1
|
Li Y, An M, Wan S, Li Y, Du Y, Zhao Y, Li H, Zhong Q, Sun Z. Hesperidin enhances broiler growth performance by augmenting gastric acid secretion via the proton pump pathway. Poult Sci 2025; 104:104781. [PMID: 39778363 PMCID: PMC11761918 DOI: 10.1016/j.psj.2025.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Hesperidin exhibits promising potential as a feed additive for augmenting gastric acid secretion in animals. Gastrointestinal function is essential for animal growth and the efficient digestion of dietary nutrients, with gastric acid secretion serving as one of its critical components. The secretion of gastric acid, together with other digestive fluids and substances, significantly influences the digestion and absorption of animal feed, which in turn affects growth performance. However, there is limited research regarding the application of hesperidin as a feed additive to enhance gastric acid secretion. The present study aims to evaluate the efficacy of hesperidin as a feed additive in enhancing gastric acid secretion and to elucidate its underlying mechanisms. A total of 200 newly hatched (1-day-old) broilers with similar body weight were randomly allocated into four groups as follows: the control group receiving only the basal diet, and the other three groups supplemented with 50, 100, and 150 mg of hesperidin per kg of the basal diet, respectively. Each group consisted of five replicates with ten broilers per replicate, and the feeding trial lasted for a duration of 21 days. The growth performance was evaluated by monitoring feed intake and body weight throughout the trial. A four-day nutrient utilization trial was conducted prior to the conclusion of the feeding experiment. Adoption of the total collection method, the collected droppings were weighed and dried at 65 °C. Fifteen broilers from each group were euthanized and immediately dissected to obtain gizzard, proventriculus, gizzard chyme, and jugular blood samples, The proventriculus and gizzard weight were weighed and the pH of gizzard chyme was measured at the same time. The collected jugular venous blood was used to assess gastrin levels, whereas chicken gizzard chyme was utilized for the analysis of lactate, hydrochloric acid, and pepsin activity. Proventriculus and gizzard tissues were used to evaluate pepsinogen levels, perform hematoxylin-eosin (H&E) staining, conduct enzyme-linked immunosorbent assays (ELISAs) for key proton pump components, and assess proton pump activity. The results demonstrated that, in comparison to the control group, both the 100mg/Kg and 150 mg/Kg groups exhibited a significant increase in final body weight (FBW) and average daily gain (ADG) (P < 0.05). Additionally, the feed to gain ratio (F/G) was significantly reduced in the 150mg/Kg group (P < 0.05). The results of the nutrient utilization trial indicate that all treatment groups had significantly higher levels of dry matter (DM) and ether extract (EE) compared to the control group (P < 0.05). Furthermore, crude protein (CP) and gross energy (ME) were significantly higher in the 100mg/Kg and 150mg/Kg groups than in both the control group and the 50mg/Kg group (P < 0.05). The inclusion of hesperidin in broiler diets leads to significant improvements in stomach development and lactic acid content, while pH and hydrochloric acid content exhibit opposite trends (P < 0.05). Supplementation of broiler diets with hesperidin at doses of 100 mg/Kg and 150 mg/Kg significantly up-regulates pepsin activity and pepsinogen levels (P < 0.05). Incorporation of hesperidin into the broilers' diet significantly enhances parietal cell numbers (P < 0.05). Dietary supplementation of hesperidin in broilers effectively up-regulates key signaling pathways and intracellular signal substances involved in proton pump activation (P < 0.05). The proton pump activity also exhibited a significant increase compared to the control group of 100mg/Kg and 150mg/Kg (P < 0.05) in our findings. In conclusion, hesperidin exhibits promising potential as a feed additive for broilers, and it can improve the growth performance of broilers by increasing gastric acid secretion and promoting nutrient utilization through activation of proton pump. Notably, basal diet supplemented with 150mg/Kg hesperidin demonstrates superior efficacy.
