1
|
Kaumbekova S, Sakaguchi N, Miyamoto Y, Onoda A, Ishihara Y, Umezawa M. Effects of urban particulate matter on the secondary structure of albumin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:892-900. [PMID: 40103406 DOI: 10.1039/d4em00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Particulate air pollution is an environmental problem recognized as a global public health issue. Although the toxicological effects of environmental particle matter (PM) have been reported, the mechanism underlying the effect of PM on protein conformational changes, which are associated with the development of various diseases, has yet to be elucidated. In this study, we investigated the effect of urban PM on the secondary structure of proteins using bovine serum albumin (BSA). An urban aerosol (CRM28) was used as the original PM (PMO) and washed with acetone to investigate the effect of PM with two different chemical compositions. After washing with acetone, the remaining PM fraction contained decreased amounts of ions and carbon, while the metallic concentration was increased; thus, this PM fraction was labeled as PMM. After incubation of BSA with PM, the samples were subjected to Fourier-transform infrared (FT-IR) spectroscopy to investigate the changes in the absorption peak of the amide I band. BSA incubated with PMO and PMM showed an increase in the β-sheet ratio to the total secondary structure. Furthermore, the β-sheet content was more significantly increased when mixed with PMM (by 22.6%), indicating a more significant effect of the metallic fraction on the formation of β-sheets. In comparison, the lowest total amount of α-helix and β-sheets (with a decrease of 8.5%) was observed after incubation with PMO, associated with the protein partial unfolding in the presence of ions and carbonaceous PM constituents. The potential of a long-term effect of PM composition on protein structure would be of future interest in in vivo time-course studies.
Collapse
Affiliation(s)
- Samal Kaumbekova
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| | - Naoya Sakaguchi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yuto Miyamoto
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Atsuto Onoda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda City, Yamaguchi 756-0884, Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Masakazu Umezawa
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
2
|
Ishihara Y, Kajino M, Iwamoto Y, Nakane T, Nabetani Y, Okuda T, Kono M, Okochi H. Impact of artificial sunlight aging on the respiratory effects of polyethylene terephthalate microplastics through degradation-mediated terephthalic acid release in male mice. Toxicol Sci 2025; 203:242-252. [PMID: 39656800 DOI: 10.1093/toxsci/kfae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Microplastics are ubiquitous in the atmosphere, leading to human exposure through inhalation. Airborne microplastics undergo degradation due to sunlight irradiation, yet the respiratory risks associated with degraded microplastics remain poorly understood. In this study, we investigated the respiratory effects of polyethylene terephthalate (PET) degraded by artificial sunlight and created a transport and degradation model of PET for risk assessment. PET fibers were cut and subjected to artificial sunlight irradiation. Mice exposed to aged PET showed increased airway resistance induced by methacholine (MCh) inhalation, along with lung inflammation and neutrophil infiltration. Terephthalic acid (TPA) was continuously released from PET aged by artificial sunlight. Exposure to TPA also caused lung inflammation and enhanced airway resistance induced by MCh in mice. These findings indicate that aged PET can cause respiratory impairment via TPA release. A simple transport and degradation model was developed to quantitatively relate the abundance of aged PET produced in this study (i.e. 4,000 × 96 W m-2 h) and aged fractions of PET that can be generated in the atmosphere. Our results suggested 10% to 60% of PET was degraded as that produced in this study over sunny regions in summer, whereas only lower than 1% in high-latitude cities in Europe in winter. This study demonstrates the importance of considering the abundance of aged PET and further development of a transport and degradation model of PET to assess the risk of degraded PET in the atmosphere.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | - Mizuo Kajino
- Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki 305-0052, Japan
| | - Yoko Iwamoto
- Program of Life and Environmental Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | - Tatsuto Nakane
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yu Nabetani
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Maori Kono
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Ishihara N, Tanaka M, Namba K, Kawano S, Nishimura S, Nezu N, Nakane T, Oguro A, Okuda T, Itoh K, Nabetani Y, Ishihara Y. Long-term exposure to urban particulate matter exacerbates mortality after ischemic stroke in mice. J Toxicol Sci 2025; 50:147-159. [PMID: 40024758 DOI: 10.2131/jts.50.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Exposure to fine particulate matter (PM2.5) has been epidemiologically reported to worsen the prognosis of ischemic stroke; however, the details have not been investigated. One of the major toxic mechanisms of PM2.5 inhalation is oxidative stress, which is mediated by reactive oxygen species generated by PM2.5 components such as metals and polycyclic aromatic hydrocarbons. In this study, we examined the effects of long-term exposure to urban particulate matter, focusing on oxidative stress, on prognosis after ischemic stroke in mice. When mice were intranasally exposed for 28 days to an urban aerosol collected in Beijing, China (CRM28), microglial activation was observed in the cerebral cortex, indicating that CRM28 induced neuroinflammation. CRM28 exposure resulted in increased serum levels of brain natriuretic peptide and troponin I, suggesting that cardiac injury was elicited by CRM28. Lung inflammation was also observed following CRM28 exposure; however, systemic inflammation was not detected. Mice exposed to CRM28 showed an exacerbation of mortality after ischemic stroke induction compared with vehicle mice. A vitamin E-rich diet suppressed CRM28-induced lipid peroxidation in the heart and lungs but not in the brain. A vitamin E-rich diet also attenuated cardiac injury and lung inflammation induced by CRM28 exposure, whereas neuroinflammation was not affected. Mortality after ischemic stroke improved with the administration of a vitamin E-rich diet. Considering that systemic inflammation did not occur, cardiac injury induced by oxidative stress under exposure to urban particulate matter may be involved in increased mortality after ischemic stroke. Antioxidation under air pollution is fundamental for protection against ischemic stroke.
Collapse
Affiliation(s)
- Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Miki Tanaka
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Kaede Namba
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Shinji Kawano
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Sakuno Nishimura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Naoyuki Nezu
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Tatsuto Nakane
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | | | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yu Nabetani
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
4
|
Di Chiano M, Rocchetti MT, Spano G, Russo P, Allegretta C, Milior G, Gadaleta RM, Sallustio F, Pontrelli P, Gesualdo L, Avolio C, Fiocco D, Gallone A. Lactobacilli Cell-Free Supernatants Modulate Inflammation and Oxidative Stress in Human Microglia via NRF2-SOD1 Signaling. Cell Mol Neurobiol 2024; 44:60. [PMID: 39287687 PMCID: PMC11408562 DOI: 10.1007/s10571-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Microglia are macrophage cells residing in the brain, where they exert a key role in neuronal protection. Through the gut-brain axis, metabolites produced by gut commensal microbes can influence brain functions, including microglial activity. The nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulator of the oxidative stress response in microglia, controlling the expression of cytoprotective genes. Lactobacilli-derived cell-free supernatants (CFSs) are postbiotics that have shown antioxidant and immunomodulatory effects in several in vitro and in vivo studies. This study aimed to explore the effects of lactobacilli CFSs on modulating microglial responses against oxidative stress and inflammation. HMC3 microglia were exposed to lipopolysaccaride (LPS), as an inflammatory trigger, before and after administration of CFSs from three human gut probiotic species. The NRF2 nuclear protein activation and the expression of NRF2-controlled antioxidant genes were investigated by immunoassay and quantitative RT-PCR, respectively. Furthermore, the level of pro- and anti-inflammatory cytokines was evaluated by immunoassay. All CFSs induced a significant increase of NRF2 nuclear activity in basal conditions and upon inflammation. The transcription of antioxidant genes, namely heme oxygenase 1, superoxide dismutase (SOD), glutathione-S transferase, glutathione peroxidase, and catalase also increased, especially after inflammatory stimulus. Besides, higher SOD1 activity was detected relative to inflamed microglia. In addition, CFSs pre-treatment of microglia attenuated pro-inflammatory TNF-α levels while increasing anti-inflammatory IL-10 levels. These findings confirmed that gut microorganisms' metabolites can play a relevant role in adjuvating the microglia cellular response against neuroinflammation and oxidative stress, which are known to cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | | | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giampaolo Milior
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005, Paris, France
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale Biostrutture e Biosistemi INBB, Viale delle Medaglie d'Oro, Roma, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Namba K, Tominaga T, Ishihara Y. Decreases in the number of microglia and neural circuit dysfunction elicited by developmental exposure to neonicotinoid pesticides in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:3944-3955. [PMID: 38581179 DOI: 10.1002/tox.24263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Neonicotinoids are insecticides widely used in the world. Although neonicotinoids are believed to be toxic only to insects, their developmental neurotoxicity in mammals is a concern. Therefore, we examined the effects of developmental exposure to neonicotinoids on immune system in the brain and post-developmental behaviors in this study. Imidacloprid or clothianidin was orally administered to dams at a dosage of 0.1 mg/kg/day from embryonic day 11 to postnatal day 21. Imidacloprid decreased sociability, and both imidacloprid and clothianidin decreased locomotor activity and induced anxiety, depression and abnormal repetitive behaviors after the developmental period. There was no change in the number of neurons in the hippocampus of mice exposed to imidacloprid. However, the number and activity of microglia during development were significantly decreased by imidacloprid exposure. Imidacloprid also induced neural circuit dysfunction in the CA1 and CA3 regions of the hippocampus during the early postnatal period. Exposure to imidacloprid suppressed the expression of csf1r during development. Collectively, these results suggest that developmental exposure to imidacloprid decreases the number and activity of microglia, which can cause neural circuit dysfunction and abnormal behaviors after the developmental period. Care must be taken to avoid exposure to neonicotinoids, especially during development.
Collapse
Affiliation(s)
- Kaede Namba
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Sanuki, Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Vohra A, Keefe P, Puthanveetil P. Altered Metabolic Signaling and Potential Therapies in Polyglutamine Diseases. Metabolites 2024; 14:320. [PMID: 38921455 PMCID: PMC11205831 DOI: 10.3390/metabo14060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Polyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications. The metabolic regulation during polyglutamine diseases is not well studied and needs more attention. We have brought to light the significance of regulating glutamine metabolism during polyglutamine diseases, which could help in decreasing the neuronal damage associated with excess glutamate and nucleotide generation. Most polyglutamine diseases are accompanied by symptoms that occur due to excess glutamate and nucleotide accumulation. Along with a dysregulated glutamine metabolism, the Nicotinamide adenine dinucleotide (NAD+) levels drop down, and, under these conditions, NAD+ supplementation is the only achievable strategy. NAD+ is a major co-factor in the glutamine metabolic pathway, and it helps in maintaining neuronal homeostasis. Thus, strategies to decrease excess glutamate and nucleotide generation, as well as channelizing glutamine toward the generation of ATP and the maintenance of NAD+ homeostasis, could aid in neuronal health. Along with understanding the metabolic dysregulation that occurs during polyglutamine diseases, we have also focused on potential therapeutic strategies that could provide direct benefits or could restore metabolic homeostasis. Our review will shed light into unique metabolic causes and into ideal therapeutic strategies for treating complications associated with polyglutamine diseases.
