1
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Lam LN, Sedra A, Kajfasz J, Berges A, Saengpet IS, Adams G, Fairman J, Lemos JA. Trivalent immunization with metal-binding proteins confers protection against enterococci in a mouse infection model. FEMS MICROBES 2024; 5:xtae031. [PMID: 39524556 PMCID: PMC11549557 DOI: 10.1093/femsmc/xtae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Enterococcus faecalis is ranked among the top five bacterial pathogens responsible for catheter-associated urinary tract infections, wound infections, secondary root canal infections, and infective endocarditis. Previously, we showed that inactivation of either the manganese- and iron-binding (EfaA) or zinc-binding (AdcA and AdcAII) lipoproteins significantly reduced E. faecalis virulence. Here, we explored whether immunization using a multi-valent approach induces protective immunity against systemic enterococcal infections. We found that multi-antigen antisera raised against EfaA, AdcA, and AdcAII displayed similar capacities to initiate neutrophil-mediated opsonization, like their single-antigen counterparts. Further, these antigen-specific antibodies worked synergistically with calprotectin, a divalent host metal chelator, to inhibit the growth of E. faecalis in laboratory media as well as in human sera. Using the Galleria mellonella invertebrate model and mouse peritonitis model, we showed that passive immunization with multi-antigen antisera conferred robust protection against E. faecalis infection, while the protective effects of single antigen antisera were negligible in G. mellonella, and negligible-to-moderate in the mouse model. Lastly, active immunization with the 3-antigen (trivalent) cocktail significantly protected mice against either lethal or non-lethal E. faecalis infections, with this protection appearing to be far-reaching based on immunization results obtained with contemporary strains of E. faecalis and closely related Enterococcus faecium.
Collapse
Affiliation(s)
- Ling Ning Lam
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Angie Sedra
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Jessica Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Aym Berges
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Irene S Saengpet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Grace Adams
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | | | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
3
|
Kramarska E, Toumi E, Squeglia F, Laverde D, Napolitano V, Frapy E, Autiero I, Sadones O, Huebner J, Skurnik D, Romero-Saavedra F, Berisio R. A rationally designed antigen elicits protective antibodies against multiple nosocomial Gram-positive pathogens. NPJ Vaccines 2024; 9:151. [PMID: 39155280 PMCID: PMC11330964 DOI: 10.1038/s41541-024-00940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
ESKAPE pathogens are responsible for complicated nosocomial infections worldwide and are often resistant to commonly used antibiotics in clinical settings. Among ESKAPE, vancomycin-resistant Enterococcus faecium (VREfm) and methicillin-resistant Staphylococcus aureus (MRSA) are two important Gram-positive pathogens for which non-antibiotic alternatives are urgently needed. We previously showed that the lipoprotein AdcA of E. faecium elicits opsonic and protective antibodies against E. faecium and E. faecalis. Prompted by our observation, reported here, that AdcA also elicits opsonic antibodies against MRSA and other clinically relevant Gram-positive pathogens, we identified the dominant epitope responsible for AdcA cross-reactive activity and designed a hyper-thermostable and multi-presenting antigen, Sc(EH)3. We demonstrate that antibodies raised against Sc(EH)3 mediate opsonic killing of a wide-spectrum of Gram-positive pathogens, including VREfm and MRSA, and confer protection both in passive and active immunisation models. Our data indicate that Sc(EH)3 is a promising antigen for the development of vaccines against different Gram-positive pathogens.
Collapse
Affiliation(s)
- Eliza Kramarska
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eya Toumi
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Diana Laverde
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Valeria Napolitano
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eric Frapy
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Oceane Sadones
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - David Skurnik
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France.
- Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris City, Paris, France.
