. The chemokine system has long been described as redundant for a number of reasons, where multiple chemokine ligands can bind to multiple receptors and vice versa. This apparent redundancy has been thought to be a major reason for the failure of drugs targeting chemokines during inflammatory disease. We are now beginning to understand that chemokine biology is in fact based around a high degree of specificity, where each chemokine and receptor plays a particular role in the immune response. This specificity hypothesis is supported by a number of recent studies designed to address this problem. This review will detail these studies and the mechanisms that produce this specificity of function with an emphasis on the emerging role of chemokine–glycosaminoglycan interactions.
Collapse
Affiliation(s)
- Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020; 11:483. [PMID: 32296423 PMCID: PMC7138053 DOI: 10.3389/fimmu.2020.00483] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leukocyte migration into tissues depends on the activity of chemokines that form concentration gradients to guide leukocytes to a specific site. Interaction of chemokines with their specific G protein-coupled receptors (GPCRs) on leukocytes induces leukocyte adhesion to the endothelial cells, followed by extravasation of the leukocytes and subsequent directed migration along the chemotactic gradient. Interaction of chemokines with glycosaminoglycans (GAGs) is crucial for extravasation in vivo. Chemokines need to interact with GAGs on endothelial cells and in the extracellular matrix in tissues in order to be presented on the endothelium of blood vessels and to create a concentration gradient. Local chemokine retention establishes a chemokine gradient and prevents diffusion and degradation. During the last two decades, research aiming at reducing chemokine activity mainly focused on the identification of inhibitors of the interaction between chemokines and their cognate GPCRs. This approach only resulted in limited success. However, an alternative strategy, targeting chemokine-GAG interactions, may be a promising approach to inhibit chemokine activity and inflammation. On this line, proteins derived from viruses and parasites that bind chemokines or GAGs may have the potential to interfere with chemokine-GAG interactions. Alternatively, chemokine mimetics, including truncated chemokines and mutant chemokines, can compete with chemokines for binding to GAGs. Such truncated or mutated chemokines are characterized by a strong binding affinity for GAGs and abrogated binding to their chemokine receptors. Finally, Spiegelmers that mask the GAG-binding site on chemokines, thereby preventing chemokine-GAG interactions, were developed. In this review, the importance of GAGs for chemokine activity in vivo and strategies that could be employed to target chemokine-GAG interactions will be discussed in the context of inflammation.
Collapse
Affiliation(s)
- Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Moussouras NA, Hjortø GM, Peterson FC, Szpakowska M, Chevigné A, Rosenkilde MM, Volkman BF, Dwinell MB. Structural Features of an Extended C-Terminal Tail Modulate the Function of the Chemokine CCL21. Biochemistry 2020; 59:1338-1350. [PMID: 32182428 DOI: 10.1021/acs.biochem.0c00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemokines CCL21 and CCL19, through binding of their cognate receptor CCR7, orchestrate lymph node homing of dendritic cells and naïve T cells. CCL21 differs from CCL19 via an unstructured 32 residue C-terminal domain. Previously described roles for the CCL21 C-terminus include GAG-binding, spatial localization to lymphatic vessels, and autoinhibitory modulation of CCR7-mediated chemotaxis. While truncation of the C-terminal tail induced chemical shift changes in the folded chemokine domain, the structural basis for its influence on CCL21 function remains largely unexplored. CCL21 concentration-dependent NMR chemical shifts revealed weak, nonphysiological self-association that mimics the truncation of the C-terminal tail. We generated a series of C-terminal truncation variants to dissect the C-terminus influence on CCL21 structure and receptor activation. Using NMR spectroscopy, we found that CCL21 residues 80-90 mediate contacts with the chemokine domain. In cell-based assays for CCR7 and ACKR4 activation, we also found that residues 92-100 reduced CCL21 potency in calcium flux, cAMP inhibition, and β-arrestin recruitment. Taken together, these structure-function studies support a model wherein intramolecular interactions with specific residues of the flexible C-terminus stabilize a less active monomer conformation of the CCL21. We speculate that the autoinhibitory intramolecular contacts between the C-terminal tail and chemokine body are disrupted by GAG binding and/or interactions with the CCR7 receptor to ensure optimal functionality.