Collapse
Affiliation(s)
- Alisha Vohra
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Patrick Keefe
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Prasanth Puthanveetil
- College of Graduate Studies, Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
8
|
Charoensaensuk V, Huang BR, Huang ST, Lin C, Xie SY, Chen CW, Chen YC, Cheng HT, Liu YS, Lai SW, Shen CK, Lin HJ, Yang LY, Lu DY. LPS priming-induced immune tolerance mitigates LPS-stimulated microglial activation and social avoidance behaviors in mice. J Pharmacol Sci 2024; 154:225-235. [PMID: 38485340 DOI: 10.1016/j.jphs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sian-Ting Huang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Han-Tsung Cheng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan; Biomedical Technology R&D Center, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
9
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants (Basel) 2023; 12:1675. [PMID: 37759978 PMCID: PMC10525108 DOI: 10.3390/antiox12091675] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a dynamic balance between the production and scavenging of biological oxidants in the body and prevent the toxic effects of free radicals, and have been shown to be effective in anti-tumor, anti-radiation, and anti-aging studies. This research summarizes the types, biological functions, and regulatory mechanisms of SODs, as well as their applications in medicine, food production, and cosmetic production. SODs have proven to be a useful tool in fighting disease, and mimetics and conjugates that report SODs have been developed successively to improve the effectiveness of SODs. There are still obstacles to solving the membrane permeability of SODs and the persistence of enzyme action, which is still a hot spot and difficulty in mining the effect of SODs and promoting their application in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
11
|
Lee S, Eom S, Lee J, Pyeon M, Kim K, Choi KY, Lee JH, Shin DJ, Lee KH, Oh S, Lee JH. Probiotics that Ameliorate Cognitive Impairment through Anti-Inflammation and Anti-Oxidation in Mice. Food Sci Anim Resour 2023; 43:612-624. [PMID: 37484004 PMCID: PMC10359840 DOI: 10.5851/kosfa.2023.e22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The gut-brain axis encompasses a bidirectional communication pathway between the gastrointestinal microbiota and the central nervous system. There is some evidence to suggest that probiotics may have a positive effect on cognitive function, but more research is needed before any definitive conclusions can be drawn. Inflammation-induced by lipopolysaccharide (LPS) may affect cognitive function. To confirm the effect of probiotics on oxidative stress induced by LPS, the relative expression of antioxidant factors was confirmed, and it was revealed that the administration of probiotics had a positive effect on the expression of antioxidant-related factors. After oral administration of probiotics to mice, an intentional inflammatory response was induced through LPS i.p., and the effect on cognition was confirmed by the Morris water maze test, nitric oxide (NO) assay, and interleukin (IL)-1β enzyme-linked immunosorbent assay performed. Experimental results, levels of NO and IL-1 β in the blood of LPS i.p. mice were significantly decreased, and cognitive evaluation using the Morris water maze test showed significant values in the latency and target quadrant percentages in the group that received probiotics. This proves that intake of these probiotics improves cognitive impairment and memory loss through anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Shinhui Lee
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Sanung Eom
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Jiwon Lee
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Minsu Pyeon
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Kieup Kim
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s &
Related Dementia Cohort Research Center, Chosun University,
Gwangju 61452, Korea
- Kolab Inc., Gwangju 61436,
Korea
| | | | | | - Kun Ho Lee
- Gwangju Alzheimer’s &
Related Dementia Cohort Research Center, Chosun University,
Gwangju 61452, Korea
- Department of Biomedical Science, Chosun
University, Gwangju 61452, Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Junho H Lee
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| |
Collapse
|
12
|
Xin W, Baokun Z, Zhiheng C, Qiang S, Erzhu Y, Jianguang X, Xiaofeng L. Biodegradable bilayer hydrogel membranes loaded with bazedoxifene attenuate blood-spinal cord barrier disruption via the NF-κB pathway after acute spinal cord injury. Acta Biomater 2023; 159:140-155. [PMID: 36736849 DOI: 10.1016/j.actbio.2023.01.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Therefore, early restoration of the BSCB represents a key step in the treatment of SCI. Bazedoxifene (BZA), a third-generation estrogen receptor modulator, has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury, attracting great interest in the field of central nervous system injury and repair. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. Here, we developed a new type of biomaterial carrier and constructed a BZA-loaded HSPT (hyaluronic acid (HA), sodium alginate (SA), polyvinyl alcohol (PVA), tetramethylpropane (TPA) material construction) (HSPT@Be) system to effectively deliver BZA to the site of SCI. We found that HSPT@Be could significantly reduce inflammation in the spinal cord in SCI rats and attenuate BSCB disruption by providing covering scaffold, inhibiting oxidative stress, and upregulating tight junction proteins, which was mediated by regulation of the NF-κB/MMP signaling pathway. Importantly, functional assessment showed the evident improvement of behavioral functions in the HSPT@Be-treated SCI rats. These results indicated that HSPT@Be can attenuate BSCB disruption via the NF-κB pathway after SCI, shedding light on its potential therapeutic benefit for SCI. STATEMENT OF SIGNIFICANCE: After spinal cord injury, blood-spinal cord barrier disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Bazedoxifene has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. In this study, we developed a new type of biomaterial carrier and constructed a bazedoxifene-loaded HSPT (HSPT@Be) system to efficiently treat SCI. HSPT@Be could provide protective coverage, inhibit oxidative stress, and upregulate tight junction proteins through NF-κB/MMP pathway both in vivo and in vitro, therefore attenuating BSCB disruption. Our study fills the application gap of biomaterials in BSCB restoration.
Collapse
Affiliation(s)
- Wang Xin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Baokun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chen Zhiheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shi Qiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Erzhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xu Jianguang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Lian Xiaofeng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
13
|
Tanaka M, Okuda T, Itoh K, Ishihara N, Oguro A, Fujii-Kuriyama Y, Nabetani Y, Yamamoto M, Vogel CFA, Ishihara Y. Polycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammation. Part Fibre Toxicol 2023; 20:6. [PMID: 36797786 PMCID: PMC9933276 DOI: 10.1186/s12989-023-00517-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND A recent epidemiological study showed that air pollution is closely involved in the prognosis of ischemic stroke. We and others have reported that microglial activation in ischemic stroke plays an important role in neuronal damage. In this study, we investigated the effects of urban aerosol exposure on neuroinflammation and the prognosis of ischemic stroke using a mouse photothrombotic model. RESULTS When mice were intranasally exposed to CRM28, urban aerosols collected in Beijing, China, for 7 days, microglial activation was observed in the olfactory bulb and cerebral cortex. Mice exposed to CRM28 showed increased microglial activity and exacerbation of movement disorder after ischemic stroke induction. Administration of core particles stripped of attached chemicals from CRM28 by washing showed less microglial activation and suppression of movement disorder compared with CRM28-treated groups. CRM28 exposure did not affect the prognosis of ischemic stroke in null mice for aryl hydrocarbon receptor, a polycyclic aromatic hydrocarbon (PAH) receptor. Exposure to PM2.5 collected at Yokohama, Japan also exacerbated movement disorder after ischemic stroke. CONCLUSION Particle matter in the air is involved in neuroinflammation and aggravation of the prognosis of ischemic stroke; furthermore, PAHs in the particle matter could be responsible for the prognosis exacerbation.
Collapse
Affiliation(s)
- Miki Tanaka
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2101, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2101, Japan
| | - Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Molecular Epidemiology, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - Yu Nabetani
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, Minamata, Kumamoto, 867-0008, Japan
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Ishihara Y, Itoh K. Microglial inflammatory reactions regulated by oxidative stress. J Clin Biochem Nutr 2023; 72:23-27. [PMID: 36777074 PMCID: PMC9899914 DOI: 10.3164/jcbn.22-71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
Abstract
Microglia are immune cells in the brain that can respond to endogenous and exogenous substrates to elicit inflammatory reactions. The transcription factor nuclear factor kappa-light-chain-enhancer of activated B induces proinflammatory gene expression in response to foreign matter via pattern recognition receptors; thus, nuclear factor kappa-light-chain-enhancer of activated B is a master regulator of inflammation. During the inflammatory process, very large amounts of reactive oxygen species are generated and promote the onset and progression of inflammation. Interestingly, nuclear factor kappa-light-chain-enhancer of activated B drives the transcription of superoxide dismutase 2 in many types of cells, including microglia. Superoxide dismutase 2 is an antioxidative enzyme that catalyzes the dismutation of superoxide anions into molecular oxygen and hydrogen peroxide. Of note, nuclear factor kappa-light-chain-enhancer of activated B can initiate inflammation to elicit proinflammatory gene expression, while its transcription product superoxide dismutase 2 can suppress inflammation. In this review, we use recent knowledge to describe the interaction between oxidative stress and nuclear factor kappa-light-chain-enhancer of activated B and discuss the complicated role of microglial superoxide dismutase 2 in inflammation.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan,To whom correspondence should be addressed. E-mail:
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
15
|
Kono M, Okuda T, Ishihara N, Hagino H, Tani Y, Okochi H, Tokoro C, Takaishi M, Ikeda H, Ishihara Y. Chemokine expression in human 3-dimensional cultured epidermis exposed to PM2.5 collected by cyclonic separation. Toxicol Res 2023; 39:1-13. [PMID: 36726829 PMCID: PMC9839915 DOI: 10.1007/s43188-022-00142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fine particulate matter (PM2.5) exposure has a risk of inducing several health problems, especially in the respiratory tract. The skin is the largest organ of the human body and is therefore the primary target of PM2.5. In this study, we examined the effects of PM2.5 on the skin using a human 3-dimensional cultured epidermis model. PM2.5 was collected by cyclonic separation in Yokohama, Japan. Global analysis of 34 proteins released from the epidermis revealed that the chemokines, chemokine C-X-C motif ligand 1 (CXCL1) and interleukin 8 (IL-8), were significantly increased in response to PM2.5 exposure. These chemokines stimulated neutrophil chemotaxis in a C-X-C motif chemokine receptor 2-dependent manner. The oxidative stress and signal transducer and activator of transcription 3 pathways may be involved in the increased expression of CXCL1 and IL-8 in the human epidermis model. Interestingly, in the HaCaT human keratinocyte cell line, PM2.5 did not affect chemokine expression but did induce IL-6 expression, suggesting a different effect of PM2.5 between the epidermis model and HaCaT cells. Overall, PM2.5 could induce the epidermis to release chemokines, followed by neutrophil activation, which might cause an unregulated inflammatory reaction in the skin.