Collapse
Affiliation(s)
- Yunfei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Mingyuan An
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Shasha Wan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yifan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yusong Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yufei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Huimin Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun 130118, China; Jilin Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun 130118, China; Jilin Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China.
| |
Collapse
|
2
|
Li T, Song X, Chen J, Li Y, Lin J, Li P, Yu S, Durojaye OA, Yang F, Liu X, Li J, Cheng S, Yao X, Ding X. Kupffer Cell-derived IL6 Promotes Hepatocellular Carcinoma Metastasis Via the JAK1-ACAP4 Pathway. Int J Biol Sci 2025; 21:285-305. [PMID: 39744421 PMCID: PMC11667824 DOI: 10.7150/ijbs.97109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/22/2024] [Indexed: 01/21/2025] Open
Abstract
Tumor-associated macrophages (TAMs), which differentiate from tissue-resident macrophages, are recognized for their ability to influence cancer progression and metastasis. However, the specific role of Kupffer cells (KCs), the intrinsic macrophages of the liver, in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we describe a novel mechanism by which exosomes derived from HCC cells induce KCs to transition into TAMs, thereby facilitating the metastasis of HCC in an IL6-JAK1-ACAP4 axis-dependent manner. Mechanistically, the exosome-mediated domestication of KCs by hepatoma cells constitutes one of the primary sources of IL6 production in the HCC microenvironment. IL6 then activates JAK1 to phosphorylate its downstream effector ACAP4 at Tyr843, a novel phosphorylation site identified in this context, which in turn promotes ARF6-GTPase activity and hepatoma cell migration. Furthermore, we found that the levels of IL6, as well as the phosphorylation of JAK1 and ACAP4 at Tyr843, were significantly greater in tumor tissues from HCC patients than in adjacent tissues. These findings suggest that the IL6-JAK1-ACAP4 axis may be a promising therapeutic target for HCC. Importantly, we screened bufalin, an active ingredient derived from Venenum Bufonis, and discovered that it inhibits JAK1 and disrupts the IL6-induced phosphorylation of ACAP4. This inhibition not only impairs hepatoma cell migration but also prevents the metastasis of HCC. These findings demonstrate the interplay between hepatoma cells and KCs through the IL6-JAK1-ACAP4 axis, thereby promoting HCC metastasis, and reveal the therapeutic potential of bufalin for the treatment of HCC through JAK1 inhibition.
Collapse
Affiliation(s)
- Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Song
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Jiena Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Department of Hepatobiliary, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Fengrui Yang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xing Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shiyuan Cheng
- Department of Neurology, Northwestern Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xuebiao Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
3
|
Yan H, Liu W, Xiang R, Li X, Hou S, Xu L, Wang L, Zhao D, Liu X, Wang G, Chi Y, Yang J. Ribosomal modification protein rimK-like family member A activates betaine-homocysteine S-methyltransferase 1 to ameliorate hepatic steatosis. Signal Transduct Target Ther 2024; 9:214. [PMID: 39117631 PMCID: PMC11310345 DOI: 10.1038/s41392-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious threat to public health, but its underlying mechanism remains poorly understood. In screening important genes using Gene Importance Calculator (GIC) we developed previously, ribosomal modification protein rimK-like family member A (RIMKLA) was predicted as one essential gene but its functions remained largely unknown. The current study determined the roles of RIMKLA in regulating glucose and lipid metabolism. RIMKLA expression was reduced in livers of human and mouse with NAFLD. Hepatic RIMKLA overexpression ameliorated steatosis and hyperglycemia in obese mice. Hepatocyte-specific RIMKLA knockout aggravated high-fat diet (HFD)-induced dysregulated glucose/lipid metabolism in mice. Mechanistically, RIMKLA is a new protein kinase that phosphorylates betaine-homocysteine S-methyltransferase 1 (BHMT1) at threonine 45 (Thr45) site. Upon phosphorylation at Thr45 and activation, BHMT1 eliminated homocysteine (Hcy) to inhibit the activity of transcription factor activator protein 1 (AP1) and its induction on fatty acid synthase (FASn) and cluster of differentiation 36 (CD36) gene transcriptions, concurrently repressing lipid synthesis and uptake in hepatocytes. Thr45 to alanine (T45A) mutation inactivated BHMT1 to abolish RIMKLA's repression on Hcy level, AP1 activity, FASn/CD36 expressions, and lipid deposition. BHMT1 overexpression rescued the dysregulated lipid metabolism in RIMKLA-deficient hepatocytes. In summary, RIMKLA is a novel protein kinase that phosphorylates BHMT1 at Thr45 to repress lipid synthesis and uptake. Under obese condition, inhibition of RIMKLA impairs BHMT1 activity to promote hepatic lipid deposition.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130012, China.