Collapse
Affiliation(s)
- Natasha A Moussouras
- From the Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael B Dwinell
- From the Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
28
|
Eckert EC, Nace RA, Tonne JM, Evgin L, Vile RG, Russell SJ. Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:63-74. [PMID: 31930167 PMCID: PMC6951834 DOI: 10.1016/j.omto.2019.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/07/2019] [Indexed: 02/08/2023]
Abstract
Genetically modified vesicular stomatitis virus (VSV) is an attractive agent for cancer treatment due to rapid intratumoral replication and observed clinical responses. Although VSV selectively kills malignant cells and can boost antitumor immunity, limited induction of intratumoral immune infiltration remains a barrier to efficacy in some cancer models. Here we engineered the oncolytic VSV platform to encode the T cell chemokine CXCL9, which is known to mediate the recruitment of activated CD8+ cytotoxic T cells and CD4+ T helper cells, and demonstrates conserved protein function between mice and humans. Chemotactic activity of the virally encoded chemokine was confirmed in vitro. Intratumoral concentration of CXCL9 was shown to increase after VSV therapy in three different cancer models, but to a much greater degree after VSV-CXCL9 therapy as compared with VSV control viruses. Despite a steep chemokine gradient from the tumor to the bloodstream, tumor trafficking of adoptively transferred and endogenous T cells was not measurably increased following VSV-CXCL9 therapy. Our results indicate that oncolytic VSV infection promotes release of CXCL9 in the tumor microenvironment, but further boosting of the functional chemokine gradient through virus engineering has little incremental impact on intratumoral immune cell infiltration in mouse and human tumor models.
Collapse
Affiliation(s)
- Elizabeth C Eckert
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Clinical and Translational Science Track, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Rebecca A Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Martínez-Burgo B, Cobb SL, Pohl E, Kashanin D, Paul T, Kirby JA, Sheerin NS, Ali S. A C-terminal CXCL8 peptide based on chemokine-glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology 2019; 157:173-184. [PMID: 31013364 DOI: 10.1111/imm.13063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Leucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil chemoattractant, is characterized by a long, highly positively charged GAG-binding C-terminal region, absent in most other chemokines. To examine whether the CXCL8 C-terminal peptide has a modulatory role in GAG binding during neutrophil recruitment, we synthesized the wild-type CXCL8 C-terminal [CXCL8 (54-72)] (Peptide 1), a peptide with a substitution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase positive charge; and also, a scrambled sequence peptide (Peptide 3). Surface plasmon resonance showed that Peptide 1, corresponding to the core CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was detected at lower concentrations. In the absence of cellular GAG, the peptides did not affect CXCL8-induced calcium signalling or neutrophil chemotaxis along a diffusion gradient, suggesting no effect on GPCR binding. All peptides equally inhibited neutrophil adhesion to endothelial cells under physiological flow conditions. Peptide 2, with its greater positive charge and binding to polyanionic GAG, inhibited CXCL8-induced neutrophil transendothelial migration. Our studies suggest that the E70K CXCL8 peptide, may serve as a lead molecule for further development of therapeutic inhibitors of neutrophil-mediated inflammation based on modulation of chemokine-GAG binding.
Collapse
Affiliation(s)
- Beatriz Martínez-Burgo
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| | | | - Ehmke Pohl
- Chemistry Department, Durham University, Durham, UK
| | | | | | - John A Kirby
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Simi Ali
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Kumari R, Palaniyandi S, Strattan E, Huang T, Kohler K, Jabbour N, Dalland J, Du J, Kesler MV, Chen YH, Hildebrandt GC. TNFAIP8 Deficiency Exacerbates Acute Graft Versus Host Disease in a Murine Model of Allogeneic Hematopoietic Cell Transplantation. Transplantation 2019; 104:500-510. [PMID: 31634333 DOI: 10.1097/tp.0000000000003013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gastrointestinal acute graft-versus-host disease (GVHD) occurring after allogeneic hematopoietic cell transplant is an allo-reactive T cell and inflammatory cytokine driven organ injury with epithelial apoptosis as 1 of its hallmark findings and is associated with significant mortality. Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) acts as a negative mediator of apoptosis via inhibition of caspase-3 activation, promotes cell proliferation and Tipe deficiency is associated with increased inflammation. METHODS To evaluate the role of TIPE in acute GVHD, naive C57BL/6 and Tipe C57BL/6 mice were conditioned with 1000 cGy single dose total body irradiation, followed by transplantation of 10 million bone marrow cells and 20 million splenocytes from either syngeneic C57BL/6 or allogeneic BALB/c donors. RESULTS Allo TIPE-deficient mice developed exacerbated gut GVHD compared with allo controls and had significantly decreased survival (6 wk overall survival: 85% versus 37%; P < 0.05), higher clinical GVHD scores, more profound weight loss, increased serum proinflammatory cytokines (interleukin-17A, TNF, interleukin-6, and interferon-γ). T-cell infiltration into the ileum was increased; epithelial proliferation was decreased along with significantly higher levels of chemokines KC and monokine induced by gamma interferon. Using bone marrow chimeric experiments, TIPE was found to have a role in both hematopoietic and nonhematopoietic cells. CONCLUSIONS Absence of TIPE results in excessive inflammation and tissue injury after allo-HCT, supporting that TIPE confers immune homeostasis and has tissue-protective function during the development of gut GVHD and may be a potential future target to prevent or treat this complication after allogeneic HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Ethan Strattan
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Timothy Huang
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Katharina Kohler
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Nashwan Jabbour
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Joanna Dalland
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Jing Du
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Melissa V Kesler
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Gerhard C Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| |
Collapse
|
31
|
Goldblatt J, Lawrenson RA, Muir L, Dattani S, Hoffland A, Tsuchiya T, Kanegasaki S, Sriskandan S, Pease JE. A Requirement for Neutrophil Glycosaminoglycans in Chemokine:Receptor Interactions Is Revealed by the Streptococcal Protease SpyCEP. THE JOURNAL OF IMMUNOLOGY 2019; 202:3246-3255. [PMID: 31010851 PMCID: PMC6526389 DOI: 10.4049/jimmunol.1801688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022]
Abstract
SpyCEP-cleaved CXCL8 is unable to bind and activate CXCL8 receptors. Neutrophil glycosaminoglycans are required for migration along a CXCL8 gradient.