Collapse
Affiliation(s)
- Maori Kono
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, 223-8522 Japan
| | - Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521 Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, Ibaraki, 305-0822 Japan
| | - Yuto Tani
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Chiharu Tokoro
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Masayuki Takaishi
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Hidefumi Ikeda
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521 Japan
| |
Collapse
|
16
|
Song B, Chen Q, Li Y, Zhan S, Zhao R, Shen X, Liu M, Tong C. Functional Roles of Exosomes in Allergic Contact Dermatitis. J Microbiol Biotechnol 2022; 32:1506-1514. [PMID: 36377198 PMCID: PMC9843815 DOI: 10.4014/jmb.2206.06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Allergic contact dermatitis (ACD) is an allergen-specific T-cell-mediated inflammatory response, albeit with unclear pathogenesis. Exosomes are nanoscale extracellular vesicles secreted by several cell types and widely distributed in various biological fluids. Exosomes affect the occurrence and development of ACD through immunoregulation among other ways. Nevertheless, the role of exosomes in ACD warrants further clarification. This review examines the progress of research into exosomes and their involvement in the pathogenesis, diagnosis, and treatment of ACD and provides ideas for exploring new diagnostic and treatment methods for this disease.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China,
B. Song Phone/ Fax: +86-6819296 E-mail:
| | - Qian Chen
- Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Yuqi Li
- Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Shuang Zhan
- Animal Husbandry and Veterinary Station of Yongji Economic Development Zone, Jilin 132200, Jilin Province, P.R. China
| | - Rui Zhao
- Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Xue Shen
- Molecular Mechanism of Disease and Research and Development of Bioactive Substances, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Min Liu
- Department of Pharmaceutical Engineering, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P.R. China,Corresponding authors C. Tong Phone/ Fax: +86-6819296 E-mail:
| |
Collapse
|
17
|
Neuronal Oxidative Stress Promotes α-Synuclein Aggregation In Vivo. Antioxidants (Basel) 2022; 11:antiox11122466. [PMID: 36552674 PMCID: PMC9774295 DOI: 10.3390/antiox11122466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Both genetic and environmental factors increase risk for Parkinson's disease. Many of the known genetic factors influence α-synuclein aggregation or degradation, whereas most of the identified environmental factors produce oxidative stress. Studies using in vitro approaches have identified mechanisms by which oxidative stress can accelerate the formation of α-synuclein aggregates, but there is a paucity of evidence supporting the importance of these processes over extended time periods in brain. To assess this issue, we evaluated α-synuclein aggregates in brains of three transgenic mouse strains: hSyn mice, which overexpress human α-synuclein in neurons and spontaneously develop α-synuclein aggregates; EAAT3-/- mice, which exhibit a neuron-specific impairment in cysteine uptake and resultant neuron-selective chronic oxidative stress; and double-transgenic hSyn/EAAT3-/- mice. Aggregate formation was evaluated by quantitative immunohistochemistry for phosphoserine 129 α-synuclein and by an α-synuclein proximity ligation assay. Both methods showed that the double transgenic hSyn/EAAT3-/- mice exhibited a significantly higher α-synuclein aggregate density than littermate hSyn mice in each brain region examined. Negligible aggregate formation was observed in the EAAT3-/- mouse strain, suggesting a synergistic rather than additive interaction between the two genotypes. A similar pattern of results was observed in assessments of motor function: the pole test and rotarod test. Together, these observations indicate that chronic, low-grade neuronal oxidative stress promotes α-synuclein aggregate formation in vivo. This process may contribute to the mechanism by which environmentally induced oxidative stress contributes to α-synuclein pathology in idiopathic Parkinson's disease.
Collapse
|
18
|
Zhang L, Qin Z, Sun H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact Mater 2022; 18:1-14. [PMID: 35387158 PMCID: PMC8961303 DOI: 10.1016/j.bioactmat.2022.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and destruction of cartilage, promoted by sustained inflammation. However, current treatments remain unsatisfactory due to lacking of selective and effective strategies for alleviating inflammatory environments in RA joint. Inspired by neutrophil chemotaxis for inflammatory region, we therefore developed neutrophil-derived exosomes functionalized with sub-5 nm ultrasmall Prussian blue nanoparticles (uPB-Exo) via click chemistry, inheriting neutrophil-targeted biological molecules and owning excellent anti-inflammatory properties. uPB-Exo can selectively accumulate in activated fibroblast-like synoviocytes, subsequently neutralizing pro-inflammatory factors, scavenging reactive oxygen species, and alleviating inflammatory stress. In addition, uPB-Exo effectively targeted to inflammatory synovitis, penetrated deeply into the cartilage and real-time visualized inflamed joint through MRI system, leading to precise diagnosis of RA in vivo with high sensitivity and specificity. Particularly, uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. Therefore, nanoenzyme functionalized exosomes hold the great potential for enhanced treatment of RA in clinic. uPB-Exo were firstly developed by combining NE-Exo with sub-5 nm ultrasmall PB nanoparticles via click chemistry. uPB-Exo selectively targeted inflamed joints via neutrophil-targeted biological molecules inherited from neutrophils. uPB-Exo accumulated in active FLS, and eventually scavenged reactive oxygen species and alleviated inflammatory stress. uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. uPB-Exo, as a drug free therapeutical agent, holds the great potential for enhanced treatment of RA in clinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ziguo Qin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
- Corresponding author.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
19
|
Siokas V, Stamati P, Pateraki G, Liampas I, Aloizou AM, Tsirelis D, Nousia A, Sgantzos M, Nasios G, Bogdanos DP, Dardiotis E. Analysis of SOD2 rs4880 Genetic Variant in Patients with Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:4406-4414. [PMID: 36286017 PMCID: PMC9600469 DOI: 10.3390/cimb44100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
A few gene loci that contribute to Alzheimer's Disease (AD) onset have been identified. Few studies have been published about the relationship between SOD2 rs4880 single nucleotide variant and AD, revealing inconsistent results. Therefore, the aim of the current study is to further examine the role of the SOD2 rs4880 in AD. We performed a case-control study with a total of 641 subjects (320 patients with probable AD, and 321 healthy controls). The statistical analysis was performed assuming five genetic models. The threshold for statistical significance was set at 0.05. The results revealed no association between SOD2 rs4880 and AD in any of the assumed genetic models that were examined [log-additive OR = 0.95 (0.76-1.19), over-dominant OR = 1.15 (0.85-1.57), recessive OR = 0.85 (0.59-1.22), dominant OR = 1.03 (0.72-1.47), and co-dominant OR1 = 1.10 (0.75-1.60) and OR2 = 0.90 (0.58-1.40)]. Adjustment for sex and subgroup analyses based on sex did not reveal any statistically significant results either. Based on our findings, SOD2 rs4880 does not appear to play a determining role in the risk of developing AD. Larger studies are warranted to elucidate the connection between rs4880 and AD.
Collapse
Affiliation(s)
- Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Polyxeni Stamati
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Georgia Pateraki
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Ioannis Liampas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Athina-Maria Aloizou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Daniil Tsirelis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, 45500 Ioannina, Greece
| | - Markos Sgantzos
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, 45500 Ioannina, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
20
|
A CCR5 antagonist, maraviroc, alleviates neural circuit dysfunction and behavioral disorders induced by prenatal valproate exposure. J Neuroinflammation 2022; 19:195. [PMID: 35906621 PMCID: PMC9335995 DOI: 10.1186/s12974-022-02559-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Valproic acid (VPA) is a clinically used antiepileptic drug, but it is associated with a significant risk of a low verbal intelligence quotient (IQ) score, attention-deficit hyperactivity disorder and autism spectrum disorder in children when it is administered during pregnancy. Prenatal VPA exposure has been reported to affect neurogenesis and neuronal migration and differentiation. In addition, growing evidence has shown that microglia and brain immune cells are activated by VPA treatment. However, the role of VPA-activated microglia remains unclear. METHODS Pregnant female mice received sodium valproate on E11.5. A microglial activation inhibitor, minocycline or a CCR5 antagonist, maraviroc was dissolved in drinking water and administered to dams from P1 to P21. Measurement of microglial activity, evaluation of neural circuit function and expression analysis were performed on P10. Behavioral tests were performed in the order of open field test, Y-maze test, social affiliation test and marble burying test from the age of 6 weeks. RESULTS Prenatal exposure of mice to VPA induced microglial activation and neural circuit dysfunction in the CA1 region of the hippocampus during the early postnatal periods and post-developmental defects in working memory and social interaction and repetitive behaviors. Minocycline, a microglial activation inhibitor, clearly suppressed the above effects, suggesting that microglia elicit neural dysfunction and behavioral disorders. Next-generation sequencing analysis revealed that the expression of a chemokine, C-C motif chemokine ligand 3 (CCL3), was upregulated in the hippocampi of VPA-treated mice. CCL3 expression increased in microglia during the early postnatal periods via an epigenetic mechanism. The CCR5 antagonist maraviroc significantly suppressed neural circuit dysfunction and post-developmental behavioral disorders induced by prenatal VPA exposure. CONCLUSION These findings suggest that microglial CCL3 might act during development to contribute to VPA-induced post-developmental behavioral abnormalities. CCR5-targeting compounds such as maraviroc might alleviate behavioral disorders when administered early.