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy.
| |
Collapse
|
4
|
Laverde D, Armiento S, Molinaro A, Huebner J, De Castro C, Romero-Saavedra F. Identification of a capsular polysaccharide from Enterococcus faecium U0317 using a targeted approach to discover immunogenic carbohydrates for vaccine development. Carbohydr Polym 2024; 330:121731. [PMID: 38368077 DOI: 10.1016/j.carbpol.2023.121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/19/2024]
Abstract
Enterococcus faecium, a gram-positive opportunistic pathogen, has become a major concern for nosocomial infections due to its resistance to several antibiotics, including vancomycin. Finding novel alternatives for treatment prevention, such as vaccines, is therefore crucial. In this study, we used various techniques to discover a novel capsular polysaccharide. Firstly, we identified an encapsulated E. faecium strain by evaluating the opsonophagocytic activity of fifteen strains with antibodies targeting the well-known lipoteichoic acid antigen. This activity was attributed to an unknown polysaccharide. We then prepared a crude cell wall glycopolymer and fractionated it, guided by immunodot-blot analysis. The most immunoreactive fractions were used for opsonophagocytic inhibition assays. The fraction containing the inhibitory polysaccharide underwent structural characterization using NMR and chemical analyses. The elucidated structure presents a branched repeating unit, with the linear part being: →)-β-d-Gal-(1 → 4)-β-d-Glc-(1 → 4)-β-d-Gal-(1 → 4)-β-d-GlcNAc-(1→, further decorated with a terminal α-d-Glc and a d-phosphoglycerol moiety, attached to O-2 and O-3 of the 4-linked Gal unit, respectively. This polysaccharide was conjugated to BSA and the synthetic glycoprotein used to immunize mice. The resulting sera exhibited good opsonic activity, suggesting its potential as a vaccine antigen. In conclusion, our effector-function-based approach successfully identified an immunogenic capsular polysaccharide with promising applications in immunotherapy.
Collapse
Affiliation(s)
- Diana Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Samantha Armiento
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Johannes Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
5
|
Strain R, Tran TT, Mills S, Stanton C, Ross RP. A pilot study of dietary fibres on pathogen growth in an ex vivo colonic model reveals their potential ability to limit vancomycin-resistant Enterococcus expansion. MICROBIOME RESEARCH REPORTS 2023; 2:22. [PMID: 38046819 PMCID: PMC10688796 DOI: 10.20517/mrr.2022.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Dietary fibre is important for shaping gut microbiota. The aim of this pilot study was to investigate the impact of dietary fibres on pathogen performance in the presence of gut microbiota. Methods: In an ex vivo gut model, pooled faecal samples were spiked with a cocktail of representative gastrointestinal pathogens and fermented with yeast β-glucan for 24 hours, after which 16S rRNA amplicon sequencing and short-chain and branched-chain fatty acid (SCFA and BCFA) analyses were performed. In addition, oat β-glucan, arabinoxylan, yeast β-glucan, and galactooligosaccharides were each tested against individual representative pathogens and pathogen growth was assessed via qPCR. Glucose served as a control carbon source. Results: Based on 16S rRNA amplicon sequencing, yeast β-glucan selected for higher proportions of Bacteroides (P = 0.0005, ~6 fold) and Clostridia (P = 0.005, ~3.6 fold) while species of Escherichia/Shigella (P = 0.021, ~2.8 fold) and Lactobacillus (P = 0.007, ~ 15.7-fold) were higher in glucose. Pathogen relative abundance did not differ between glucose and yeast β-glucan. In the absence of pathogens, higher production of BCFAs (P = 0.002) and SCFAs (P = 0.002) fatty acids was observed for fibre group(s). For individual pathogens, yeast β-glucan increased growth of Escherichia coli, Salmonella typhimurium, and Listeria monocytogenes (P < 0.05), arabinoxylan increased S. typhimurium (P < 0.05). Tested fibres decreased vancomycin-resistant Enterococcus faecium (P < 0.05), with yeast β-glucan causing a 1-log reduction (P < 0.01), while galactooligosaccharides decreased L. monocytogenes (P < 0.05). Conclusion: Tested fibres differentially influenced the growth of pathogens, but yeast β-glucan could represent a dietary strategy to help limit vancomycin-resistant enterococci (VRE) expansion in the gut.