To evade the immune system, the lethal human pathogen Streptococcus pyogenes produces SpyCEP, an enzyme that cleaves the C-terminal α-helix of CXCL8, resulting in markedly impaired recruitment of neutrophils to sites of invasive infection. The basis for chemokine inactivation by SpyCEP is, however, poorly understood, as the core domain of CXCL8 known to interact with CXCL8 receptors is unaffected by enzymatic cleavage. We examined the in vitro migration of human neutrophils and observed that their ability to efficiently navigate a CXCL8 gradient was compromised following CXCL8 cleavage by SpyCEP. SpyCEP-mediated cleavage of CXCL8 also impaired CXCL8-induced migration of transfectants expressing the human chemokine receptors CXCR1 or CXCR2. Despite possessing an intact N terminus and preserved disulfide bonds, SpyCEP-cleaved CXCL8 had impaired binding to both CXCR1 and CXCR2, pointing to a requirement for the C-terminal α-helix. SpyCEP-cleaved CXCL8 had similarly impaired binding to the glycosaminoglycan heparin. Enzymatic removal of neutrophil glycosaminoglycans was observed to ablate neutrophil navigation of a CXCL8 gradient, whereas navigation of an fMLF gradient remained largely intact. We conclude, therefore, that SpyCEP cleavage of CXCL8 results in chemokine inactivation because of a requirement for glycosaminoglycan binding in productive chemokine:receptor interactions. This may inform strategies to inhibit the activity of SpyCEP, but may also influence future approaches to inhibit unwanted chemokine-induced inflammation.
Collapse
Affiliation(s)
- Jennifer Goldblatt
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom.,Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | - Luke Muir
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Saloni Dattani
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ashley Hoffland
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom.,Asthma U.K. Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shiro Kanegasaki
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shiranee Sriskandan
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom;
| | - James E Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; .,Asthma U.K. Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| |
Collapse
|
32
|
Corti F, Wang Y, Rhodes JM, Atri D, Archer-Hartmann S, Zhang J, Zhuang ZW, Chen D, Wang T, Wang Z, Azadi P, Simons M. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA 165-dependent neovascularization. Nat Commun 2019; 10:1562. [PMID: 30952866 PMCID: PMC6450910 DOI: 10.1038/s41467-019-09605-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - John M Rhodes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Dongying Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Tianyun Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
33
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|
34
|
Vanheule V, Crijns H, Poosti F, Ruytinx P, Berghmans N, Gerlza T, Ronsse I, Pörtner N, Matthys P, Kungl AJ, Opdenakker G, Struyf S, Proost P. Anti-inflammatory effects of the GAG-binding CXCL9(74-103) peptide in dinitrofluorobenzene-induced contact hypersensitivity in mice. Clin Exp Allergy 2018; 48:1333-1344. [DOI: 10.1111/cea.13227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Vanheule
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Helena Crijns
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Pieter Ruytinx
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Tanja Gerlza
- Department of Pharmaceutical Chemistry; Institute of Pharmaceutical Sciences; University of Graz; Graz Austria
- Antagonis Biotherapeutics GmbH; Graz Austria
| | - Isabelle Ronsse
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Andreas J. Kungl
- Department of Pharmaceutical Chemistry; Institute of Pharmaceutical Sciences; University of Graz; Graz Austria
- Antagonis Biotherapeutics GmbH; Graz Austria
| | - Ghislain Opdenakker
- Laboratory of Immunobiology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| |
Collapse
|
35
|
Monneau YR, Luo L, Sankaranarayanan NV, Nagarajan B, Vivès RR, Baleux F, Desai UR, Arenzana-Seidedos F, Lortat-Jacob H. Solution structure of CXCL13 and heparan sulfate binding show that GAG binding site and cellular signalling rely on distinct domains. Open Biol 2018; 7:rsob.170133. [PMID: 29070611 PMCID: PMC5666081 DOI: 10.1098/rsob.170133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Chemokines promote directional cell migration through binding to G-protein-coupled receptors, and as such are involved in a large array of developmental, homeostatic and pathological processes. They also interact with heparan sulfate (HS), the functional consequences of which depend on the respective location of the receptor- and the HS-binding sites, a detail that remains elusive for most chemokines. Here, to set up a biochemical framework to investigate how HS can regulate CXCL13 activity, we