Collapse
|
21
|
Kim J, Lee HJ, Park JH, Cha BY, Hoe HS. Nilotinib modulates LPS-induced cognitive impairment and neuroinflammatory responses by regulating P38/STAT3 signaling. J Neuroinflammation 2022; 19:187. [PMID: 35841100 PMCID: PMC9288088 DOI: 10.1186/s12974-022-02549-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In chronic myelogenous leukemia, reciprocal translocation between chromosome 9 and chromosome 22 generates a chimeric protein, Bcr-Abl, that leads to hyperactivity of tyrosine kinase-linked signaling transduction. The therapeutic agent nilotinib inhibits Bcr-Abl/DDR1 and can cross the blood-brain barrier, but its potential impact on neuroinflammatory responses and cognitive function has not been studied in detail. METHODS The effects of nilotinib in vitro and in vivo were assessed by a combination of RT-PCR, real-time PCR, western blotting, ELISA, immunostaining, and/or subcellular fractionation. In the in vitro experiments, the effects of 200 ng/mL LPS or PBS on BV2 microglial cells, primary microglia or primary astrocytes pre- or post-treated with 5 µM nilotinib or vehicle were evaluated. The in vivo experiments involved wild-type mice administered a 7-day course of daily injections with 20 mg/kg nilotinib (i.p.) or vehicle before injection with 10 mg/kg LPS (i.p.) or PBS. RESULTS In BV2 microglial cells, pre- and post-treatment with nilotinib altered LPS-induced proinflammatory/anti-inflammatory cytokine mRNA levels by suppressing AKT/P38/SOD2 signaling. Nilotinib treatment also significantly downregulated LPS-stimulated proinflammatory cytokine levels in primary microglia and primary astrocytes by altering P38/STAT3 signaling. Experiments in wild-type mice showed that nilotinib administration affected LPS-mediated microglial/astroglial activation in a brain region-specific manner in vivo. In addition, nilotinib significantly reduced proinflammatory cytokine IL-1β, IL-6 and COX-2 levels and P38/STAT3 signaling in the brain in LPS-treated wild-type mice. Importantly, nilotinib treatment rescued LPS-mediated spatial working memory impairment and cortical dendritic spine number in wild-type mice. CONCLUSIONS Our results indicate that nilotinib can modulate neuroinflammatory responses and cognitive function in LPS-stimulated wild-type mice.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Byung-Yoon Cha
- PharmacoRex Co., Ltd., 20 Techno 1-ro, Yuseong-gu, Daejeon, 34016, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea.
| |
Collapse
|
22
|
Simicic D, Cudalbu C, Pierzchala K. Overview of oxidative stress findings in hepatic encephalopathy: From cellular and ammonium-based animal models to human data. Anal Biochem 2022; 654:114795. [PMID: 35753389 DOI: 10.1016/j.ab.2022.114795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress is a natural phenomenon in the body. Under physiological conditions intracellular reactive oxygen species (ROS) are normal components of signal transduction cascades, and their levels are maintained by a complex antioxidants systems participating in the in-vivo redox homeostasis. Increased oxidative stress is present in several chronic diseases and interferes with phagocytic and nervous cell functions, causing an up-regulation of cytokines and inflammation. Hepatic encephalopathy (HE) occurs in both acute liver failure (ALF) and chronic liver disease. Increased blood and brain ammonium has been considered as an important factor in pathogenesis of HE and has been associated with inflammation, neurotoxicity, and oxidative stress. The relationship between ROS and the pathophysiology of HE is still poorly understood. Therefore, sensing ROS production for a better understanding of the relationship between oxidative stress and functional outcome in HE pathophysiology is critical for determining the disease mechanisms, as well as to improve the management of patients. This review is emphasizing the important role of oxidative stress in HE development and documents the changes occurring as a consequence of oxidative stress augmentation based on cellular and ammonium-based animal models to human data.
Collapse
Affiliation(s)
- D Simicic
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - K Pierzchala
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| |
Collapse
|
23
|
Astrocytic Nrf2 expression protects spinal cord from oxidative stress following spinal cord injury in a male mouse model. J Neuroinflammation 2022; 19:134. [PMID: 35668451 PMCID: PMC9169394 DOI: 10.1186/s12974-022-02491-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) induces a multitude of deleterious processes, including neuroinflammation and oxidative stress (OS) which contributed to neuronal damage and demyelination. Recent studies have suggested that increased formation of reactive oxygen species (ROS) and the consequent OS are critical events associated with SCI. However, there is still little information regarding the impact of these events on SCI. Astrocytes are key regulators of oxidative homeostasis in the CNS and astrocytic antioxidant responses promote the clearance of oxidants produced by neurons. Therefore, dysregulation of astrocyte physiology might largely contribute to oxidative damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the main transcriptional regulator of cellular anti-oxidative stress responses. METHODS In the current study, we hypothesized that astrocytic activation of Nrf2 protects the spinal cord post injury via suppression of neuroinflammation. Thus, using mice line with a GFAP-specific kelch-like ECH-associated protein 1 (Keap1)-deletion, we induced a hyperactivation of Nrf2 in astrocytes and further its effects on SCI outcomes. SCI-induction was performed in mice using the Infinite Horizon Spinal Cord Impactor with a force of 60 kdyn. To assess the quantitative pattern of Nrf2/ARE-activation, we included transgenic ARE-Luc mice. Data were analyzed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA). Brown-Forsythe test was performed to test for equal variances and normal distribution was tested with Shapiro-Wilk. RESULTS In ARE-Luc mice, a significant induction of luciferase-activity was observed as early as 1 day post-injury, indicating a functional role of Nrf2-activity at the epicenter of SCI. Furthermore, SCI induced loss of neurons and oligodendrocytes, demyelination and inflammation in wild type mice. The loss of myelin and oligodendrocytes was clearly reduced in Keap1 KO mice. In addition, Keap-1 KO mice showed a significantly better locomotor function and lower neuroinflammation responses compared to wild type mice. CONCLUSIONS In summary, our in vivo bioluminescence data showed Nrf2-ARE activation during primary phase of SCI. Furthermore, we found that cell specific hyperactivation of Nrf2 was sufficient to protect the spinal cord against injury which indicate a promising therapeutic approach for SCI-treatment.
Collapse
|
24
|
Kaszubowska L, Foerster J, Kmieć Z. NKT-like (CD3 + CD56+) cells differ from T cells in expression level of cellular protective proteins and sensitivity to stimulation in the process of ageing. Immun Ageing 2022; 19:18. [PMID: 35410272 PMCID: PMC8996639 DOI: 10.1186/s12979-022-00274-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND NKT-like cells are T lymphocytes coexpressing several NK cell-associated receptors. They are effector lymphocytes of innate and adaptive immunity, and their number increases with age. The study aimed to analyze the expression of cellular protective proteins, i.e. sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in NKT-like and T cells of the young ('young', 31 subjects, age range 19-24 years), seniors aged under 85 ('old'; 30 subjects, age range 65-84 years) and seniors aged over 85 ('oldest', 24 subjects, age range 85-94 years). Both NKT-like and T cells were cultured for 48 h and stimulated with IL-2, LPS and PMA with ionomycin and compared with unstimulated control cells. RESULTS The oldest seniors varied from the other age groups by significantly increased expression of SIRT1 and HSP70 in both NKT-like and T cells observed in both stimulated and nonstimulated cells. The analyzed lymphocyte populations of the oldest revealed not only the highest expression of these proteins but also insensitivity to all types of applied stimulation. When NKT-like cells were compared to T cells, higher expression of the studied protective proteins was observed in both stimulated and unstimulated NKT-like cells. Neither CD3 + CD56+ nor CD3+ cells revealed elevated expression of SOD2, and these cells responded to stimulation until very advanced age. T cells revealed higher sensitivity to stimulation with IL-2 regarding SIRT1 and HSP70 expression. NKT-like cells were more sensitive to stimulation with PMA and ionomycin concerning the expression of these proteins. IL-2 did not induce a significant increase in SOD2 expression in the studied age groups. CONCLUSIONS The oldest seniors developed an adaptive stress response in both T and NKT-like cells regarding the expression of SIRT1 and HSP70, which was increased and insensitive to further stimulation in contrast to SOD2, which showed a more inducible pattern of expression. CD3 + CD56+ cells exhibited higher expression of cellular protective proteins than CD3+ cells in both stimulated and control, nonstimulated cells. NKT-like and T cells showed a distinct sensitivity to the applied stimulatory factors in the respective age groups.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
25
|
Agmatine Mitigates Inflammation-Related Oxidative Stress in BV-2 Cells by Inducing a Pre-Adaptive Response. Int J Mol Sci 2022; 23:ijms23073561. [PMID: 35408922 PMCID: PMC8998340 DOI: 10.3390/ijms23073561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2- levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation.
Collapse
|
26
|
Zhou M, Chen JY, Chao ML, Zhang C, Shi ZG, Zhou XC, Xie LP, Sun SX, Huang ZR, Luo SS, Ji Y. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin 2022; 43:602-612. [PMID: 34011968 PMCID: PMC8888706 DOI: 10.1038/s41401-021-00674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023]
Abstract
Cardiac fibrosis (CF) is an irreversible pathological process that occurs in almost all kinds of cardiovascular diseases. Phosphorylation-dependent activation of c-Jun N-terminal kinase (JNK) induces cardiac fibrosis. However, whether S-nitrosylation of JNK mediates cardiac fibrosis remains an open question. A biotin-switch assay confirmed that S-nitrosylation of JNK (SNO-JNK) increased significantly in the heart tissues of hypertrophic patients, transverse aortic constriction (TAC) mice, spontaneously hypertensive rats (SHRs), and neonatal rat cardiac fibroblasts (NRCFs) stimulated with angiotensin II (Ang II). Site to site substitution of alanine for cysteine in JNK was applied to determine the S-nitrosylated site. S-Nitrosylation occurred at both Cys116 and Cys163 and substitution of alanine for cysteine 116 and cysteine 163 (C116/163A) inhibited Ang II-induced myofibroblast transformation. We further confirmed that the source of S-nitrosylation was inducible nitric oxide synthase (iNOS). 1400 W, an inhibitor of iNOS, abrogated the profibrotic effects of Ang II in NRCFs. Mechanistically, SNO-JNK facilitated the nuclear translocation of JNK, increased the phosphorylation of c-Jun, and induced the transcriptional activity of AP-1 as determined by chromatin immunoprecipitation and EMSA. Finally, WT and iNOS-/- mice were subjected to TAC and iNOS knockout reduced SNO-JNK and alleviated cardiac fibrosis. Our findings demonstrate an alternative mechanism by which iNOS-induced SNO-JNK increases JNK pathway activity and accelerates cardiac fibrosis. Targeting SNO-JNK might be a novel therapeutic strategy against cardiac fibrosis.