Collapse
Affiliation(s)
- Ronan Strain
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Tam T.T. Tran
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
| |
Collapse
|
6
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
7
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
8
|
Dey J, Mahapatra SR, Raj TK, Kaur T, Jain P, Tiwari A, Patro S, Misra N, Suar M. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathog 2022; 14:21. [PMID: 35624464 PMCID: PMC9137449 DOI: 10.1186/s13099-022-00495-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022] Open
Abstract
Enterococcus faecium is an emerging ESKAPE bacterium that is capable of causing severe public health complications in humans. There are currently no licensed treatments or vaccinations to combat the deadly pathogen. We aimed to design a potent and novel prophylactic chimeric vaccine against E. faecium through an immunoinformatics approach The antigenic Penicillin-binding protein 5 (PBP 5) protein was selected to identify B and T cell epitopes, followed by conservancy analysis, population coverage, physiochemical assessment, secondary and tertiary structural analysis. Using various immunoinformatics methods and tools, two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes were finally selected for vaccine development. The constructed vaccine was determined to be highly immunogenic, cytokine-producing, antigenic, non-toxic, non-allergenic, and stable, as well as potentially effective against E. faecium. In addition, disulfide engineering, codon adaptation, and in silico cloning, were used to improve stability and expression efficiency in the host E. coli. Molecular docking and molecular dynamics simulations indicated that the structure of the vaccine is stable and has a high affinity for the TLR4 receptor. The immune simulation results revealed that both B and T cells had an increased response to the vaccination component. Conclusively, the in-depth in silico analysis suggests, the proposed vaccine to elicit a robust immune response against E. faecium infection and hence a promising target for further experimental trials.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - T Kiran Raj
- Department of Biotechnology & Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Taranjeet Kaur
- Biotechnology Industry Research Assistance Council (BIRAC), New Delhi, India
| | - Parul Jain
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - Arushi Tiwari
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - Shubhransu Patro
- Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, 751024, Bhubaneswar, Odisha, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, 751024, Bhubaneswar, Odisha, India.
| |
Collapse
|
9
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
10
|
Fatoba AJ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Immunoinformatics Design of Multiepitope Vaccine Against Enterococcus faecium Infection. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10245-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Berni F, Wang L, Kalfopoulou E, Nguyen DL, van der Es D, Huebner J, Overkleeft HS, Hokke CH, van der Marel GA, van Diepen A, Codée JDC. Generation of glucosylated sn-1-glycerolphosphate teichoic acids: glycerol stereochemistry affects synthesis and antibody interaction. RSC Chem Biol 2021; 2:187-191. [PMID: 34458781 PMCID: PMC8341164 DOI: 10.1039/d0cb00206b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Lipoteichoic acids (LTAs) have been addressed as possible antigen candidates for vaccine development against several opportunistic Gram-positive pathogens. The study of structure-immunogenicity relationship represents a challenge due to the heterogenicity of LTA extracted from native sources. LTAs are built up from glycerol phosphate (GroP) repeating units and they can be substituted at the C-2-OH with carbohydrate appendages or d-alanine residues. The substitution pattern, but also the absolute chirality of the GroP residues can impact the interaction with chiral biomolecules including antibodies and biosynthesis enzymes. We have generated a set of diastereomeric GroP hexamers bearing a glucosyl modification at one of the residues. The chirality of the glycerol building block had an important impact on the stereoselectivity of the glycosylation reaction between the glycosyl donor and the glycerol C-2-OH acceptor. The GroP C-2-chirality also played an important role in the interaction with TA recognizing antibodies. These findings have important implications for the design and synthesis of synthetic TA fragments for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Francesca Berni
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Liming Wang
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Ermioni Kalfopoulou
- Division of Pediatric Infectious Diseases, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Germany
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Daan van der Es
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Germany
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | | | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
12
|
McDonald ND, Boyd EF. Structural and Biosynthetic Diversity of Nonulosonic Acids (NulOs) That Decorate Surface Structures in Bacteria. Trends Microbiol 2021; 29:142-157. [PMID: 32950378 PMCID: PMC7855311 DOI: 10.1016/j.tim.2020.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Nonulosonic acids (NulOs) are a diverse family of 9-carbon α-keto acid sugars that are involved in a wide range of functions across all branches of life. The family of NulOs includes the sialic acids as well as the prokaryote-specific NulOs. Select bacteria biosynthesize the sialic acid N-acetylneuraminic acid (Neu5Ac), and the ability to produce this sugar and its subsequent incorporation into cell-surface structures is implicated in a variety of bacteria-host interactions. Furthermore, scavenging of sialic acid from the environment for energy has been characterized across a diverse group of bacteria, mainly human commensals and pathogens. In addition to sialic acid, bacteria have the ability to biosynthesize prokaryote-specific NulOs, of which there are several known isomers characterized. These prokaryotic NulOs are similar in structure to Neu5Ac but little is known regarding their role in bacterial physiology. Here, we discuss the diversity in structure, the biosynthesis pathways, and the functions of bacteria-specific NulOs. These carbohydrates are phylogenetically widespread among bacteria, with numerous structurally unique modifications recognized. Despite the diversity in structure, the NulOs are involved in similar functions such as motility, biofilm formation, host colonization, and immune evasion.