solved the solution structure of CXCL13. We showed that it comprises an unusually long and disordered C-terminal domain, appended to a classical chemokine-like structure. Using three independent experimental approaches, we found that it displays a unique association mode to HS, involving two clusters located in the α-helix and the C-terminal domain. Computational approaches were used to analyse the HS sequences preferentially recognized by the protein and gain atomic-level understanding of the CXCL13 dimerization induced upon HS binding. Starting with four sets of 254 HS tetrasaccharides, we identified 25 sequences that bind to CXCL13 monomer, among which a single one bound to CXCL13 dimer with high consistency. Importantly, we found that CXCL13 can be functionally presented to its receptor in a HS-bound form, suggesting that it can promote adhesion-dependent cell migration. Consistently, we designed CXCL13 mutations that preclude interaction with HS without affecting CXCR5-dependent cell signalling, opening the possibility to unambiguously demonstrate the role of HS in the biological function of this chemokine.
Collapse
Affiliation(s)
- Yoan R Monneau
- University of Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Lingjie Luo
- Institut Pasteur, INSERM U1108, Paris, France
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Romain R Vivès
- University of Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, UMR CNRS 3523, Paris, France
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
36
|
Boff D, Crijns H, Janssens R, Vanheule V, Menezes GB, Macari S, Silva TA, Amaral FA, Proost P. The chemokine fragment CXCL9(74-103) diminishes neutrophil recruitment and joint inflammation in antigen-induced arthritis. J Leukoc Biol 2018; 104:413-422. [DOI: 10.1002/jlb.3ma1217-502r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Daiane Boff
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute; KU Leuven; Leuven Belgium
- Departamento de Bioquimica e Imunologia; Instituto de Ciencias Biologicas; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Helena Crijns
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute; KU Leuven; Leuven Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute; KU Leuven; Leuven Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute; KU Leuven; Leuven Belgium
| | - Gustavo B. Menezes
- Centro de Biologia Gastrointestinal; Departamento de Morfologia; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Soraia Macari
- Departmento de Clínica; Patologia e Cirurgias Odontológicas; Faculdade de Odontologia; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Tarcilia A. Silva
- Departmento de Clínica; Patologia e Cirurgias Odontológicas; Faculdade de Odontologia; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Flavio A. Amaral
- Departamento de Bioquimica e Imunologia; Instituto de Ciencias Biologicas; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology; Department of Microbiology and Immunology; Rega Institute; KU Leuven; Leuven Belgium
| |
Collapse
|
37
|
Hofmann R, Tornvall P, Witt N, Alfredsson J, Svensson L, Jonasson L, Nilsson L. Supplemental oxygen therapy does not affect the systemic inflammatory response to acute myocardial infarction. J Intern Med 2018; 283:334-345. [PMID: 29226465 DOI: 10.1111/joim.12716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxygen therapy has been used routinely in normoxemic patients with suspected acute myocardial infarction (AMI) despite limited evidence supporting a beneficial effect. AMI is associated with a systemic inflammation. Here, we hypothesized that the inflammatory response to AMI is potentiated by oxygen therapy. METHODS The DETermination of the role of Oxygen in suspected Acute Myocardial Infarction (DETO2X-AMI) multicentre trial randomized patients with suspected AMI to receive oxygen at 6 L min-1 for 6-12 h or ambient air. For this prespecified subgroup analysis, we recruited patients with confirmed AMI from two sites for evaluation of inflammatory biomarkers at randomization and 5-7 h later. Ninety-two inflammatory biomarkers were analysed using proximity extension assay technology, to evaluate the effect of oxygen on the systemic inflammatory response to AMI. RESULTS Plasma from 144 AMI patients was analysed whereof 76 (53%) were randomized to oxygen and 68 (47%) to air. Eight biomarkers showed a significant increase, whereas 13 were decreased 5-7 h after randomization. The inflammatory response did not differ between the two treatment groups neither did plasma troponin T levels. After adjustment for increase in troponin T over time, age and sex, the release of inflammation-related biomarkers was still similar in the groups. CONCLUSIONS In a randomized controlled setting of normoxemic patients with AMI, the use of supplemental oxygen did not have any significant impact on the early release of systemic inflammatory markers.