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
4
|
Xu Z, Xiao L, Wang S, Cheng Y, Wu J, Meng Y, Bao K, Zhang J, Cheng C. Alteration of gastric microbiota and transcriptome in a rat with gastric intestinal metaplasia induced by deoxycholic acid. Front Microbiol 2023; 14:1160821. [PMID: 37206332 PMCID: PMC10188980 DOI: 10.3389/fmicb.2023.1160821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Objective Bile reflux plays a key role in the development of gastric intestinal metaplasia (GIM), an independent risk factor of gastric cancer. Here, we aimed to explore the biological mechanism of GIM induced by bile reflux in a rat model. Methods Rats were treated with 2% sodium salicylate and allowed to freely drink 20 mmol/L sodium deoxycholate for 12 weeks, and GIM was confirmed by histopathological analysis. Gastric microbiota was profiled according to the 16S rDNA V3-V4 region, gastric transcriptome was sequenced, and serum bile acids (BAs) were analyzed by targeted metabolomics. Spearman's correlation analysis was used in constructing the network among gastric microbiota, serum BAs, and gene profiles. Real-time polymerase chain reaction (RT-PCR) measured the expression levels of nine genes in the gastric transcriptome. Results In the stomach, deoxycholic acid (DCA) decreased the microbial diversity but promoted the abundances of several bacterial genera, such as Limosilactobacillus, Burkholderia-Caballeronia-Paraburkholderia, and Rikenellaceae RC9 gut group. Gastric transcriptome showed that the genes enriched in gastric acid secretion were significantly downregulated, whereas the genes enriched in fat digestion and absorption were obviously upregulated in GIM rats. The GIM rats had four promoted serum BAs, namely cholic acid (CA), DCA, taurocholic acid, and taurodeoxycholic acid. Further correlation analysis showed that the Rikenellaceae RC9 gut group was significantly positively correlated with DCA and RGD1311575 (capping protein-inhibiting regulator of actin dynamics), and RGD1311575 was positively correlated with Fabp1 (fatty acid-binding protein, liver), a key gene involved in fat digestion and absorption. Finally, the upregulated expression of Dgat1 (diacylglycerol acyltransferase 1) and Fabp1 related to fat digestion and absorption was identified by RT-PCR and IHC. Conclusion DCA-induced GIM enhanced gastric fat digestion and absorption function and impaired gastric acid secretion function. The DCA-Rikenellaceae RC9 gut group-RGD1311575/Fabp1 axis might play a key role in the mechanism of bile reflux-related GIM.
Collapse
Affiliation(s)
- Zijing Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling Xiao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shuaishuai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuqin Cheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianping Wu
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yufen Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kaifan Bao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Junfeng Zhang
| | - Chun Cheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Chun Cheng
| |
Collapse
|
5
|
Arora R, Kim JH, Getu AA, Angajala A, Chen YL, Wang B, Kahn AG, Chen H, Reshi L, Lu J, Zhang W, Zhou M, Tan M. MST4: A Potential Oncogene and Therapeutic Target in Breast Cancer. Cells 2022; 11:cells11244057. [PMID: 36552828 PMCID: PMC9777386 DOI: 10.3390/cells11244057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian STE 20-like protein kinase 4 (MST4) gene is highly expressed in several cancer types, but little is known about the role of MST4 in breast cancer, and the function of MST4 during epithelial-mesenchymal transition (EMT) has not been fully elucidated. Here we report that overexpression of MST4 in breast cancer results in enhanced cell growth, migration, and invasion, whereas inhibition of MST4 expression significantly attenuates these properties. Further study shows that MST4 promotes EMT by activating Akt and its downstream signaling molecules such as E-cadherin/N-cadherin, Snail, and Slug. MST4 also activates AKT and its downstream pro-survival pathway. Furthermore, by analyzing breast cancer patient tissue microarray and silicon datasets, we found that MST4 expression is much higher in breast tumor tissue compared to normal tissue, and significantly correlates with cancer stage, lymph node metastasis and a poor overall survival rate (p < 0.05). Taken together, our findings demonstrate the oncogenic potential of MST4 in breast cancer, highlighting its role in cancer cell proliferation, migration/invasion, survival, and EMT, suggesting a possibility that MST4 may serve as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Ritu Arora
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jin-Hwan Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Ayechew A. Getu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Yih-Lin Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | - Andrea G. Kahn
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hong Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Latif Reshi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Jianrong Lu