Collapse
Affiliation(s)
- Miao Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Ji-yu Chen
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Meng-Lin Chao
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Chao Zhang
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zhi-guang Shi
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Xue-chun Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Li-ping Xie
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Shi-xiu Sun
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zheng-rong Huang
- grid.412625.6Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Shan-shan Luo
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 201203, China.
| |
Collapse
|
27
|
Association of Genetic Variants in IL6 Gene (rs1800795) with the Concentration of Inflammatory Markers (IL-6, hs-CRP) and Superoxide Dismutase in the Blood of Patients with Acute Pancreatitis—Preliminary Findings. Genes (Basel) 2022; 13:genes13020290. [PMID: 35205334 PMCID: PMC8872489 DOI: 10.3390/genes13020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
In the course of acute pancreatitis, interleukin-6 plays an important role as a mediator in the inflammatory response. The course of inflammatory disease is associated with intensive oxidative stress, which may activate transcription factors leading to gene-expression changes. Isoenzymes of superoxide dismutase are involved in the defense against free radicals. This study aimed to evaluate changes in IL-6 concentration and the concentration/activity of superoxide dismutase isoenzymes (SOD1, SOD2, and SOD3) in the blood of patients with acute pancreatitis (AP) in terms of rs1800795 polymorphism in the IL6 gene. In the smoking AP patients group with the GC and GG genotypes, the plasma SOD1 concentration was significantly higher (p = 0.0146 and p = 0.0250, respectively) than in patients with CC genotype for SNP rs1800795 in the IL6 gene. An increase in SOD1 concentration in erythrocytes of AP patients with GC genotypes was also demonstrated compared to the individuals from the group with GG genotype (p = 0.0408). Furthermore, a positive correlation between IL-6 and SOD1 concentrations in the plasma of AP patients with GC genotype for SNP rs1800795 was shown. These results indicate that SOD1 may play a protective role against oxidative damage induced by inflammation in the group of AP patients with GC genotype.
Collapse
|
28
|
Ali M, Tabassum H, Alam MM, Parvez S. N-acetyl-L-cysteine ameliorates mitochondrial dysfunction in ischemia/reperfusion injury via attenuating Drp-1 mediated mitochondrial autophagy. Life Sci 2022; 293:120338. [PMID: 35065167 DOI: 10.1016/j.lfs.2022.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic reperfusion (I/R) injury causes a wide array of functional and structure alternations of mitochondria, associated with oxidative stress and increased the severity of injury. Despite the previous evidence for N-acetyl-L-cysteine (NAC) provide neuroprotection after I/R injury, it is unknown to evaluate the effect of NAC on altered mitochondrial autophagy forms an essential axis to impaired mitochondrial quality control in cerebral I/R injury. METHODS Male wistar rats subjected to I/R injury were used as transient Middle Cerebral Artery Occlusion (tMCAO) model. After I/R injury, the degree of cerebral tissue injury was detected by infarct volume, H&E staining and behavioral assessment. We also performed mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometry and mitochondrial respiratory complexes to evaluate the mitochondrial dysfunction. Finally, we performed the western blotting analysis to measure the apoptotic and autophagic marker. RESULTS We found that NAC administration significantly ameliorates brain injury, improves neurobehavioral outcome, decreases neuroinflammation and mitochondrial mediated oxidative stress. We evaluated the neuroprotective effect of NAC against neuronal apoptosis by assessing its ability to sustained mitochondrial integrity and function. Further studies revealed that beneficial effects of NAC is through targeting the mitochondrial autophagy via regulating the GSK-3β/Drp1mediated mitochondrial fission and inhibiting the expression of beclin-1 and conversion of LC3, as well as activating the p-Akt pro-survival pathway. CONCLUSION Our results suggest that NAC exerts neuroprotective effects to inhibit the altered mitochondrial changes and cell death in I/R injury via regulation of p-GSK-3β mediated Drp-1 translocation to the mitochondria.
Collapse
Affiliation(s)
- Mubashshir Ali
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - M Mumtaz Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Pierzchala K, Simicic D, Sienkiewicz A, Sessa D, Mitrea S, Braissant O, McLin VA, Gruetter R, Cudalbu C. Central nervous system and systemic oxidative stress interplay with inflammation in a bile duct ligation rat model of type C hepatic encephalopathy. Free Radic Biol Med 2022; 178:295-307. [PMID: 34890769 DOI: 10.1016/j.freeradbiomed.2021.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
The role and coexistence of oxidative stress (OS) and inflammation in type C hepatic encephalopathy (C HE) is a subject of intense debate. Under normal conditions the physiological levels of intracellular reactive oxygen species are controlled by the counteracting antioxidant response to maintain redox homeostasis. Our previous in-vivo1H-MRS studies revealed the longitudinal impairment of the antioxidant system (ascorbate) in a bile-duct ligation (BDL) rat model of type C HE. Therefore, the aim of this work was to examine the course of central nervous system (CNS) OS and systemic OS, as well as to check for their co-existence with inflammation in the BDL rat model of type C HE. To this end, we implemented a multidisciplinary approach, including ex-vivo and in-vitro electron paramagnetic resonance spectroscopy (EPR) spin-trapping, which was combined with UV-Vis spectroscopy, and histological assessments. We hypothesized that OS and inflammation act synergistically in the pathophysiology of type C HE. Our findings point to an increased CNS- and systemic-OS and inflammation over the course of type C HE progression. In particular, an increase in the CNS OS was observed as early as 2-weeks post-BDL, while the systemic OS became significant at week 6 post-BDL. The CNS EPR measurements were further validated by a substantial accumulation of 8-Oxo-2'-deoxyguanosine (Oxo-8-dG), a marker of oxidative DNA/RNA modifications on immunohistochemistry (IHC). Using IHC, we also detected increased synthesis of antioxidants, glutathione peroxidase 1 (GPX-1) and superoxide dismutases (i.e.Cu/ZnSOD (SOD1) and MnSOD (SOD2)), along with proinflammatory cytokine interleukin-6 (IL-6) in the brains of BDL rats. The presence of systemic inflammation was observed already at 2-weeks post-surgery. Thus, these results suggest that CNS OS is an early event in type C HE rat model, which seems to precede systemic OS. Finally, our results suggest that the increase in CNS OS is due to enhanced formation of intra- and extra-cellular ROS rather than due to reduced antioxidant capacity, and that OS in parallel with inflammation plays a significant role in type C HE.
Collapse
Affiliation(s)
- K Pierzchala
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| | - D Simicic
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - A Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, EPFL, Lausanne, Switzerland; ADSresonances Sàrl, Préverenges, Switzerland
| | - D Sessa
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - S Mitrea
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - O Braissant
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V A McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - R Gruetter
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Ishihara N, Okuda T, Hagino H, Oguro A, Tani Y, Okochi H, Tokoro C, Fujii-Kuriyama Y, Itoh K, Vogel CF, Ishihara Y. Involvement of polycyclic aromatic hydrocarbons and endotoxin in macrophage expression of interleukin-33 induced by exposure to particulate matter. J Toxicol Sci 2022; 47:201-210. [PMID: 35527008 PMCID: PMC9469799 DOI: 10.2131/jts.47.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollutants are important factors that contribute to the development and/or exacerbation of allergic inflammation accompanied by asthma, but experimental evidence still needs to be collected. Interleukin 33 (IL-33) is closely involved in the onset and progression of asthma. In this study, we examined the effects of particulate matter (PM) on IL-33 expression in macrophages. PM2.5 collected in Yokohama, Japan by the cyclone device significantly induced IL-33 expression in human THP-1 macrophages, and the induction was clearly suppressed by pretreatment with the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the Toll-like receptor 4 (TLR4) antagonist TAK-242. PM2.5-induced IL-33 expression was significantly attenuated in AhR-knockout or TLR4-mutated macrophages, suggesting an important role of polycyclic aromatic hydrocarbons (PAHs) and endotoxin in IL-33 stimulation. PM samples derived from tunnel dust slightly but significantly induced IL-33 expression, while road dust PM did not affect IL-33 expression. The PAH concentration in tunnel dust was higher than that in road dust. Tunnel dust or road dust PM contained less endotoxin than PM2.5 collected in Yokohama. These data suggest that the potency of IL-33 induction could depend on the concentration of PAHs as well as endotoxin in PMs. Caution regarding PAHs and endotoxin levels in air pollutants should be taken to prevent IL-33-induced allergic inflammation.
Collapse
Affiliation(s)
- Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, 223-8522, Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, Ibaraki, 305-0822, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Yuto Tani
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Chiharu Tokoro
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Molecular Epidemiology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2101, Japan
| | - Christoph F.A. Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA,Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan,Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
31
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
32
|
Niidome K, Taniguchi R, Yamazaki T, Tsuji M, Itoh K, Ishihara Y. FosL1 Is a Novel Target of Levetiracetam for Suppressing the Microglial Inflammatory Reaction. Int J Mol Sci 2021; 22:ijms222010962. [PMID: 34681621 PMCID: PMC8537483 DOI: 10.3390/ijms222010962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
We previously showed that the antiepileptic drug levetiracetam (LEV) inhibits microglial activation, but the mechanism remains unclear. The purpose of this study was to identify the target of LEV in microglial activity suppression. The mouse microglial BV-2 cell line, cultured in a ramified form, was pretreated with LEV and then treated with lipopolysaccharide (LPS). A comprehensive analysis of LEV targets was performed by cap analysis gene expression sequencing using BV-2 cells, indicating the transcription factors BATF, Nrf-2, FosL1 (Fra1), MAFF, and Spic as candidates. LPS increased AP-1 and Spic transcriptional activity, and LEV only suppressed AP-1 activity. FosL1, MAFF, and Spic mRNA levels were increased by LPS, and LEV only attenuated FosL1 mRNA expression, suggesting FosL1 as an LEV target. FosL1 protein levels were increased by LPS treatment and decreased by LEV pretreatment, similar to FosL1 mRNA levels. The FosL1 siRNA clearly suppressed the expression of TNFα and IL-1β. Pilocarpine-induced status epilepticus increased hippocampus FosL1 expression, along with inflammation. LEV treatment significantly suppressed FosL1 expression. Together, LEV reduces FosL1 expression and AP-1 activity in activated microglia, thereby suppressing neuroinflammation. LEV might be a candidate for the treatment of several neurological diseases involving microglial activation.
Collapse
Affiliation(s)
- Kouji Niidome
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (K.N.); (R.T.)
| | - Ruri Taniguchi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (K.N.); (R.T.)
| | - Takeshi Yamazaki
- Program of Life and Environmental Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan;
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan;
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Kagawa Bunri University, Sanuki 769-219, Japan;
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (K.N.); (R.T.)