Collapse
Affiliation(s)
- R Hofmann
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - P Tornvall
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - N Witt
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - J Alfredsson
- Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - L Svensson
- Department of Medicine, Solna and Centre for Resuscitation Science, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - L Jonasson
- Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - L Nilsson
- Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
38
|
Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra-articular lymphocyte recruitment in vivo. Oncotarget 2018; 7:62439-62459. [PMID: 27566567 PMCID: PMC5308738 DOI: 10.18632/oncotarget.11516] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/13/2016] [Indexed: 01/01/2023] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor-1 is important for leukocyte migration to lymphoid organs and inflamed tissues and stimulates tumor development. In vitro, CXCL12 activity through CXCR4 is abolished by proteolytic processing. However, limited information is available on in vivo effects of posttranslationally modified CXCL12. Natural CXCL12 was purified from the coculture supernatant of stromal cells stimulated with leukocytes and inflammatory agents. In this conditioned medium, CXCL12 with a nitration on Tyr7, designated [3-NT7]CXCL12, was discovered via Edman degradation. CXCL12 and [3-NT7]CXCL12 were chemically synthesized to evaluate the biological effects of this modification. [3-NT7]CXCL12 recruited β-arrestin 2 and phosphorylated the Akt kinase similar to CXCL12 in receptor-transfected cells. Also the affinity of CXCL12 and [3-NT7]CXCL12 for glycosaminoglycans, the G protein-coupled chemokine receptor CXCR4 and the atypical chemokine receptor ACKR3 were comparable. However, [3-NT7]CXCL12 showed a reduced ability to enhance intracellular calcium concentrations, to generate inositol triphosphate, to phosphorylate ERK1/2 and to induce monocyte and lymphocyte chemotaxis in vitro. Moreover, nitrated CXCL12 failed to induce in vivo extravasation of lymphocytes to the joint. In summary, nitration on Tyr7 under inflammatory conditions is a novel natural posttranslational regulatory mechanism of CXCL12 which may downregulate the CXCR4-mediated inflammatory and tumor-promoting activities of CXCL12.
Collapse
|
39
|
McNaughton EF, Eustace AD, King S, Sessions RB, Kay A, Farris M, Broadbridge R, Kehoe O, Kungl AJ, Middleton J. Novel Anti-Inflammatory Peptides Based on Chemokine-Glycosaminoglycan Interactions Reduce Leukocyte Migration and Disease Severity in a Model of Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3201-3217. [PMID: 29572348 DOI: 10.4049/jimmunol.1701187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
Abstract
Inflammation is characterized by the infiltration of leukocytes from the circulation and into the inflamed area. Leukocytes are guided throughout this process by chemokines. These are basic proteins that interact with leukocytes to initiate their activation and extravasation via chemokine receptors. This is enabled through chemokine immobilization by glycosaminoglycans (GAGs) at the luminal endothelial surface of blood vessels. A specific stretch of basic amino acids on the chemokine, often at the C terminus, interacts with the negatively charged GAGs, which is considered an essential interaction for the chemokine function. Short-chain peptides based on this GAG-binding region of the chemokines CCL5, CXCL8, and CXCL12γ were synthesized using standard Fmoc chemistry. These peptides were found to bind to GAGs with high affinity, which translated into a reduction of leukocyte migration across a cultured human endothelial monolayer in response to chemokines. The leukocyte migration was inhibited upon removal of heparan sulfate from the endothelial surface and was found to reduce the ability of the chemokine and peptide to bind to endothelial cells in binding assays and to human rheumatoid arthritis tissue. The data suggest that the peptide competes with the wild-type chemokine for binding to GAGs such as HS and thereby reduces chemokine presentation and subsequent leukocyte migration. Furthermore, the lead peptide based on CXCL8 could reduce the disease severity and serum levels of the proinflammatory cytokine TNF-α in a murine Ag-induced arthritis model. Taken together, evidence is provided for interfering with the chemokine-GAG interaction as a relevant therapeutic approach.
