1
|
Ma T, Li X, Montalbán-López M, Wu X, Zheng Z, Mu D. Effect of the Membrane Insertase YidC on the Capacity of Lactococcus lactis to Secret Recombinant Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23320-23332. [PMID: 39382634 DOI: 10.1021/acs.jafc.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lactococcus lactis is a crucial food-grade cell factory for secreting valuable peptides and proteins primarily via the Sec-dependent pathway. YidC, a membrane insertase, facilitates protein insertion into the lipid membrane for the translocation. However, the mechanistic details of how YidC affects protein secretion in L. lactis remain elusive. This study investigates the effects of deleting yidC1/yidC2 on L. lactis phenotypes and protein secretion. Compared to the original strain, deleting yidC2 significantly decreased the relative biomass, electroporation efficiency, and F-ATP activity by 25%, 47%, and 33%, respectively, and weakened growth and stress resistance, whereas deleting yidC1 had a minimal impact. The absence of either yidC1 or yidC2 reduced target proteins secretion. Meanwhile, there is a considerable alteration in the transcription levels of genes involved in the secretion pathway, with secY transcription increasing over 135-fold. Our results provide a theoretical foundation for further improving target protein secretion and investigating the YidC function.
Collapse
Affiliation(s)
- Tiange Ma
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Xuefeng Wu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| |
Collapse
|
2
|
Knyazev DG, Winter L, Vogt A, Posch S, Öztürk Y, Siligan C, Goessweiner-Mohr N, Hagleitner-Ertugrul N, Koch HG, Pohl P. YidC from Escherichia coli Forms an Ion-Conducting Pore upon Activation by Ribosomes. Biomolecules 2023; 13:1774. [PMID: 38136645 PMCID: PMC10741985 DOI: 10.3390/biom13121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear. Here, we show that the purified and reconstituted E. coli YidC forms an ion-conducting transmembrane pore upon ribosome or ribosome-nascent chain complex (RNC) binding. In contrast to monomeric YidC structures, an AlphaFold parallel YidC dimer model harbors a pore. Experimental evidence for a dimeric assembly comes from our BN-PAGE analysis of native vesicles, fluorescence correlation spectroscopy studies, single-molecule fluorescence photobleaching observations, and crosslinking experiments. In the dimeric model, the conserved arginine and other residues interacting with nascent chains point into the putative pore. This result suggests the possibility of a YidC-assisted insertion mode alternative to the insertase mechanism.
Collapse
Affiliation(s)
- Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Lukas Winter
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Sandra Posch
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Yavuz Öztürk
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nikolaus Goessweiner-Mohr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nora Hagleitner-Ertugrul
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| |
Collapse
|
3
|
Sarmah P, Shang W, Origi A, Licheva M, Kraft C, Ulbrich M, Lichtenberg E, Wilde A, Koch HG. mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria. Cell Rep 2023; 42:112140. [PMID: 36842086 PMCID: PMC10066597 DOI: 10.1016/j.celrep.2023.112140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Signal-sequence-dependent protein targeting is essential for the spatiotemporal organization of eukaryotic and prokaryotic cells and is facilitated by dedicated protein targeting factors such as the signal recognition particle (SRP). However, targeting signals are not exclusively contained within proteins but can also be present within mRNAs. By in vivo and in vitro assays, we show that mRNA targeting is controlled by the nucleotide content and by secondary structures within mRNAs. mRNA binding to bacterial membranes occurs independently of soluble targeting factors but is dependent on the SecYEG translocon and YidC. Importantly, membrane insertion of proteins translated from membrane-bound mRNAs occurs independently of the SRP pathway, while the latter is strictly required for proteins translated from cytosolic mRNAs. In summary, our data indicate that mRNA targeting acts in parallel to the canonical SRP-dependent protein targeting and serves as an alternative strategy for safeguarding membrane protein insertion when the SRP pathway is compromised.