- Correspondence:
| |
Collapse
|
33
|
Platinum nanoparticles Protect Against Lipopolysaccharide-Induced Inflammation in Microglial BV-2 Cells via Decreased Oxidative Damage and Increased Phagocytosis. Neurochem Res 2021; 46:3325-3341. [PMID: 34432181 DOI: 10.1007/s11064-021-03434-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and oxidative stress cooperate to compromise the function of the central nervous system (CNS). Colloidal platinum nanoparticles (Pt NPs) are ideal candidates for reducing the deleterious effects of neuroinflammation since they act as free radical scavengers. Here we evaluated the effects of Pt NPs on several markers of lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. BV-2 cells were treated with increased dilutions (1-100 ppm) of Colloidal Pt and/or LPS (1-10 µg/mL) at different exposure times. Three different protocols of exposure were used combining Pt NPs and LPS: (a) conditioning-protective effect (pre-post-treat), (b) therapeutic effect (co-treat) and (c) conditioning-therapeutic effect (pre-co-treat). After exposure to LPS for 24 h, cells were used for assessment of cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) activity, apoptosis and caspase-3 levels, cell proliferation, mitochondrial membrane potential, inducible nitric oxide (iNOS) activity, pro-inflammatory cytokine (IL-1β, TNF-α and IL-6) levels, and phagocytic activity. Low concentrations (below or equal to 10 ppm) of Colloidal Pt prevented or ameliorated the LPS-induced increase in ROS formation, loss of mitochondrial membrane potential, induction of apoptosis, increase in LDH release, increase in pro-inflammatory cytokines and iNOS, inhibition of phagocytosis linked to microglial persistence in the M1 phase phenotype, loss of cell adhesion, differentiation and/or proliferation, as well as loss of cell viability. These protective effects were evident when cells were preconditioned with Pt NPs prior to LPS treatment. Collectively, the findings demonstrate that at low concentrations, Pt NPs can regulate the function and phenotype of BV-2 cells, activating protective mechanisms to maintain the microglial homeostasis and reduce inflammatory events triggered by the inflammatory insults induced by LPS. These preventive/protective effects on the LPS pro-inflammatory model are linked to the antioxidant properties and phagocytic activity of these NPs.
Collapse
|
34
|
Li Z, Trakooljul N, Hadlich F, Ponsuksili S, Wimmers K, Murani E. Transcriptome analysis of porcine PBMCs reveals lipopolysaccharide-induced immunomodulatory responses and crosstalk of immune and glucocorticoid receptor signaling. Virulence 2021; 12:1808-1824. [PMID: 34288827 PMCID: PMC8296968 DOI: 10.1080/21505594.2021.1948276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The current level of knowledge on transcriptome responses triggered by endotoxins and glucocorticoids in immune cells in pigs is limited. Therefore, in the present study, we treated porcine peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) and dexamethasone (DEX) separately or combined for 2 hours. The resultant transcriptional responses were examined by mRNA sequencing. We found that the LPS treatment triggered pronounced inflammatory responses as evidenced by upregulation of pro-inflammatory cytokines, chemokines, and related signaling pathways like NF-κB. Concurrently, a series of downregulated pro-inflammatory and upregulated anti-inflammatory molecules were identified. These are involved in the inhibition of TLR, NF-κB, and MAPK cascades and activation of signaling mediated by Tregs and STAT3, respectively. These findings suggested that LPS initiated also an anti-inflammatory process to prevent an overwhelming inflammatory response. The transcriptome responses further revealed substantial crosstalk of immune responses and glucocorticoid receptor (GR) signaling. This was apparent in four aspects: constitutive inhibition of T cell signaling by DEX through a subset of genes showing no response to LPS; inhibition of LPS-induced inflammatory genes by DEX; attenuation of DEX action by LPS paralleled by the regulation of genes implicated in cytokine and calcium signaling; and DEX-induced changes in genes associated with the activation of pro-inflammatory TLR, NF-κB, iNOS, and IL-1 signaling. Consequently, our study provides novel insights into inflammatory and GR signaling in pigs, as well as an understanding of the application of glucocorticoid drugs for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Zhiwei Li
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
35
|
Mahadev Bhat S, Shrestha D, Massey N, Karriker LA, Kanthasamy AG, Charavaryamath C. Organic dust exposure induces stress response and mitochondrial dysfunction in monocytic cells. Histochem Cell Biol 2021; 155:699-718. [PMID: 33755775 PMCID: PMC8195852 DOI: 10.1007/s00418-021-01978-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Exposure to airborne organic dust (OD), rich in microbial pathogen-associated molecular patterns (PAMPs), is shown to induce lung inflammation. A common manifestation in lung inflammation is altered mitochondrial structure and bioenergetics that regulate mitochondrial ROS (mROS) and feed a vicious cycle of mitochondrial dysfunction. The role of mitochondrial dysfunction in other airway diseases is well known. However, whether OD exposure induces mitochondrial dysfunction remains elusive. Therefore, we tested a hypothesis that organic dust extract (ODE) exposure induces mitochondrial stress using a human monocytic cell line (THP1). We examined whether co-exposure to ethyl pyruvate (EP) or mitoapocynin (MA) could rescue ODE exposure induced mitochondrial changes. Transmission electron micrographs showed significant differences in cellular and organelle morphology upon ODE exposure. ODE exposure with and without EP co-treatment increased the mtDNA leakage into the cytosol. Next, ODE exposure increased PINK1, Parkin, cytoplasmic cytochrome c levels, and reduced mitochondrial mass and cell viability, indicating mitophagy. MA treatment was partially protective by decreasing Parkin expression, mtDNA and cytochrome c release and increasing cell viability.
Collapse
Affiliation(s)
- Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | - Denusha Shrestha
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, 2203, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | | |
Collapse
|
36
|
Yang M, Xuan Z, Wang Q, Yan S, Zhou D, Naman CB, Zhang J, He S, Yan X, Cui W. Fucoxanthin has potential for therapeutic efficacy in neurodegenerative disorders by acting on multiple targets. Nutr Neurosci 2021; 25:2167-2180. [PMID: 33993853 DOI: 10.1080/1028415x.2021.1926140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fucoxanthin, one of the most abundant carotenoids from edible brown seaweeds, for years has been used as a bioactive dietary supplement and functional food ingredient. Recently, fucoxanthin was reported to penetrate the blood-brain barrier, and was superior to other carotenoids to exert anti-neurodegenerative disorder effects via acting on multiple targets, including amyloid protein aggregation, oxidative stress, neuroinflammation, neuronal loss, neurotransmission dysregulation and gut microbiota disorder. However, the concentration of fucoxanthin required for in vivo neuroprotective effects is somewhat high, and the poor bioavailability of this molecule might prevent its clinical use. As such, new strategies have been introduced to overcome these obstacles, and may help to develop fucoxanthin as a novel lead for neurodegenerative disorders. Moreover, it has been shown that some metabolites of fucoxanthin may produce potent in vivo neuroprotective effects. Altogether, these studies suggest the possibility for future development of fucoxanthin as a one-compound-multiple-target or pro-drug type pharmaceutical or nutraceutical treatment for neurodegenerative disorders.Trial registration: ClinicalTrials.gov identifier: NCT03625284.Trial registration: ClinicalTrials.gov identifier: NCT02875392.Trial registration: ClinicalTrials.gov identifier: NCT03613740.Trial registration: ClinicalTrials.gov identifier: NCT04761406.
Collapse
Affiliation(s)
- Mengxiang Yang
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Zhenquan Xuan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, People's Republic of China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China.,Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
37
|
Cacciottola L, Nguyen TYT, Amorim CA, Donnez J, Dolmans MM. Modulating hypoxia and oxidative stress in human xenografts using adipose tissue-derived stem cells. F&S SCIENCE 2021; 2:141-152. [PMID: 35559749 DOI: 10.1016/j.xfss.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate whether adipose tissue-derived stem cells (ASCs) modulate hypoxia and oxidative stress in human ovarian tissue transplants. DESIGN Prospective experimental study SETTING: Gynecological research unit in a university hospital PATIENT(S): Cryopreserved ovarian cortex from 5 adult women. INTERVENTION(S) Thirty mice were grafted with frozen-thawed human ovarian tissue, with or without ASCs (2-step/ASCs+ovarian tissue [OT] group and OT group). The ovarian grafts were retrieved on days 3 (n = 5), 10 (n = 5), and 21 (n = 5). The 10 animals grafted for 21 days underwent in vivo evaluations using microdialysis. One piece of ovarian tissue per patient was fixed for analysis after thawing (non-grafted controls). MAIN OUTCOME MEASURE(S) Direct reactive oxygen species were collected every second day after grafting by means of microdialysis. Analyses of ovarian fragments included immunolabeling for double CD34 (revascularization by host and graft components); immunofluorescence for hypoxia-inducible factor 1α (hypoxia-related response), nuclear factor erythroid 2-related factor 2 (oxidative stress-related response), and 8-hydroxy-deoxyguanosine (oxidative stress-related DNA damage); and gene expression (quantitative reverse transcription polymerase chain reaction) for vascular endothelial growth factor-A (neoangiogenesis), superoxide dismutase 2 (antioxidant activity), and nuclear respiratory factor 1 (mitochondrial biogenesis). RESULT(S) Reactive oxygen species peaked earlier in the ASC group (day 2) compared with that in the OT group (day 10) after grafting. Total vascularization was stable in the ASC group at all time points, while it was lower in the OT group 3 days after grafting. Hypoxia-inducible factor 1α expression, also detected in non-grafted controls, was significantly lower in the ASC group than in the OT group on days 3 and 10. The increase in VEGF gene expression lasted significantly longer in the ASC group than in the OT group. There was no significant upturn in the oxidative stress-related response (nuclear factor erythroid 2-related factor 2 pathway) or oocyte DNA damage (8-hydroxy-deoxyguanosine) in any of the grafted groups. CONCLUSION(S) Use of ASCs allows faster ovarian graft reperfusion and mitigates the hypoxia-related response through rapid revascularization, sustained by prolonged increase in vascular endothelial growth factor after grafting. No evidence of oxidative stress-related damage was detected irrespective of the transplantation strategy.