Collapse
Affiliation(s)
- Emily F McNaughton
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Andrew D Eustace
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Sophie King
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Richard B Sessions
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alasdair Kay
- Leopold Muller Arthritis Research Centre, Institute for Science and Technology in Medicine, Robert Jones and Agnes Hunt Orthopaedic Hospital, Medical School, Keele University, Keele SY10 7AG, United Kingdom
| | - Michele Farris
- Peptide Protein Research Ltd., Bishop's Waltham SO32 1QD, United Kingdom; and
| | - Robert Broadbridge
- Peptide Protein Research Ltd., Bishop's Waltham SO32 1QD, United Kingdom; and
| | - Oksana Kehoe
- Leopold Muller Arthritis Research Centre, Institute for Science and Technology in Medicine, Robert Jones and Agnes Hunt Orthopaedic Hospital, Medical School, Keele University, Keele SY10 7AG, United Kingdom
| | | | - Jim Middleton
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom;
| |
Collapse
|
40
|
Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2018; 8:1970. [PMID: 29379506 PMCID: PMC5775283 DOI: 10.3389/fimmu.2017.01970] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (patho)physiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Neutrophils: a cornerstone of liver ischemia and reperfusion injury. J Transl Med 2018; 98:51-62. [PMID: 28920945 DOI: 10.1038/labinvest.2017.90] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of morbidity and mortality due to graft rejection after liver transplantation. During IRI, an intense inflammatory process occurs in the liver. This hepatic inflammation is initiated by the ischemic period but occurs mainly during the reperfusion phase, and is characterized by a large neutrophil recruitment to the liver. Production of cytokines, chemokines, and danger signals results in activation of resident hepatocytes, leukocytes, and Kupffer cells. The role of neutrophils as the main amplifiers of liver injury in IRI has been recognized in many publications. Several studies have shown that elimination of excessive neutrophils or inhibition of their function leads to reduction of liver injury and inflammation. However, the mechanisms involved in neutrophil recruitment during liver IRI are not well known. In addition, the molecules necessary for this type of migration are poorly defined, as the liver presents an atypical sinusoidal vasculature in which the classical leukocyte migration paradigm only partially applies. This review summarizes recent advances in neutrophil-mediated liver damage, and its application to liver IRI. Basic mechanisms of activation of neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of danger signals, adhesion molecules, chemokines, glycosaminoglycans (GAGs), and metalloproteinases is explored. The precise definition of the molecular events that govern the recruitment of neutrophils and their movement into inflamed tissue may offer new therapeutic alternatives for hepatic injury by IRI and other inflammatory diseases of the liver.
Collapse
|
42
|
Bieber K, Sun S, Witte M, Kasprick A, Beltsiou F, Behnen M, Laskay T, Schulze FS, Pipi E, Reichhelm N, Pagel R, Zillikens D, Schmidt E, Sparwasser T, Kalies K, Ludwig RJ. Regulatory T Cells Suppress Inflammation and Blistering in Pemphigoid Diseases. Front Immunol 2017; 8:1628. [PMID: 29225603 PMCID: PMC5705561 DOI: 10.3389/fimmu.2017.01628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive immunity. Through regulation of T cell functions, Tregs have also been demonstrated to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs on myeloid cell functions are insufficiently characterized, especially in the context of myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers myeloid cell activation through specific activation of Fc gamma receptors, leading to skin inflammation and subepidermal blistering. Here, we used mouse models to address the potential contribution of Tregs to PD pathogenesis in vivo. Depletion of Tregs induced excessive inflammation and blistering both clinically and histologically in two different PD mouse models. Of note, in the skin of Treg-depleted mice with PD, we detected increased expression of different cytokines, including Th2-specific IL-4, IL-10, and IL-13 as well as pro-inflammatory Th1 cytokine IFN-γ and the T cell chemoattractant CXCL-9. We next aimed to determine whether Tregs alter the migratory behavior of myeloid cells, dampen immune complex (IC)-induced myeloid cell activation, or both. In vitro experiments demonstrated that co-incubation of IC-activated myeloid cells with Tregs had no impact on the release of reactive oxygen species (ROS) but downregulated β2 integrin expression. Hence, Tregs mitigate PD by altering the migratory capabilities of myeloid cells rather than their release of ROS. Modulating cytokine expression by administering an excess of IL-10 or blocking IFN-γ may be used in clinical translation of these findings.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Shijie Sun
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mareike Witte
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Foteini Beltsiou
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Martina Behnen
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Franziska S Schulze
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Elena Pipi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - René Pagel
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Tim Sparwasser
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hanover, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
43
|
Thompson S, Martínez-Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS, Ali S. Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. Int J Mol Sci 2017; 18:ijms18081692. [PMID: 28771176 PMCID: PMC5578082 DOI: 10.3390/ijms18081692] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
The primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational modifications of chemokines, such as nitration, which occurs due to the production of reactive species during oxidative stress, can also alter their biological activity. This review describes the regulation of chemokine function by GAG-binding ability and by post-translational nitration. These are both aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like CXCL8, to modulate inflammation is to be realised.