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wenling Zhang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Mahlapuu M, Caputo M, Xia Y, Cansby E. GCKIII kinases in lipotoxicity: Roles in NAFLD and beyond. Hepatol Commun 2022; 6:2613-2622. [PMID: 35641240 PMCID: PMC9512487 DOI: 10.1002/hep4.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by excessive accumulation of lipid droplets within hepatocytes. The STE20-type kinases comprising the germinal center kinase III (GCKIII) subfamily - MST3, MST4, and STK25 - decorate intrahepatocellular lipid droplets and have recently emerged as critical regulators of the initiation and progression of NAFLD. While significant advancement has been made toward deciphering the role of GCKIII kinases in hepatic fat accumulation (i.e., steatosis) as well as the aggravation of NAFLD into its severe form nonalcoholic steatohepatitis (NASH), much remains to be resolved. This review provides a brief overview of the recent studies in patient cohorts, cultured human cells, and mouse models, which have characterized the function of MST3, MST4, and STK25 in the regulation of hepatic lipid accretion, meta-inflammation, and associated cell damage in the context of NAFLD/NASH. We also highlight the conflicting data and emphasize future research directions that are needed to advance our understanding of GCKIII kinases as potential targets in the therapy of NAFLD and its comorbidities. Conclusions: Several lines of evidence suggest that GCKIII proteins govern the susceptibility to hepatic lipotoxicity and that pharmacological inhibition of these kinases could mitigate NAFLD development and aggravation. Comprehensive characterization of the molecular mode-of-action of MST3, MST4, and STK25 in hepatocytes as well as extrahepatic tissues is important, especially in relation to their impact on carcinogenesis, to fully understand the efficacy as well as safety of GCKIII antagonism.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Ying Xia
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
7
|
Song X, Wang W, Wang H, Yuan X, Yang F, Zhao L, Mullen M, Du S, Zohbi N, Muthusamy S, Cao Y, Jiang J, Xia P, He P, Ding M, Emmett N, Ma M, Wu Q, Green HN, Ding X, Wang D, Wang F, Liu X. Acetylation of ezrin regulates membrane-cytoskeleton interaction underlying CCL18-elicited cell migration. J Mol Cell Biol 2021; 12:424-437. [PMID: 31638145 PMCID: PMC7333480 DOI: 10.1093/jmcb/mjz099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/29/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Ezrin, a membrane–cytoskeleton linker protein, plays an essential role in cell polarity establishment, cell migration, and division. Recent studies show that ezrin phosphorylation regulates breast cancer metastasis by promoting cancer cell survivor and promotes intrahepatic metastasis via cell migration. However, it was less characterized whether there are additional post-translational modifications and/or post-translational crosstalks on ezrin underlying context-dependent breast cancer cell migration and invasion. Here we show that ezrin is acetylated by p300/CBP-associated factor (PCAF) in breast cancer cells in response to CCL18 stimulation. Ezrin physically interacts with PCAF and is a cognate substrate of PCAF. The acetylation site of ezrin was mapped by mass spectrometric analyses, and dynamic acetylation of ezrin is essential for CCL18-induced breast cancer cell migration and invasion. Mechanistically, the acetylation reduced the lipid-binding activity of ezrin to ensure a robust and dynamic cycling between the plasma membrane and cytosol in response to CCL18 stimulation. Biochemical analyses show that ezrin acetylation prevents the phosphorylation of Thr567. Using atomic force microscopic measurements, our study revealed that acetylation of ezrin induced its unfolding into a dominant structure, which prevents ezrin phosphorylation at Thr567. Thus, these results present a previously undefined mechanism by which CCL18-elicited crosstalks between the acetylation and phosphorylation on ezrin control breast cancer cell migration and invasion. This suggests that targeting PCAF signaling could be a potential therapeutic strategy for combating hyperactive ezrin-driven cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Wanjuan Wang
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Haowei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Optics and Optical Engineering, University of Science and Technology of China, Hefei, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Lingli Zhao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Shihao Du
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Najdat Zohbi
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Saravanakumar Muthusamy
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Yalei Cao
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Jiying Jiang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Peng Xia
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Ping He
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Nerimah Emmett
- Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Mingming Ma
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Quan Wu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Hadiyah-Nicole Green
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Xia Ding
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengsong Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,School of Life Science, Anhui Medical University, Hefei, China
| | - Xing Liu
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| |
Collapse
|
8
|