Collapse
Affiliation(s)
- Nathan D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Santos HM, Tsai CY, Catulin GEM, Trangia KCG, Tayo LL, Liu HJ, Chuang KP. Common bacterial, viral, and parasitic diseases in pigeons (Columba livia): A review of diagnostic and treatment strategies. Vet Microbiol 2020; 247:108779. [PMID: 32768225 DOI: 10.1016/j.vetmic.2020.108779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Pigeons (Columba livia) have been associated with humans for a long time now. They are raised for sport (pigeon race), exhibition (display of fancy breeds), food, and research. Most of the pigeons kept are Racing Homers, trained to compete in the pigeon race. Other breeds, such as Rollers, Nose Divers, Doneks are bred for their aerial abilities. Incorporation of a good preventive medicine program is one of the most critical factors in averting infectious diseases in pigeon flocks. This review summarizes the common bacterial, viral, and parasitic infections in pigeons. The different clinical signs, symptoms, diagnostic strategies, prevention, and treatments were described in this review. Current researches, molecular diagnostic assays, and treatment strategies such as vaccines and drug candidates were included. The information found in this review can provide insights for veterinarians and researchers studying pigeons to develop effective and efficient immunoprophylactic and diagnostic tools for pigeon diagnosis and therapeutics.
Collapse
Affiliation(s)
- Harvey M Santos
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Ching-Yi Tsai
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Gail Everette M Catulin
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Kim Chloe G Trangia
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kuo Pin Chuang
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
14
|
Wenzel CQ, Mills DC, Dobruchowska JM, Vlach J, Nothaft H, Nation P, Azadi P, Melville SB, Carlson RW, Feldman MF, Szymanski CM. An atypical lipoteichoic acid from Clostridium perfringens elicits a broadly cross-reactive and protective immune response. J Biol Chem 2020; 295:9513-9530. [PMID: 32424044 DOI: 10.1074/jbc.ra119.009978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridium perfringens is a leading cause of food-poisoning and causes avian necrotic enteritis, posing a significant problem to both the poultry industry and human health. No effective vaccine against C. perfringens is currently available. Using an antiserum screen of mutants generated from a C. perfringens transposon-mutant library, here we identified an immunoreactive antigen that was lost in a putative glycosyltransferase mutant, suggesting that this antigen is likely a glycoconjugate. Following injection of formalin-fixed whole cells of C. perfringens HN13 (a laboratory strain) and JGS4143 (chicken isolate) intramuscularly into chickens, the HN13-derived antiserum was cross-reactive in immunoblots with all tested 32 field isolates, whereas only 5 of 32 isolates were recognized by JGS4143-derived antiserum. The immunoreactive antigens from both HN13 and JGS4143 were isolated, and structural analysis by MALDI-TOF-MS, GC-MS, and 2D NMR revealed that both were atypical lipoteichoic acids (LTAs) with poly-(β1→4)-ManNAc backbones substituted with phosphoethanolamine. However, although the ManNAc residues in JGS4143 LTA were phosphoethanolamine-modified, a few of these residues were instead modified with phosphoglycerol in the HN13 LTA. The JGS4143 LTA also had a terminal ribose and ManNAc instead of ManN in the core region, suggesting that these differences may contribute to the broadly cross-reactive response elicited by HN13. In a passive-protection chicken experiment, oral challenge with C. perfringens JGS4143 lead to 22% survival, whereas co-gavage with JGS4143 and α-HN13 antiserum resulted in 89% survival. This serum also induced bacterial killing in opsonophagocytosis assays, suggesting that HN13 LTA is an attractive target for future vaccine-development studies.