Collapse
Affiliation(s)
- Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Thu Y T Nguyen
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Society for Research into Infertility, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
38
|
Tanaka M, Fujikawa M, Oguro A, Itoh K, Vogel CFA, Ishihara Y. Involvement of the Microglial Aryl Hydrocarbon Receptor in Neuroinflammation and Vasogenic Edema after Ischemic Stroke. Cells 2021; 10:718. [PMID: 33804845 PMCID: PMC8063823 DOI: 10.3390/cells10040718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Microglia are activated after ischemic stroke and induce neuroinflammation. The expression of the aryl hydrocarbon receptor (AhR) has recently been reported to elicit cytokine expression. We previously reported that microglial activation mediates ischemic edema progression. Thus, the purpose of this study was to examine the role of AhR in inflammation and edema after ischemia using a mouse middle cerebral artery occlusion (MCAO) model. MCAO upregulated AhR expression in microglia during ischemia. MCAO increased the expression of tumor necrosis factor α (TNFα) and then induced edema progression, and worsened the modified neurological severity scores, with these being suppressed by administration of an AhR antagonist, CH223191. In THP-1 macrophages, the NADPH oxidase (NOX) subunit p47phox was significantly increased by AhR ligands, especially under inflammatory conditions. Suppression of NOX activity by apocynin or elimination of superoxide by superoxide dismutase decreased TNFα expression, which was induced by the AhR ligand. AhR ligands also elicited p47phox expression in mouse primary microglia. Thus, p47phox may be important in oxidative stress and subsequent inflammation. In MCAO model mice, P47phox expression was upregulated in microglia by ischemia. Lipid peroxidation induced by MCAO was suppressed by CH223191. Taken together, these findings suggest that AhR in the microglia is involved in neuroinflammation and subsequent edema, after MCAO via p47phox expression upregulation and oxidative stress.
Collapse
Affiliation(s)
- Miki Tanaka
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
| | - Masaho Fujikawa
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan;
| | - Christoph F. A. Vogel
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA;
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
DHA and Its Metabolites Have a Protective Role against Methylmercury-Induced Neurotoxicity in Mouse Primary Neuron and SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22063213. [PMID: 33809931 PMCID: PMC8004243 DOI: 10.3390/ijms22063213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The consumption of fish now involves a risk of methylmercury (MeHg) exposure but also provides the benefit of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) such as docosahexaenoic acid (DHA). Some epidemiological studies have suggested that the intake of DHA can alleviate the neurotoxicity of MeHg, but the underlying mechanism is not known. Herein, we observed that pretreatment with 0.1–1 µM DHA suppressed MeHg-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells and mouse primary neuronal cells. These effects of DHA were canceled in the presence of the retinoid X receptor (RXR) antagonist UVI3003. An RXR agonist, bexarotene, suppressed the cytotoxicity of MeHg. DHA also suppressed the MeHg-induced production of reactive oxygen species (ROS) via an induction of antioxidant genes (catalase and SOD1). Pretreatment with DHA did not change the incorporation of MeHg. We showed previously that in the brain, the intake of DHA increased the level of 19,20-DHDP, which is the metabolite produced by cytochrome P450 and soluble epoxide hydrolase from DHA. In the present study, we observed that 19,20-DHDP also suppressed neurotoxicity from MeHg. These results indicate that DHA and its metabolites have a protective role in MeHg-induced neurotoxicity.
Collapse
|
40
|
Sullivan MN, Brill SA, Mangus LM, Jeong YJ, Solis CV, Knight AC, Colantuoni C, Keceli G, Paolocci N, Queen SE, Mankowski JL. Upregulation of Superoxide Dismutase 2 by Astrocytes in the SIV/Macaque Model of HIV-Associated Neurologic Disease. J Neuropathol Exp Neurol 2021; 79:986-997. [PMID: 32783052 DOI: 10.1093/jnen/nlaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent despite implementation of antiretroviral therapy (ART). Development of HAND is linked to mitochondrial dysfunction and oxidative stress in the brain; therefore, upregulation of antioxidant defenses is critical to curtail neuronal damage. Superoxide dismutase 2 (SOD2) is a mitochondrial antioxidant enzyme essential for maintaining cellular viability. We hypothesized that SOD2 was upregulated during retroviral infection. Using a simian immunodeficiency virus (SIV)-infected macaque model of HIV, quantitative PCR showed elevated SOD2 mRNA in cortical gray ([GM], 7.6-fold for SIV vs uninfected) and white matter ([WM], 77-fold for SIV vs uninfected) during SIV infection. Further, SOD2 immunostaining was enhanced in GM and WM from SIV-infected animals. Double immunofluorescence labeling illustrated that SOD2 primarily colocalized with astrocyte marker glial fibrillary acidic protein (GFAP) in SIV-infected animals. Interestingly, in ART-treated SIV-infected animals, brain SOD2 RNA levels were similar to uninfected animals. Additionally, using principal component analysis in a transcriptomic approach, SOD2 and GFAP expression separated SIV-infected from uninfected brain tissue. Projection of these data into a HIV dataset revealed similar expression changes, thereby validating the clinical relevance. Together, our findings suggest that novel SOD2-enhancing therapies may reduce neuroinflammation in ART-treated HIV-infected patients.
Collapse
Affiliation(s)
- Michelle N Sullivan
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel A Brill
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yea Ji Jeong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Clarisse V Solis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey C Knight
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gizem Keceli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
41
|
Hu D, Ding C, Jiang X, Xiao J, Li C, Zhang L, Li T, Ji Y, Peng Y, Luo X, Sheng L, Wang Q, Wu H. Elevated Levels of Inflammation Markers Predict Poor Outcomes in Acute Ischemic Stroke Patients After Intravenous Thrombolysis. J Stroke Cerebrovasc Dis 2021; 30:105587. [PMID: 33450606 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Inflammation is associated with the occurrence and prognosis of ischemic stroke. The aim of this study was to evaluate the association between inflammatory biomarkers and the short-term clinical outcomes of acute ischemic stroke (AIS) patients after intravenous thrombolysis (IVT). MATERIALS AND METHODS A total of 208 AIS patients treated with IVT were enrolled in this retrospective study. Blood tests of inflammatory biomarkers, including the leukocyte count, neutrophil count, lymphocyte count, neutrophil-to-lymphocyte ratio and high-sensitivity C-reactive protein level, were conducted within 24 h after IVT. The primary outcome was decent functional recovery (DFR) [modified Rankin Scale score (mRS) of 0-2] at 3 months. The secondary outcomes included symptomatic intracranial hemorrhage and 3-month mortality. A multivariate analysis was performed to evaluate the associations between inflammatory biomarkers and 3-month clinical outcomes. RESULTS At 3 months follow-up, 113 (62.2%) patients achieved DFR. As compared to patients with DFR, patients without DFR had higher leukocyte counts (8.5 ± 2.4 × 109/L versus 6.9 ± 1.7 × 109/L, P=0.000), neutrophil counts (6.1 ± 2.3 × 109/L versus 4.6±1.7 × 109/L, P=0.000) and neutrophil-to-lymphocyte ratio (4.6 ± 2.4 versus 3.3 ± 1.9, P=0.000). After adjusting for the stroke subtype, severity of stroke, and medical history, the leukocyte count and neutrophil count remained significantly correlated with non-DFR (adjusted odds ratio [OR] 1.488; 95% confidence interval [CI], 1.247-1.776; P=0.000 and adjusted OR 1.522; 95% CI, 1.269-1.826; P=0.000, respectively). CONCLUSIONS This study demonstrates that increased levels of inflammatory biomarkers are independently associated with poor outcomes at 3 months in AIS patients treated with IVT.
Collapse
Affiliation(s)
- Dan Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Caixia Ding
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuemei Jiang
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Xiao
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuanyou Li
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lankun Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tingting Li
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Ji
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Xun Luo
- Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen, China; Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Lei Sheng
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qingmei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Boston, MA, United States.
| | - Haoxin Wu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
42
|
Manganese superoxide dismutase induced by lipoteichoic acid isolated from Staphylococcus aureus regulates cytokine production in THP-1 cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:36-43. [PMID: 33558048 DOI: 10.1016/j.jmii.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
Lipoteichoic acid isolated from Staphylococcus aureus (aLTA) is known to regulate the production of pro-inflammatory cytokines through TLR2-mediated signaling pathways. In our previous study, we found that aLTA significantly increased manganese superoxide dismutase (MnSOD) in the THP-1 human monocyte-like cell line, but the role of MnSOD in the regulation of cytokine production was not elucidated. In the current study, we found that MnSOD was involved in aLTA-mediated cytokine production. The signaling pathways associated with aLTA-mediated MnSOD induction in THP-1 cells included TLR2-MyD88-IRAK2, JNK (c-Jun N-terminal kinases)1/2 and nuclear factor- κB (NF-κB). We also found MnSOD was involved in the regulation of IL-1β and TNF-α, which were induced by early signaling pathways, including JNK1/2, p38, and NF-κB p65. In addition, MnSOD was also involved in the production of IL-6 and CCL2 in aLTA-stimulated THP-1 cells through activation of late signaling pathways such as JAK2-STAT3. Taken together, our data suggest that aLTA-mediated MnSOD production involved in the regulation of cytokine production and it may be the cause of one of the excessive inflammatory reactions caused by S. aureus.