Collapse
Affiliation(s)
- Sarah Thompson
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Beatriz Martínez-Burgo
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - John A Kirby
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Neil S Sheerin
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Simi Ali
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
44
|
Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling. Int J Mol Sci 2017; 18:ijms18071513. [PMID: 28703769 PMCID: PMC5536003 DOI: 10.3390/ijms18071513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CXC chemokine ligand (CXCL)9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR)3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs) protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.
Collapse
|
45
|
Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 2017; 85:45-57. [PMID: 28684129 DOI: 10.1016/j.jaut.2017.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The first dimension of chemokine heterogeneity is reflected by their discovery and purification as natural proteins. Each of those chemokines attracted a specific inflammatory leukocyte type. With the introduction of genomic technologies, a second wave of chemokine heterogeneity was established by the discovery of putative chemokine-like sequences and by demonstrating chemotactic activity of the gene products in physiological leukocyte homing. In the postgenomic era, the third dimension of chemokine heterogeneity is the description of posttranslational modifications on most chemokines. Proteolysis of chemokines, for instance by dipeptidyl peptidase IV (DPP IV/CD26) and by matrix metalloproteinases (MMPs) is already well established as a biological control mechanism to activate, potentiate, dampen or abrogate chemokine activities. Other posttranslational modifications are less known. Theoretical N-linked and O-linked attachment sites for chemokine glycosylation were searched with bio-informatic tools and it was found that most chemokines are not glycosylated. These findings are corroborated with a low number of experimental studies demonstrating N- or O-glycosylation of natural chemokine ligands. Because attached oligosaccharides protect proteins against proteolytic degradation, their absence may explain the fast turnover of chemokines in the protease-rich environments of infection and inflammation. All chemokines interact with G protein-coupled receptors (GPCRs) and glycosaminoglycans (GAGs). Whether lectin-like GAG-binding induces cellular signaling is not clear, but these interactions are important for leukocyte migration and have already been exploited to reduce inflammation. In addition to selective proteolysis, citrullination and nitration/nitrosylation are being added as biologically relevant modifications contributing to functional chemokine heterogeneity. Resulting chemokine isoforms with reduced affinity for GPCRs reduce leukocyte migration in various models of inflammation. Here, these third dimension modifications are compared, with reflections on the biological and pathological contexts in which these posttranslational modifications take place and contribute to the repertoire of chemokine functions and with an emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
46
|
Vanheule V, Boff D, Mortier A, Janssens R, Petri B, Kolaczkowska E, Kubes P, Berghmans N, Struyf S, Kungl AJ, Teixeira MM, Amaral FA, Proost P. CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions. Front Immunol 2017; 8:530. [PMID: 28539925 PMCID: PMC5423902 DOI: 10.3389/fimmu.2017.00530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 01/09/2023] Open
Abstract
Several acute and chronic inflammatory diseases are driven by accumulation of activated leukocytes due to enhanced chemokine expression. In addition to specific G protein-coupled receptor-dependent signaling, chemokine-glycosaminoglycan (GAG) interactions are important for chemokine activity in vivo. Therefore, the GAG-chemokine interaction has been explored as target for inhibition of chemokine activity. It was demonstrated that CXCL9(74-103) binds with high affinity to GAGs, competed with active chemokines for GAG binding and thereby inhibited CXCL8- and monosodium urate (MSU) crystal-induced neutrophil migration to joints. To evaluate the affinity and specificity of the COOH-terminal part of CXCL9 toward different GAGs in detail, we chemically synthesized several COOH-terminal CXCL9 peptides including the shorter CXCL9(74-93). Compared to CXCL9(74-103), CXCL9(74-93) showed equally high affinity for heparin and heparan sulfate (HS), but lower affinity for binding to chondroitin sulfate (CS) and cellular GAGs. Correspondingly, both peptides competed with equal efficiency for CXCL8 binding to heparin and HS but not to cellular GAGs. In addition, differences in anti-inflammatory activity between both peptides were detected in vivo. CXCL8-induced neutrophil migration to the peritoneal cavity and to the knee joint were inhibited with similar potency by intravenous or intraperitoneal injection of CXCL9(74-103) or CXCL9(74-93), but not by CXCL9(86-103). In contrast, neutrophil extravasation in the MSU crystal-induced gout model, in which multiple chemoattractants are induced, was not affected by CXCL9(74-93). This could be explained by (1) the lower affinity of CXCL9(74-93) for CS, the most abundant GAG in joints, and (2) by reduced competition with GAG binding of CXCL1, the most abundant ELR+ CXC chemokine in this gout model. Mechanistically we showed by intravital microscopy that fluorescent CXCL9(74-103) coats the vessel wall in vivo and that CXCL9(74-103) inhibits CXCL8-induced adhesion of neutrophils to the vessel wall in the murine cremaster muscle model. Thus, both affinity and specificity of chemokines and the peptides for different GAGs and the presence of specific GAGs in different tissues will determine whether competition can occur. In summary, both CXCL9 peptides inhibited neutrophil migration in vivo through interference with GAG interactions in several animal models. Shortening CXCL9(74-103) from the COOH-terminus limited its GAG-binding spectrum.