Collapse
Affiliation(s)
- Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University Freiburg, 79104 Freiburg, Germany
| | - Maximilian Ulbrich
- Internal Medicine IV, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Dalbey RE, Kaushik S, Kuhn A. YidC as a potential antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119403. [PMID: 36427551 DOI: 10.1016/j.bbamcr.2022.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The membrane insertase YidC, is an essential bacterial component and functions in the folding and insertion of many membrane proteins during their biogenesis. It is a multispanning protein in the inner (cytoplasmic) membrane of Escherichia coli that binds its substrates in the "greasy slide" through hydrophobic interaction. The hydrophilic part of the substrate transiently localizes in the groove of YidC before it is translocated into the periplasm. The groove, which is flanked by the greasy slide, is within the center of the membrane, and provides a promising target for inhibitors that would block the insertase function of YidC. In addition, since the greasy slide is available for the binding of various substrates, it could also provide a binding site for inhibitory molecules. In this review we discuss in detail the structure and the mechanism of how YidC interacts not only with its substrates, but also with its partner proteins, the SecYEG translocase and the SRP signal recognition particle. Insight into the substrate binding to the YidC catalytic groove is presented. We wind up the review with the idea that the hydrophilic groove would be a potential site for drug binding and the feasibility of YidC-targeted drug development.
Collapse
Affiliation(s)
- Ross E Dalbey
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Sharbani Kaushik
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany.
| |
Collapse
|
5
|
O'Keefe S, Pool MR, High S. Membrane protein biogenesis at the ER: the highways and byways. FEBS J 2022; 289:6835-6862. [PMID: 33960686 DOI: 10.1111/febs.15905] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61-mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings. We propose that the Sec61 complex acts as a dynamic hub for co-translational protein translocation at the ER, proactively recruiting a range of accessory complexes that enhance and regulate its function in response to different protein clients. It is now clear that the Sec61 complex does not have a monopoly on co-translational insertion, with some transmembrane proteins preferentially utilising the ER membrane complex instead. We also have a better understanding of post-insertion events, where at least one membrane-embedded chaperone complex can capture the newly inserted transmembrane domains of multi-span proteins and co-ordinate their assembly into a native structure. Having discovered this array of Sec61-associated components and competitors, our next challenge is to understand how they act together in order to expand the range and complexity of the membrane proteins that can be synthesised at the ER. Furthermore, this diversity of components and pathways may open up new opportunities for targeted therapeutic interventions designed to selectively modulate protein biogenesis at the ER.
Collapse
Affiliation(s)
- Sarah O'Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Martin R Pool
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
6
|
Kaushik S, He H, Dalbey RE. Bacterial Signal Peptides- Navigating the Journey of Proteins. Front Physiol 2022; 13:933153. [PMID: 35957980 PMCID: PMC9360617 DOI: 10.3389/fphys.2022.933153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.
Collapse
|
7
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|
8
|
Laurence MJ, Carpenter TS, Laurence TA, Coleman MA, Shelby M, Liu C. Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy. MEMBRANES 2022; 12:membranes12040392. [PMID: 35448362 PMCID: PMC9028781 DOI: 10.3390/membranes12040392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Matthew J. Laurence
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Timothy S. Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Ted A. Laurence
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Megan Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| | - Chao Liu
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| |
Collapse
|
9
|
Nass KJ, Ilie IM, Saller MJ, Driessen AJM, Caflisch A, Kammerer RA, Li X. The role of the N-terminal amphipathic helix in bacterial YidC: Insights from functional studies, the crystal structure and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183825. [PMID: 34871574 DOI: 10.1016/j.bbamem.2021.183825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
The evolutionary conserved YidC is a unique dual-function membrane protein that adopts insertase and chaperone conformations. The N-terminal helix of Escherichia coli YidC functions as an uncleaved signal sequence and is important for membrane insertion and interaction with the Sec translocon. Here, we report the first crystal structure of Thermotoga maritima YidC (TmYidC) including the N-terminal amphipathic helix (N-AH) (PDB ID: 6Y86). Molecular dynamics simulations show that N-AH lies on the periplasmic side of the membrane bilayer forming an angle of about 15° with the membrane surface. Our functional studies suggest a role of N-AH for the species-specific interaction with the Sec translocon. The reconstitution data and the superimposition of TmYidC with known YidC structures suggest an active insertase conformation for YidC. Molecular dynamics (MD) simulations of TmYidC provide evidence that N-AH acts as a membrane recognition helix for the YidC insertase and highlight the flexibility of the C1 region underlining its ability to switch between insertase and chaperone conformations. A structure-based model is proposed to rationalize how YidC performs the insertase and chaperone functions by re-positioning of N-AH and the other structural elements.