Du S, Song X, Li Y, Cao Y, Chu F, Durojaye OA, Su Z, Shi X, Wang J, Cheng J, Wang T, Gao X, Chen Y, Zeng W, Wang F, Wang D, Liu X, Ding X. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells. Sci Rep 2020; 10:11273. [PMID: 32647287 PMCID: PMC7347585 DOI: 10.1038/s41598-020-68238-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Progression of hepatocellular carcinoma involves multiple genetic and epigenetic alterations that promote cancer invasion and metastasis. Our recent study revealed that hyperphosphorylation of ezrin promotes intrahepatic metastasis in vivo and cell migration in vitro. Celastrol is a natural product from traditional Chinese medicine which has been used in treating liver cancer. However, the mechanism of action underlying celastrol treatment was less clear. Here we show that ROCK2 is a novel target of celastrol and inhibition of ROCK2 suppresses elicited ezrin activation and liver cancer cell migration. Using cell monolayer wound healing, we carried out a phenotype-based screen of natural products and discovered the efficacy of celastrol in inhibiting cell migration. The molecular target of celastrol was identified as ROCK2 using celastrol affinity pull-down assay. Our molecular docking analyses indicated celastrol binds to the active site of ROCK2 kinase. Mechanistically, celastrol inhibits the ROCK2-mediated phosphorylation of ezrin at Thr567 which harnesses liver cancer cell migration. Our findings suggest that targeting ROCK2-ezrin signaling is a potential therapeutic niche for celastrol-based intervention of cancer progression in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shihao Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaoyu Song
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Yuan Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yalei Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fuhao Chu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Zeqi Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoguang Shi
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Juan Cheng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tangshun Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiang Gao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Chen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wuzhekai Zeng
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - DongMei Wang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xing Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
9
|
An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, Cao Z, Hou C, Wang W, Zhao Y, Xu H, Jiao S, Zhou Z. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med 2020; 217:e20191817. [PMID: 32271880 PMCID: PMC7971137 DOI: 10.1084/jem.20191817] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Min Chen
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jingmin Guan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chun Hou
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, He Z, Wang ZN, Mills JC. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell 2020; 26:910-925.e6. [PMID: 32243780 DOI: 10.1016/j.stem.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Cellular metabolism plays important functions in dictating stem cell behaviors, although its role in stomach epithelial homeostasis has not been evaluated in depth. Here, we show that the energy sensor AMP kinase (AMPK) governs gastric epithelial progenitor differentiation. Administering the AMPK activator metformin decreases epithelial progenitor proliferation and increases acid-secreting parietal cells (PCs) in mice and organoids. AMPK activation targets Krüppel-like factor 4 (KLF4), known to govern progenitor proliferation and PC fate choice, and PGC1α, which we show controls PC maturation after their specification. PC-specific deletion of AMPKα or PGC1α causes defective PC maturation, which could not be rescued by metformin. However, metformin treatment still increases KLF4 levels and suppresses progenitor proliferation. Thus, AMPK activates KLF4 in progenitors to reduce self-renewal and promote PC fate, whereas AMPK-PGC1α activation within the PC lineage promotes maturation, providing a potential suggestion for why metformin increases acid secretion and reduces gastric cancer risk in humans.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Luciana H Osaki
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Yan Kefalov
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zheng He
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Li T, Deng L, He X, Jiang G, Hu F, Ye S, You Y, Duanmu J, Dai H, Huang G, Tang C, Lei X. MST4 Predicts Poor Prognosis And Promotes Metastasis By Facilitating Epithelial-Mesenchymal Transition In Gastric Cancer. Cancer Manag Res 2019; 11:9353-9369. [PMID: 31807065 PMCID: PMC6842314 DOI: 10.2147/cmar.s219689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background Metastasis is the main cause for gastric cancer (GC)-related deaths. Better understanding of GC metastatic mechanism would provide novel diagnostic markers and therapeutic targets. Though it has been reported that mammalian sterile-20-like kinase 4 (MST4) exerts the oncogenic role in other tumors, the prognostic value and biological role of MST4 in GC are still unknown. Methods The expression level of MST4 in GC was analyzed by using TCGA database. Then, Western blot and polymerase chain reaction (PCR) were used to determine the MST4 expression in GC tissues and cell lines. Immunohistochemistry was performed to investigate the expression of proteins in human GC tissues, and its correlation with clinicopathologic parameters as well as the prognosis for patients with GC was analyzed. In addition, the