Collapse
Affiliation(s)
- Cory Q Wenzel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic C Mills
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jiri Vlach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Stephen B Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mario F Feldman
- VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Molecular Microbiology, Washington University of Medicine, St. Louis, Missouri, USA
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada .,VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Immunization with the basic membrane protein (BMP) family ABC transporter elicits protection against Enterococcus faecium in a murine infection model. Microbes Infect 2020; 22:127-136. [PMID: 31585177 DOI: 10.1016/j.micinf.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
|
16
|
Kazemian H, Pourmand MR, Siadat SD, Mahdavi M, Yazdi MH, Avakh Majelan P, Afshar D, Yaseri M, Davari M, Getso MI. Molecular Cloning and Immunogenicity Evaluation of PpiC, GelE, and VS87_01105 Proteins of Enterococcus faecalis as Vaccine Candidates. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 31103023 PMCID: PMC6661130 DOI: 10.29252/.23.5.344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Among the enterococci strains, Enterococcus faecalis is considered as one of the important nosocomial pathogens affecting immunocompromised patients. In this study, the immunogenicity of PpiC, GelE, and VS87_01105 proteins against enterococcal infection was investigated in a mice model. Methods The genes encoding these proteins were cloned into pET21a expression vector, and the recombinant proteins were produced. Mice and rabbits were immunized with the purified recombinant proteins, and subsequently, mice were challenged with E. faecalis for the evaluation of their survival and bacterial clearances. The antibody responses to recombinant proteins were determined by ELISA assay, and opsonophagocytic activities of the antibodies were also measured. Passive immunization was performed using purified antibodies. Mice were challenged, and their survival and bacterial clearance were determined. Results Immunized mice with PpiC, GelE, and VS87_01105 recombinant proteins showed 80%, 70%, and 40% survival rate, respectively. The survival rates among passively immunized mice that received 500 µg of IgG fraction in 100 µl PBS buffer of each of anti-PpiC, anti-GelE, and anti-VS87_01105 were 60%, 50%, and 20%, respectively. The rates of opsonization with anti-PpiC, anti-GelE, and anti-VS87_01105 antibodies at 1/10 dilution were 77%, 64%, and 23%, respectively. Conclusion Based on our findings, PpiC, and GelE proteins can protect the mice against E. faecalis ATCC 29212 and effectively induce a protective antibody response. Thus, these proteins could be used as an additional therapeutic tool against enterococcal infections. Further studies to determine the role of PpiC in ligand binding and demonstration of epitope mapping may establish a credible target for vaccination.