Collapse
Affiliation(s)
- Karol J Nass
- Photon Science Division, Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Ioana M Ilie
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Manfred J Saller
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9727 AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9727 AG Groningen, The Netherlands
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
10
|
Ackermann B, Dünschede B, Pietzenuk B, Justesen BH, Krämer U, Hofmann E, Günther Pomorski T, Schünemann D. Chloroplast Ribosomes Interact With the Insertase Alb3 in the Thylakoid Membrane. FRONTIERS IN PLANT SCIENCE 2021; 12:781857. [PMID: 35003166 PMCID: PMC8733628 DOI: 10.3389/fpls.2021.781857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.
Collapse
Affiliation(s)
- Bernd Ackermann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Chio US, Liu Y, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion. J Cell Biol 2021; 220:212681. [PMID: 34614151 PMCID: PMC8530227 DOI: 10.1083/jcb.202103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
The guided entry of tail-anchored protein (GET) pathway, in which the Get3 ATPase delivers an essential class of tail-anchored membrane proteins (TAs) to the Get1/2 receptor at the endoplasmic reticulum, provides a conserved mechanism for TA biogenesis in eukaryotic cells. The membrane-associated events of this pathway remain poorly understood. Here we show that complex assembly between the cytosolic domains (CDs) of Get1 and Get2 strongly enhances the affinity of the individual subunits for Get3•TA, thus enabling efficient capture of the targeting complex. In addition to the known role of Get1CD in remodeling Get3 conformation, two molecular recognition features (MoRFs) in Get2CD induce Get3 opening, and both subunits are required for optimal TA release from Get3. Mutation of the MoRFs attenuates TA insertion into the ER in vivo. Our results demonstrate extensive cooperation between the Get1/2 receptor subunits in the capture and remodeling of the targeting complex, and emphasize the role of MoRFs in receptor function during membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Woo Jun Shim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA.,Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
12
|
Membrane Insertion of the M13 Minor Coat Protein G3p Is Dependent on YidC and the SecAYEG Translocase. Viruses 2021; 13:v13071414. [PMID: 34372619 PMCID: PMC8310372 DOI: 10.3390/v13071414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
The minor coat protein G3p of bacteriophage M13 is the key component for the host interaction of this virus and binds to Escherichia coli at the tip of the F pili. As we show here, during the biosynthesis of G3p as a preprotein, the signal sequence interacts primarily with SecY, whereas the hydrophobic anchor sequence at the C-terminus interacts with YidC. Using arrested nascent chains and thiol crosslinking, we show here that the ribosome-exposed signal sequence is first contacted by SecY but not by YidC, suggesting that only SecYEG is involved at this early stage. The protein has a large periplasmic domain, a hydrophobic anchor sequence of 21 residues and a short C-terminal tail that remains in the cytoplasm. During the later synthesis of the entire G3p, the residues 387, 389 and 392 in anchor domain contact YidC in its hydrophobic slide to hold translocation of the C-terminal tail. Finally, the protein is processed by leader peptidase and assembled into new progeny phage particles that are extruded out of the cell.
Collapse
|
13
|
O’Keefe S, Zong G, Duah KB, Andrews LE, Shi WQ, High S. An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum. Commun Biol 2021; 4:828. [PMID: 34211117 PMCID: PMC8249459 DOI: 10.1038/s42003-021-02363-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
The heterotrimeric Sec61 complex is a major site for the biogenesis of transmembrane proteins (TMPs), accepting nascent TMP precursors that are targeted to the endoplasmic reticulum (ER) by the signal recognition particle (SRP). Unlike most single-spanning membrane proteins, the integration of type III TMPs is completely resistant to small molecule inhibitors of the Sec61 translocon. Using siRNA-mediated depletion of specific ER components, in combination with the potent Sec61 inhibitor ipomoeassin F (Ipom-F), we show that type III TMPs utilise a distinct pathway for membrane integration at the ER. Hence, following SRP-mediated delivery to the ER, type III TMPs can uniquely access the membrane insertase activity of the ER membrane complex (EMC) via a mechanism that is facilitated by the Sec61 translocon. This alternative EMC-mediated insertion pathway allows type III TMPs to bypass the Ipom-F-mediated blockade of membrane integration that is seen with obligate Sec61 clients.