Collapse
|
43
|
Ishihara Y, Haarmann-Stemmann T, Kado NY, Vogel CFA. Interleukin 33 Expression Induced by Aryl Hydrocarbon Receptor in Macrophages. Toxicol Sci 2020; 170:404-414. [PMID: 31093659 DOI: 10.1093/toxsci/kfz114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) contained in airborne particulate matter have been identified as a contributing factor for inflammation in the respiratory tract. Recently, interleukin-33 (IL-33) is strongly suggested to be associated with airway inflammation. Aryl hydrocarbon receptor (AhR) is a receptor for PAHs to regulate several metabolic enzymes, but the relationships between AhR and airway inflammation are still unclear. In this study, we examined the role of AhR in the expression of IL-33 in macrophages. THP-1 macrophages mainly expressed IL-33 variant 5, which in turn was strongly induced by the AhR agonists 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and kynurenine (KYN). AhR antagonist CH223191 suppressed the increase in IL-33 expression. Promoter analysis revealed that the IL-33 promoter has 2 dioxin response elements (DREs). AhR was recruited to both DREs after treatment with TCDD or KYN as assessed by gel shift and chromatin immunoprecipitation assays. A luciferase assay showed that one of the DREs was functional and involved in the expression of IL-33. Macrophages isolated from AhR-null mice expressed only low levels of IL-33 even in response to treatment with AhR ligands compared with wild-type cells. The treatment of THP-1 macrophages with diesel particulate matter and particle extracts increased the mRNA and protein expression of IL-33. Taken together, the results show that ligand-activated AhR mediates the induction of IL-33 in macrophages via a DRE located in the IL-33 promoter region. AhR-mediated IL-33 induction could be involved in the exacerbation and/or prolongation of airway inflammation elicited by toxic chemical substances.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis 95616, California.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | | | - Norman Y Kado
- Center for Health and the Environment, University of California, Davis 95616, California.,Department of Environmental Toxicology, University of California, Davis 95616, California.,Air Resources Board, California Environmental Protection Agency, Sacramento 95812, California
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis 95616, California.,Department of Environmental Toxicology, University of California, Davis 95616, California
| |
Collapse
|
44
|
Barter J, Kumar A, Rani A, Colon-Perez LM, Febo M, Foster TC. Differential Effect of Repeated Lipopolysaccharide Treatment and Aging on Hippocampal Function and Biomarkers of Hippocampal Senescence. Mol Neurobiol 2020; 57:4045-4059. [PMID: 32651758 DOI: 10.1007/s12035-020-02008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023]
Abstract
Markers of brain aging and cognitive decline are thought to be influenced by peripheral inflammation. This study compared the effects of repeated lipopolysaccharide (LPS) treatment in young rats to age-related changes in hippocampal-dependent cognition and transcription. Young Fischer 344 X Brown Norway hybrid rats were given intraperitoneal injections once a week for 7 weeks with either LPS or vehicle. Older rats received a similar injection schedule of vehicle. Old vehicle and young LPS rats exhibited a delay-dependent impairment in spatial memory. Further, LPS treatment reduced the hippocampal CA3-CA1 synaptic response. RNA sequencing, performed on CA1, indicated an increase in genes linked to neuroinflammation in old vehicle and young LPS animals. In contrast to an age-related decrease in transcription of synaptic genes, young LPS animals exhibited increased expression of genes that support the growth and maintenance of synapses. We suggest that the increased expression of genes for growth and maintenance of synapses in young animals represents neuronal resilience/recovery in response to acute systemic inflammation. Thus, the results indicate that repeated LPS treatment does not completely recapitulate the aging phenotype for synaptic function, possibly due to the chronic nature of systemic inflammation in aging and resilience of young animals to acute treatments.
Collapse
Affiliation(s)
- Jolie Barter
- Department of Medicine, Division of General Medicine and Geriatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - Luis M Colon-Perez
- Department of Neurobiology and Behavior, Center for Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Marcelo Febo
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA.,Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA. .,Genetics and Genomics Program, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
45
|
Apoptotic Markers Are Increased in Epilepsy Patients: A Relation with Manganese Superoxide Dismutase Ala16Val Polymorphism and Seizure Type through IL-1 β and IL-6 Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6250429. [PMID: 32219137 PMCID: PMC7079223 DOI: 10.1155/2020/6250429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 01/23/2023]
Abstract
The MnSOD Ala16Val single nucleotide polymorphism (SNP) has been associated with different diseases. However, there are scarcely studies relating this SNP in epilepsy, a neurologic disease that involves some interacting pathways, such as apoptotic and inflammatory factors. In this sense, we decided to investigate the relationship of MnSOD Ala16Val SNP with apoptotic markers in epilepsy and its relation with inflammatory pathway and seizure type. Ninety subjects were evaluated (47 epilepsies; 43 controls) by questionnaires and laboratorial exams. We observed a higher percentage of VV genotype in the epilepsy group when compared to the control group. IL-1β, IL-6, caspase-1, and caspase-3 levels were increased in the epilepsy group (VV genotype). Furthermore, an important correlation between IL-1β vs. caspase-1 and IL-6 vs. caspase-3 was observed in the epilepsy group (VV genotype). The epilepsy group which presented generalized seizures also demonstrated a positive correlation between IL-1β vs. CASP1 and IL-6 vs. CASP3. Thus, it is a plausible propose that epilepsy patients with VV genotype and generalized seizures present a worse inflammatory and apoptotic status. Our findings suggest that the knowledge of MnSOD Ala16Val polymorphism existence is important to evaluate molecular mechanisms associated to seizure and improve the treatment of these patients.
Collapse
|
46
|
Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020; 10:biom10030387. [PMID: 32131495 PMCID: PMC7175174 DOI: 10.3390/biom10030387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Biliverdin reductase (BVR) is an enzymatic and signaling protein that has multifaceted roles in physiological systems. Despite the wealth of knowledge about BVR, no data exist regarding its actions in adipocytes. Here, we generated an adipose-specific deletion of biliverdin reductase-A (BVRA) (BlvraFatKO) in mice to determine the function of BVRA in adipocytes and how it may impact adipose tissue expansion. The BlvraFatKO and littermate control (BlvraFlox) mice were placed on a high-fat diet (HFD) for 12 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were quantitated at the end of the 12 weeks. The data showed that the percent body fat and body weights did not differ between the groups; however, BlvraFatKO mice had significantly higher visceral fat as compared to the BlvraFlox. The loss of adipocyte BVRA decreased the mitochondrial number in white adipose tissue (WAT), and increased inflammation and adipocyte size, but this was not observed in brown adipose tissue (BAT). There were genes significantly reduced in WAT that induce the browning effect such as Ppara and Adrb3, indicating that BVRA improves mitochondria function and beige-type white adipocytes. The BlvraFatKO mice also had significantly higher fasting blood glucose levels and no changes in plasma insulin levels, which is indicative of decreased insulin signaling in WAT, as evidenced by reduced levels of phosphorylated AKT (pAKT) and Glut4 mRNA. These results demonstrate the essential role of BVRA in WAT in insulin signaling and adipocyte hypertrophy.
Collapse
|
47
|
Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C. Increased oxidative stress, hyperphosphorylation of tau, and dystrophic microglia in the hippocampus of aged Tupaia belangeri. Glia 2020; 68:1775-1793. [PMID: 32096580 DOI: 10.1002/glia.23804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
Aging is a major risk factor for the development of neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases are characterized by abnormal and prominent protein aggregation in the brain, partially due to deficiency in protein clearance. It has been proposed that alterations in microglia phagocytosis and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia are abundant in aged humans, and it has been associated with the onset of disease. Furthermore, alterations in microglia containing ferritin are associated with neurodegenerative conditions. To further understand the process of microglia dysfunction during the aging process, we used hippocampal sections from Tupaia belangeri (tree shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age 7.5 years) tree shrews were used for histochemical and immunostaining techniques to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyperphosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippocampal regions. Our results indicated that aged tree shrews presented an increased number of activated microglia containing ferritin, but microglia labeled with Iba1 with a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals. Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in activated M2 microglia in old and aged animals. These data indicate that aged tree shrew may be a suitable model for translational research to study brain and microglia alterations during the aging process.
Collapse
Affiliation(s)
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | |
Collapse
|
48
|
Mangus LM, Weinberg RL, Knight AC, Queen SE, Adams RJ, Mankowski JL. SIV-Induced Immune Activation and Metabolic Alterations in the Dorsal Root Ganglia During Acute Infection. J Neuropathol Exp Neurol 2019; 78:78-87. [PMID: 30500918 DOI: 10.1093/jnen/nly111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-associated sensory neuropathy (HIV-SN) remains a frequent neurologic complication of HIV infection. Little is known about alterations in the peripheral nervous system during the early stages of HIV, a time when neuroprotective interventions may be most beneficial. We performed Nanostring gene expression analysis on lumbar dorsal root ganglia (DRG) from 6 simian immunodeficiency virus (SIV)-infected pigtailed macaques killed at 7 days post-inoculation and 8 uninfected controls. We found significant upregulation of many genes involved in immune signaling and activation in the DRG. Among genes related to glutamate metabolism, there was significant upregulation of glutamine synthetase (GS), while glutaminase (GLS) was downregulated. Several genes involved in the oxidative stress response also showed significant differential regulation in the DRG of 7d SIV-infected animals, with superoxide dismutase-2 (SOD2) showing the greatest median fold change compared to controls. Novel findings in the DRG were compared to corresponding brain data and further investigated at the protein level by Western blotting and immunohistochemistry. Together with our previous finding of significant epidermal nerve fiber loss at 14 days post-SIV infection, results of this study demonstrate that immune activation and altered cellular metabolism at in the DRG precede and likely contribute to early sensory nerve injury in HIV-SN.
Collapse
Affiliation(s)
- Lisa M Mangus
- Department of Molecular and Comparative Pathobiology
| | | | | | | | | | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology.,Department of Neurology.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
50
|
Ishihara Y, Sakurai H, Oguro A, Tsuji M, Vogel CFA, Yamazaki T. Retinoid X receptor-mediated neuroprotection via CYP19 upregulation and subsequent increases in estradiol synthesis. J Steroid Biochem Mol Biol 2019; 193:105421. [PMID: 31265900 DOI: 10.1016/j.jsbmb.2019.105421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Increasing evidence has shown that one of the major neurosteroids, estradiol, has potent neuroprotective actions. We have reported that estradiol synthesis was enhanced when retinoic acid was added into rat hippocampal slice culture. In this study, we investigated the effects of a potent retinoid X receptor (RXR) agonist, bexarotene, on estrogen synthesis and neuroprotective action in hippocampal slices. Treatment with bexarotene increased estradiol levels as well as estrogen-synthesizing enzymes and CYP19 expression in hippocampal slice cultures. Bexarotene significantly suppressed neuronal cell death induced by oxygen-glucose deprivation (OGD)/reoxygenation. RXR agonists other than bexarotene, such as CD3254, also suppressed neuronal cell death accompanied by OGD/reoxygenation. The RXR antagonists HX531 and UVI3003 and the CYP19 inhibitor letrozole abolished the neuroprotection elicited by bexarotene, indicating that estradiol produced by RXR stimulation protects neurons from ischemic insult. The human brain-specific CYP19 promoter had 6 RXR half sites, and 2 of 6 half sites were responsible for CYP19 expression induced by bexarotene. Bexarotene increased the expression of catalase and glutathione peroxidase 1 and inhibited lipid peroxidation elicited by OGD/reoxygenation, suggesting that the antioxidative property of estrogen contributes to RXR-mediated neuroprotection. Bexarotene also suppressed neuronal injury induced by lipopolysaccharide in the hippocampal slices. Taken together, RXR stimulation can protect neurons via enhanced synthesis of estradiol with antioxidative mechanisms. The RXR-estrogen axis might be a novel mechanism-based strategy to prevent or ameliorate ischemic and/or inflammatory neuronal disorders.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; Center for Health and the Environment, University of California, Davis, CA, 95616, USA.
| | - Hikaru Sakurai
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Takeshi Yamazaki
- Program of Life and Environmental Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| |
Collapse
|