Collapse
Affiliation(s)
- Hamid Kazemian
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; ,Corresponding Author: Mohammad Reza Pourmand ,Department of Pathobiology, School of Public Health and Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Mobile: (+98-912) 5168520; E-mail:
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Avakh Majelan
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Davari
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Muhammad Ibrahim Getso
- Department of Medical Mycology, School of Public Health, Tehran University of Medical Sciences, International College, Tehran, Iran
| |
Collapse
|
17
|
Detection and characterization of bacterial polysaccharides in drug-resistant enterococci. Glycoconj J 2019; 36:429-438. [PMID: 31230165 DOI: 10.1007/s10719-019-09881-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/18/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
Enterococcus faecium (E. faecium) has emerged as one of today's leading causes of health care-associated infections that is difficult to treat with the available antibiotics. These pathogens produce capsular polysaccharides on the cell surface which play a significant role in adhesion, virulence and evasion. Therefore, we aimed at the identification and characterization of bacterial polysaccharide antigens which are central for the development of vaccine-based prophylactic approaches. The crude cell wall-associated polysaccharides from E. faecium, its mutant and complemented strains were purified and analyzed by a primary antibody raised against lipoteichoic acid (LTA) and diheteroglycan (DHG). The resistant E. faecium strains presumably possess novel capsular polysaccharides that allow them to avoid the evasion from opsonic killing. The E. faecium U0317 strain was very well opsonized by anti-U0317 (~95%), an antibody against the whole bacterial cell. The deletion mutant showed a significantly increased susceptibility to opsonophagocytic killing (90-95%) against the penicillin binding protein (anti-PBP-5). By comparison, in a mouse urinary tract and rat endocarditis infection model, respectively, there were no significant differences in virulence. In this study we explored the biological role of the capsule of E. faecium. Our findings showed that the U0317 strain is not only sensitive to anti-LTA but also to antibodies against other enterococcal surface proteins. Our findings demonstrate that polysaccharides capsule mediated-resistance to opsonophagocytosis. We also found that the capsular polysaccharides do not play an important role in bacterial virulence in urinary tract and infective endocarditis in vivo models.
Collapse
|
18
|
Nellore A, Huprikar S. Vancomycin-resistant Enterococcus in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13549. [PMID: 30913322 DOI: 10.1111/ctr.13549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation address vancomycin-resistant enterococci (VRE) infections in SOT candidates and recipients. VRE are an important cause of infection and have been named by the CDC as a serious public threat. Typically, a commensal of the gastrointestinal tract, VRE may become pathogenic after abdominal organ manipulation like transplantation. This guideline reviews the microbiology, antimicrobial resistance mechanisms, epidemiology, and clinical manifestations of VRE infection in the context of solid organ transplantation. Treatment regimens including combination therapies and novel investigational agents are also reviewed. Finally, an updated appraisal of infection control measures relevant to VRE infection and colonization is presented.
Collapse
Affiliation(s)
- Anoma Nellore
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shirish Huprikar
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
19
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
20
|
Jung YC, Lee JH, Kim SA, Schmidt T, Lee W, Lee BL, Lee HS. Synthesis and Biological Activity of Tetrameric Ribitol Phosphate Fragments of Staphylococcus aureus Wall Teichoic Acid. Org Lett 2018; 20:4449-4452. [PMID: 30028624 DOI: 10.1021/acs.orglett.8b01725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A systematically designed and synthesized ribitol phosphate (RboP) oligomer using a series of building blocks, which make up the wall teichoic acid (WTA) of S. aureus, is presented. Based on the use of a solution-phase phosphodiester synthesis, a library of ribitol phosphate tetramers, decorated with d-alanine and N-acetylglucosamine (GlcNAc), were generated. The synthesized RboP tetramers showed increased cytokine levels in mice in a subcutaneous air pouch model.
Collapse
Affiliation(s)
- Yoon-Chul Jung
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Jae-Hyeok Lee
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Sang Ah Kim
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Timo Schmidt
- National Research Laboratory of Defense Proteins, College of Pharmacy , Pusan National University , Busan , 46241 , Korea
| | - Wonchul Lee
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy , Pusan National University , Busan , 46241 , Korea
| | - Hee-Seung Lee
- Department of Chemistry , KAIST , Daejeon , 34141 , Korea
| |
Collapse
|
21
|
van der Es D, Berni F, Hogendorf WFJ, Meeuwenoord N, Laverde D, van Diepen A, Overkleeft HS, Filippov DV, Hokke CH, Huebner J, van der Marel GA, Codée JDC. Streamlined Synthesis and Evaluation of Teichoic Acid Fragments. Chemistry 2018; 24:4014-4018. [PMID: 29389054 PMCID: PMC5887911 DOI: 10.1002/chem.201800153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 11/30/2022]
Abstract
Teichoic acids (TAs) are key components of the Gram-positive bacterial cell wall that are composed of alditol phosphate repeating units, decorated with alanine or carbohydrate appendages. Because of their microhetereogeneity, pure well-defined TAs for biological or immunological evaluation cannot be obtained from natural sources. We present here a streamlined automated solid-phase synthesis approach for the rapid generation of well-defined glycosylated, glycerol-based TA oligomers. Building on the use of a "universal" linker system and fluorous tag purification strategy, a library of glycerolphosphate pentadecamers, decorated with various carbohydrate appendages, is generated. These are used to create a structurally diverse TA-microarray, which is used to reveal, for the first time, the binding preferences of anti-LTA (lipoteichoic acids) antibodies at the molecular level.