Collapse
Affiliation(s)
- Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daiane Boff
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Björn Petri
- Mouse Phenomics Resource Laboratory, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Elzbieta Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Krakow, Poland
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Kubes
- Immunology Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Andreas J. Kungl
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens Universität, Graz, Austria
| | - Mauro Martins Teixeira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flavio Almeida Amaral
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Janssens R, Mortier A, Boff D, Ruytinx P, Gouwy M, Vantilt B, Larsen O, Daugvilaite V, Rosenkilde MM, Parmentier M, Noppen S, Liekens S, Van Damme J, Struyf S, Teixeira MM, Amaral FA, Proost P. Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes. Biochem Pharmacol 2017; 132:92-101. [PMID: 28322746 DOI: 10.1016/j.bcp.2017.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/14/2017] [Indexed: 01/12/2023]
Abstract
The chemokine CXCL12 or stromal cell-derived factor 1/SDF-1 attracts hematopoietic progenitor cells and mature leukocytes through the G protein-coupled CXC chemokine receptor 4 (CXCR4). In addition, it interacts with atypical chemokine receptor 3 (ACKR3 or CXCR7) and glycosaminoglycans. CXCL12 activity is regulated through posttranslational cleavage by CD26/dipeptidyl peptidase 4 that removes two NH2-terminal amino acids. CD26-truncated CXCL12 does not induce calcium signaling or chemotaxis of mononuclear cells. CXCL12(3-68) was chemically synthesized de novo for detailed biological characterization. Compared to unmodified CXCL12, CXCL12(3-68) was no longer able to signal through CXCR4 via inositol trisphosphate (IP3), Akt or extracellular signal-regulated kinases 1 and 2 (ERK1/2). Interestingly, the recruitment of β-arrestin 2 to the cell membrane via CXCR4 by CXCL12(3-68) was abolished, whereas a weakened but significant β-arrestin recruitment remained via ACKR3. CXCL12-induced endothelial cell migration and signal transduction was completely abrogated by CD26. Intact CXCL12 hardly induced lymphocyte migration upon intra-articular injection in mice. In contrast, oral treatment of mice with the CD26 inhibitor sitagliptin reduced CD26 activity and CXCL12 cleavage in blood plasma. The potential of CXCL12 to induce intra-articular lymphocyte infiltration was significantly increased in sitagliptin-treated mice and CXCL12(3-68) failed to induce migration under both CD26-inhibiting and non-inhibiting conditions. In conclusion, CD26-cleavage skews CXCL12 towards β-arrestin dependent recruitment through ACKR3 and destroys the CXCR4-mediated lymphocyte chemoattractant properties of CXCL12 in vivo. Hence, pharmacological CD26-blockade in tissues may enhance CXCL12-induced inflammation.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anneleen Mortier
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Daiane Boff
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pieter Ruytinx
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Bo Vantilt
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Olav Larsen
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Viktorija Daugvilaite
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marc Parmentier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Sam Noppen
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Sandra Liekens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
48
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
49
|
Pharmacological opportunities to control inflammatory diseases through inhibition of the leukocyte recruitment. Pharmacol Res 2016; 112:37-48. [DOI: 10.1016/j.phrs.2016.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/30/2022]
|
50
|
Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: Role in disease and pharmacological perspectives. Pharmacol Res 2016; 112:84-98. [PMID: 26826283 DOI: 10.1016/j.phrs.2016.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
Abstract
The inflammatory response in the joint can induce an intense accumulation of leukocytes in the tissue that frequently results in severe local damage and loss of function. Neutrophils are essential cells to combat many pathogens, but their arsenal can contribute or aggravate articular inflammation. Here we summarized some aspects of neutrophil biology, their role in inflammation and indicated how the modulation of neutrophil functions could be useful for the treatment of different forms of arthritis.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|