Collapse
Affiliation(s)
- Sarah O’Keefe
- grid.5379.80000000121662407School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Guanghui Zong
- grid.164295.d0000 0001 0941 7177Department of Chemistry and Biochemistry, University of Maryland, College Park, MD USA
| | - Kwabena B. Duah
- grid.252754.30000 0001 2111 9017Department of Chemistry, Ball State University, Muncie, IN USA
| | - Lauren E. Andrews
- grid.252754.30000 0001 2111 9017Department of Chemistry, Ball State University, Muncie, IN USA
| | - Wei Q. Shi
- grid.252754.30000 0001 2111 9017Department of Chemistry, Ball State University, Muncie, IN USA
| | - Stephen High
- grid.5379.80000000121662407School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Protein Interactomes of Streptococcus mutans YidC1 and YidC2 Membrane Protein Insertases Suggest SRP Pathway-Independent- and -Dependent Functions, Respectively. mSphere 2021; 6:6/2/e01308-20. [PMID: 33658280 PMCID: PMC8546722 DOI: 10.1128/msphere.01308-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virulence properties of cariogenic Streptococcus mutans depend on integral membrane proteins. Bacterial cotranslational protein trafficking involves the signal recognition particle (SRP) pathway components Ffh and FtsY, the SecYEG translocon, and YidC chaperone/insertases. Unlike Escherichia coli, S. mutans survives loss of the SRP pathway and has two yidC paralogs. This study characterized YidC1 and YidC2 interactomes to clarify respective functions alone and in concert with the SRP and/or Sec translocon. Western blots of formaldehyde cross-linked or untreated S. mutans lysates were reacted with anti-Ffh, anti-FtsY, anti-YidC1, or anti-YidC2 antibodies followed by mass spectrometry (MS) analysis of gel-shifted bands. Cross-linked lysates of wild-type and ΔyidC2 strains were reacted with anti-YidC2-coupled Dynabeads, and cocaptured proteins were identified by MS. Last, YidC1 and YidC2 C-terminal tail-captured proteins were subjected to two-dimensional (2D) difference gel electrophoresis and MS analysis. Direct interactions of putative YidC1 and YidC2 binding partners were confirmed by bacterial two-hybrid assay. Our results suggest YidC2 works preferentially with the SRP pathway, while YidC1 is preferred for SRP-independent Sec translocon-mediated translocation. YidC1 and YidC2 autonomous pathways were also apparent. Two-hybrid assay identified interactions between holotranslocon components SecYEG/YajC and YidC1. Both YidC1 and YidC2 interacted with Ffh, FtsY, and chaperones DnaK and RopA. Putative membrane-localized substrates HlyX, LemA, and SMU_591c interacted with both YidC1 and YidC2. Identification of several Rgp proteins in the YidC1 interactome suggested its involvement in bacitracin resistance, which was decreased in ΔyidC1 and SRP-deficient mutants. Collectively, YidC1 and YidC2 interactome analyses has further distinguished these paralogs in the Gram-positive bacterium S. mutans. IMPORTANCEStreptococcus mutans is a prevalent oral pathogen and major causative agent of tooth decay. Many proteins that enable this bacterium to thrive in its environmental niche and cause disease are embedded in its cytoplasmic membrane. The machinery that transports proteins into bacterial membranes differs between Gram-negative and Gram-positive organisms, an important difference being the presence of multiple YidC paralogs in Gram-positive bacteria. Characterization of a protein’s interactome can help define its physiological role. Herein, we characterized the interactomes of S. mutans YidC1 and YidC2. Results demonstrated substantial overlap between their interactomes but also revealed several differences in their direct protein binding partners. Membrane transport machinery components were identified in the context of a large network of proteins involved in replication, transcription, translation, and cell division/cell shape. This information contributes to our understanding of protein transport in Gram-positive bacteria in general and informs our understanding of S. mutans pathogenesis.
Collapse
|
16
|
Tsukazaki T. Structural Basis of the Sec Translocon and YidC Revealed Through X-ray Crystallography. Protein J 2020; 38:249-261. [PMID: 30972527 DOI: 10.1007/s10930-019-09830-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein translocation and membrane integration are fundamental, conserved processes. After or during ribosomal protein synthesis, precursor proteins containing an N-terminal signal sequence are directed to a conserved membrane protein complex called the Sec translocon (also known as the Sec translocase) in the endoplasmic reticulum membrane in eukaryotic cells, or the cytoplasmic membrane in bacteria. The Sec translocon comprises the Sec61 complex in eukaryotic cells, or the SecY complex in bacteria, and mediates translocation of substrate proteins across/into the membrane. Several membrane proteins are associated with the Sec translocon. In Escherichia coli, the membrane protein YidC functions not only as a chaperone for membrane protein biogenesis along with the Sec translocon, but also as an independent membrane protein insertase. To understand the molecular mechanism underlying these dynamic processes at the membrane, high-resolution structural models of these proteins are needed. This review focuses on X-ray crystallographic analyses of the Sec translocon and YidC and discusses the structural basis for protein translocation and integration.