Collapse
Affiliation(s)
- Daan van der Es
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Francesca Berni
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Wouter F. J. Hogendorf
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Nico Meeuwenoord
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Diana Laverde
- Division of Paediatric Infectious DiseasesDr. von Hauner Children's HospitalLudwig-Maximilians-UniversityMunichGermany
| | - Angela van Diepen
- Department of ParasitologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Cornelis H. Hokke
- Department of ParasitologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Johannes Huebner
- Division of Paediatric Infectious DiseasesDr. von Hauner Children's HospitalLudwig-Maximilians-UniversityMunichGermany
| | | | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| |
Collapse
|
22
|
Santra A, Xiao A, Yu H, Li W, Li Y, Ngo L, McArthur JB, Chen X. A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Di-N
-acetyllegionaminic Acid-Containing Glycosides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abhishek Santra
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - An Xiao
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Hai Yu
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Wanqing Li
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Yanhong Li
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Linh Ngo
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - John B. McArthur
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Xi Chen
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
23
|
Santra A, Xiao A, Yu H, Li W, Li Y, Ngo L, McArthur JB, Chen X. A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Di-N-acetyllegionaminic Acid-Containing Glycosides. Angew Chem Int Ed Engl 2018; 57:2929-2933. [PMID: 29349857 DOI: 10.1002/anie.201712022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/13/2022]
Abstract
A chemoenzymatic synthon was designed to expand the scope of the chemoenzymatic synthesis of carbohydrates. The synthon was enzymatically converted into carbohydrate analogues, which were readily derivatized chemically to produce the desired targets. The strategy is demonstrated for the synthesis of glycosides containing 7,9-di-N-acetyllegionaminic acid (Leg5,7Ac2 ), a bacterial nonulosonic acid (NulO) analogue of sialic acid. A versatile library of α2-3/6-linked Leg5,7Ac2 -glycosides was built by using chemically synthesized 2,4-diazido-2,4,6-trideoxymannose as a chemoenzymatic synthon for highly efficient one-pot multienzyme (OPME) sialylation followed by downstream chemical conversion of the azido groups into acetamido groups. The syntheses required 10 steps from commercially available d-fucose and had an overall yield of 34-52 %, thus representing a significant improvement over previous methods. Free Leg5,7Ac2 monosaccharide was also synthesized by a sialic acid aldolase-catalyzed reaction.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - An Xiao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Linh Ngo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
24
|
Paganelli FL, van de Kamer T, Brouwer EC, Leavis HL, Woodford N, Bonten MJ, Willems RJ, Hendrickx AP. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium. Int J Antimicrob Agents 2017; 49:355-363. [DOI: 10.1016/j.ijantimicag.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/01/2023]
|
25
|
Khatun F, Stephenson RJ, Toth I. An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry 2017; 23:4233-4254. [PMID: 28097690 DOI: 10.1002/chem.201603599] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/13/2022]
Abstract
Bacterial cell-surface-derived or mimicked carbohydrate moieties that act as protective antigens are used in the development of antibacterial glycoconjugate vaccines. The carbohydrate antigen must have a minimum length or size to maintain the conformational structure of the antigenic epitope(s). The presence or absence of O-acetate, phosphate, glycerol phosphate and pyruvate ketal plays a vital role in defining the immunogenicity of the carbohydrate antigen. The nature of the carrier protein, spacer and conjugation pattern used to develop the glycoconjugate vaccine also defines its overall spatial orientation which in turn affects its avidity and selectivity of interaction with the desired target(s). In addition, the ratio of carbohydrate to protein in glycoconjugate vaccines also makes an important contribution in determining the optimum immunological response. This Review article presents the importance of these variables in the development of antibacterial glycoconjugate vaccines and their effects on immune efficacy.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,School of Pharmacy, Woolloongabba, The University of Queensland, QLD, Australia.,Institute for Molecular Bioscience, St. Lucia, The University of Queensland, QLD, Australia
| |
Collapse
|
26
|
van der Es D, Hogendorf WFJ, Overkleeft HS, van der Marel GA, Codée JDC. Teichoic acids: synthesis and applications. Chem Soc Rev 2017; 46:1464-1482. [DOI: 10.1039/c6cs00270f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review describes synthetic strategies to assemble well-defined teichoic acids and their use in unraveling their biological mode of action.
Collapse
Affiliation(s)
- Daan van der Es
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | | | | | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|
27
|
|
28
|
Hassan MI, Lundgren BR, Chaumun M, Whitfield DM, Clark B, Schoenhofen IC, Boddy CN. Total Biosynthesis of Legionaminic Acid, a Bacterial Sialic Acid Analogue. Angew Chem Int Ed Engl 2016; 55:12018-21. [PMID: 27538580 DOI: 10.1002/anie.201606006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 02/03/2023]
Abstract
Legionaminic acid, Leg5,7Ac2 , a nonulosonic acid like 5-acetamido neuraminic acid (Neu5Ac, sialic acid), is found in cell surface glycoconjugates of bacteria including the pathogens Campylobacter jejuni, Acinetobacter baumanii and Legionella pneumophila. The presence of Leg5,7Ac2 has been correlated with virulence in humans by mechanisms that likely involve subversion of the host's immune system or interactions with host cell surfaces due to its similarity to Neu5Ac. Investigation into its role in bacterial physiology and pathogenicity is limited as there are no effective sources of it. Herein, we construct a de novo Leg5,7Ac2 biosynthetic pathway by combining multiple metabolic modules from three different microbial sources (Saccharomyces cerevisiae, C. jejuni, and L. pneumophila). Over-expression of this de novo pathway in Escherichia coli that has been engineered to lack two native catabolic pathways, enables significant quantities of Leg5,7Ac2 (≈120 mg L(-1) of culture broth) to be produced. Pure Leg5,7Ac2 could be isolated and converted into CMP-activated sugar for biochemical applications and a phenyl thioglycoside for chemical synthesis applications. This first total biosynthesis provides an essential source of Leg5,7Ac2 enabling study of its role in prokaryotic and eukaryotic glycobiology.
Collapse
Affiliation(s)
- Mohamed I Hassan
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Benjamin R Lundgren
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Michael Chaumun
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Brady Clark
- Sussex Research Laboratories Inc., Ottawa, ON, K1A 0R6, Canada
| | - Ian C Schoenhofen
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
29
|
Abstract
There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR). Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR.
Collapse
|
30
|
van der Es D, Groenia NA, Laverde D, Overkleeft HS, Huebner J, van der Marel GA, Codée JDC. Synthesis of E. faecium wall teichoic acid fragments. Bioorg Med Chem 2016; 24:3893-3907. [PMID: 26993744 DOI: 10.1016/j.bmc.2016.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
The first synthesis of different Enterococcus faecium wall teichoic acid (WTA) fragments is presented. The structure of these major cell wall components was elucidated recently and it was shown that these glycerolphosphate (GroP) based polymers are built up from -6-(GalNAc-α(1-3)-GalNAc-β(1-2)-GroP)- repeating units. We assembled WTA fragments up to three repeating units in length, in two series that differ in the stereochemistry of the glycerolphosphate moiety. The key GalNAc-GalNAc-GroP synthons, required for the synthesis, were generated from galactosazide building blocks that were employed in highly stereoselective glycosylation reactions to furnish both the α- and β-configured linkages. By comparing the NMR spectra of the synthesized fragments with the isolated material it appears that the hereto undefined stereochemistry of the glycerol phosphate moiety is sn-glycerol-3-phosphate. The generated fragments will be valuable tools to study their immunological activity at the molecular level.
Collapse
Affiliation(s)
- Daan van der Es
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Nadia A Groenia
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|