Collapse
Affiliation(s)
- Tomoya Tsukazaki
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
17
|
The Role of a Crystallographically Unresolved Cytoplasmic Loop in Stabilizing the Bacterial Membrane Insertase YidC2. Sci Rep 2019; 9:14451. [PMID: 31595020 PMCID: PMC6783614 DOI: 10.1038/s41598-019-51052-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
YidC, a bacterial member of the YidC/Alb3/Oxa1 insertase family, mediates membrane protein assembly and insertion. Cytoplasmic loops are known to have functional significance in membrane proteins such as YidC. Employing microsecond-level molecular dynamics (MD) simulations, we show that the crystallographically unresolved C2 loop plays a crucial role in the structural dynamics of Bacillus halodurans YidC2. We have modeled the C2 loop and used all- atom MD simulations to investigate the structural dynamics of YidC2 in its apo form, both with and without the C2 loop. The C2 loop was found to stabilize the entire protein and particularly the C1 region. C2 was also found to stabilize the alpha-helical character of the C-terminal region. Interestingly, the highly polar or charged lipid head groups of the simulated membranes were found to interact with and stabilize the C2 loop. These findings demonstrate that the crystallographically unresolved loops of membrane proteins could be important for the stabilization of the protein despite the apparent lack of structure, which could be due to the absence of the relevant lipids to stabilize them in crystallographic conditions.
Collapse
|
18
|
Shanmugam SK, Dalbey RE. The Conserved Role of YidC in Membrane Protein Biogenesis. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0014-2018. [PMID: 30761982 PMCID: PMC11588155 DOI: 10.1128/microbiolspec.psib-0014-2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 11/20/2022] Open
Abstract
YidC insertase plays a pivotal role in the membrane integration, folding, and assembly of a number of proteins, including energy-transducing respiratory complexes, both autonomously and in concert with the SecYEG channel in bacteria. The YidC family of proteins is widely conserved in all domains of life, with new members recently identified in the eukaryotic endoplasmic reticulum membrane. Bacterial and organellar members share the conserved 5-transmembrane core, which forms a unique hydrophilic cavity in the inner leaflet of the bilayer accessible from the cytoplasm and the lipid phase. In this chapter, we discuss the YidC family of proteins, focusing on its mechanism of substrate insertion independently and in association with the Sec translocon.
Collapse
Affiliation(s)
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Tanaka Y, Izumioka A, Abdul Hamid A, Fujii A, Haruyama T, Furukawa A, Tsukazaki T. 2.8-Å crystal structure of Escherichia coli YidC revealing all core regions, including flexible C2 loop. Biochem Biophys Res Commun 2018; 505:141-145. [PMID: 30241934 DOI: 10.1016/j.bbrc.2018.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022]
Abstract
YidC/Alb3/Oxa1 family proteins are involved in the insertion and assembly of membrane proteins. The core five transmembrane regions of YidC, which are conserved in the protein family, form a positively charged cavity open to the cytoplasmic side. The cavity plays an important role in membrane protein insertion. In all reported structural studies of YidC, the second cytoplasmic loop (C2 loop) was disordered, limiting the understanding of its role. Here, we determined the crystal structure of YidC including the C2 loop at 2.8 Å resolution with R/Rfree = 21.8/27.5. This structure and subsequent molecular dynamics simulation indicated that the intrinsic flexible C2 loop covered the positively charged cavity. This crystal structure provides the coordinates of the complete core region including the C2 loop, which is valuable for further analyses of YidC.
Collapse
Affiliation(s)
- Yoshiki Tanaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Akiya Izumioka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Aisyah Abdul Hamid
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Akira Fujii
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Takamitsu Haruyama
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Arata Furukawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Tomoya Tsukazaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| |
Collapse
|
20
|
Petriman NA, Jauß B, Hufnagel A, Franz L, Sachelaru I, Drepper F, Warscheid B, Koch HG. The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci Rep 2018; 8:578. [PMID: 29330529 PMCID: PMC5766551 DOI: 10.1038/s41598-017-19019-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
YidC/Oxa1/Alb3 are essential proteins that operate independently or cooperatively with the Sec machinery during membrane protein insertion in bacteria, archaea and eukaryotic organelles. Although the interaction between the bacterial SecYEG translocon and YidC has been observed in multiple studies, it is still unknown which domains of YidC are in contact with the SecYEG translocon. By in vivo and in vitro site-directed and para-formaldehyde cross-linking we identified the auxiliary transmembrane domain 1 of E. coli YidC as a major contact site for SecY and SecG. Additional SecY contacts were observed for the tightly packed globular domain and the C1 loop of YidC, which reveals that the hydrophilic cavity of YidC faces the lateral gate of SecY. Surprisingly, YidC-SecYEG contacts were only observed when YidC and SecYEG were present at about stoichiometric concentrations, suggesting that the YidC-SecYEG contact in vivo is either very transient or only observed for a very small SecYEG sub-population. This is different for the YidC-SRP and YidC-FtsY interaction, which involves the C1 loop of YidC and is efficiently observed even at sub-stoichiometric concentrations of SRP/FtsY. In summary, our data provide a first detailed view on how YidC interacts with the SecYEG translocon and the SRP-targeting machinery.
Collapse
Affiliation(s)
- Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Benjamin Jauß
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Antonia Hufnagel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Friedel Drepper
- Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
21
|
Kedrov A, Wickles S, Crevenna AH, van der Sluis EO, Buschauer R, Berninghausen O, Lamb DC, Beckmann R. Structural Dynamics of the YidC:Ribosome Complex during Membrane Protein Biogenesis. Cell Rep 2017; 17:2943-2954. [PMID: 27974208 PMCID: PMC5186731 DOI: 10.1016/j.celrep.2016.11.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/26/2016] [Accepted: 11/20/2016] [Indexed: 01/30/2023] Open
Abstract
Members of the YidC/Oxa1/Alb3 family universally facilitate membrane protein biogenesis, via mechanisms that have thus far remained unclear. Here, we investigated two crucial functional aspects: the interaction of YidC with ribosome:nascent chain complexes (RNCs) and the structural dynamics of RNC-bound YidC in nanodiscs. We observed that a fully exposed nascent transmembrane domain (TMD) is required for high-affinity YidC:RNC interactions, while weaker binding may already occur at earlier stages of translation. YidC efficiently catalyzed the membrane insertion of nascent TMDs in both fluid and gel phase membranes. Cryo-electron microscopy and fluorescence analysis revealed a conformational change in YidC upon nascent chain insertion: the essential TMDs 2 and 3 of YidC were tilted, while the amphipathic helix EH1 relocated into the hydrophobic core of the membrane. We suggest that EH1 serves as a mechanical lever, facilitating a coordinated movement of YidC TMDs to trigger the release of nascent chains into the membrane.
Collapse
Affiliation(s)
- Alexej Kedrov
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany.
| | - Stephan Wickles
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), the NanoSystems Initiative Munich (NIM), Ludwig-Maximilians-University Munich, Butenandtstrasse 11, Munich 81377, Germany
| | - Eli O van der Sluis
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), the NanoSystems Initiative Munich (NIM), Ludwig-Maximilians-University Munich, Butenandtstrasse 11, Munich 81377, Germany; Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany; Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich 81377, Germany.
| |
Collapse
|
22
|
Englmeier R, Pfeffer S, Förster F. Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography. Structure 2017; 25:1574-1581.e2. [PMID: 28867615 DOI: 10.1016/j.str.2017.07.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 07/26/2017] [Indexed: 01/26/2023]
Abstract
Mitochondria maintain their own genome and its corresponding protein synthesis machine, the mitochondrial ribosome (mitoribosome). Mitoribosomes primarily synthesize highly hydrophobic proteins of the inner mitochondrial membrane. Recent studies revealed the complete structure of the isolated mammalian mitoribosome, but its mode of membrane association remained hypothetical. In this study, we used cryoelectron tomography to visualize human mitoribosomes in isolated mitochondria. The subtomogram average of the membrane-associated human mitoribosome reveals a single major contact site with the inner membrane, mediated by the mitochondria-specific protein mL45. A second rRNA-mediated contact site that is present in yeast is absent in humans, resulting in a more variable association of the human mitoribosome with the inner membrane. Despite extensive structural differences of mammalian and fungal mitoribosomal structure, the principal organization of peptide exit tunnel and the mL45 homolog remains invariant, presumably to align the mitoribosome with the membrane-embedded insertion machinery.
Collapse
Affiliation(s)
- Robert Englmeier
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Stefan Pfeffer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany.
| |
Collapse
|
23
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|