biological function and its molecular mechanism of MST4 in GC were investigated by in vitro and in vivo assays. Results It demonstrated that MST4 expression was significantly upregulated in GC tissues and cell lines. High expression of MST4 was correlated with aggressive clinicopathological parameters such as lymph node metastasis, lymphovascular invasion (all P < 0.05). GC patients with high MST4 expression had both shorter overall survival (OS) and disease-free survival (DFS) than those with low MST4 expression (all P < 0.05). MST4 expression was an independent and significant risk factor for OS and DFS of GC patients (all P < 0.05). Results of functional experiments showed that MST4 could promote GC cells migration, invasion in vitro and metastasis in vivo. In terms of mechanism, MST4 promoted metastasis by facilitating epithelial–mesenchymal transition (EMT) through activating Ezrin pathway in GC. Further studies indicate that down-regulated miR-124-3p expression contributes to upregulated MST4 expression in GC. Conclusion Our data showed that MST4 predicts poor prognosis and promotes metastasis by facilitating epithelial–mesenchymal transition in GC. Therefore, our study suggests that MST4 can be used as a valuable prognostic biomarker and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Li Deng
- Department of Diagnostic Medical Sonography, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, Jiangxi, People's Republic of China
| | - Xin He
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Gongan Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Fang Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Shanping Ye
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yu You
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Jinzhong Duanmu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Hua Dai
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Guodong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Cheng Tang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Xiong Lei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
12
|
Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology 2019; 156:2158-2173. [PMID: 30831083 PMCID: PMC6715393 DOI: 10.1053/j.gastro.2019.02.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Acidification of the gastric lumen poses a barrier to transit of potentially pathogenic bacteria and enables activation of pepsin to complement nutrient proteolysis initiated by salivary proteases. Histamine-induced activation of the PKA signaling pathway in gastric corpus parietal cells causes insertion of proton pumps into their apical plasma membranes. Parietal cell secretion and homeostasis are regulated by signaling pathways that control cytoskeletal changes required for apical membrane remodeling and organelle and proton pump activities. Helicobacter pylori colonization of human gastric mucosa affects gastric epithelial cell plasticity and homeostasis, promoting epithelial progression to neoplasia. By intervening in proton pump expression, H pylori regulates the abundance and diversity of microbiota that populate the intestinal lumen. We review stimulation-secretion coupling and renewal mechanisms in parietal cells and the mechanisms by which H pylori toxins and effectors alter cell secretory pathways (constitutive and regulated) and organelles to establish and maintain their inter- and intracellular niches. Studies of bacterial toxins and their effector proteins have provided insights into parietal cell physiology and the mechanisms by which pathogens gain control of cell activities, increasing our understanding of gastrointestinal physiology, microbial infectious disease, and immunology.
Collapse
Affiliation(s)
- Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia.
| | - Adam J. Smolka
- Gastroenterology and Hepatology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
13
|
Zhao G, Cheng Y, Gui P, Cui M, Liu W, Wang W, Wang X, Ali M, Dou Z, Niu L, Liu H, Anderson L, Ruan K, Hong J, Yao X. Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment. J Biol Chem 2019; 294:576-592. [PMID: 30409912 PMCID: PMC6333894 DOI: 10.1074/jbc.ra118.003844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
Faithful chromosome segregation during mitosis is critical for maintaining genome integrity in cell progeny and relies on accurate and robust kinetochore-microtubule attachments. The NDC80 complex, a tetramer comprising kinetochore protein HEC1 (HEC1), NDC80 kinetochore complex component NUF2 (NUF2), NDC80 kinetochore complex component SPC24 (SPC24), and SPC25, plays a critical role in kinetochore-microtubule attachment. Mounting evidence indicates that phosphorylation of HEC1 is important for regulating the binding of the NDC80 complex to microtubules. However, it remains unclear whether other post-translational modifications, such as acetylation, regulate NDC80-microtubule attachment during mitosis. Here, using pulldown assays with HeLa cell lysates and site-directed mutagenesis, we show that HEC1 is a bona fide substrate of the lysine acetyltransferase Tat-interacting protein, 60 kDa (TIP60) and that TIP60-mediated acetylation of HEC1 is essential for accurate chromosome segregation in mitosis. We demonstrate that TIP60 regulates the dynamic interactions between NDC80 and spindle microtubules during mitosis and observed that TIP60 acetylates HEC1 at two evolutionarily conserved residues, Lys-53 and Lys-59. Importantly, this acetylation weakened the phosphorylation of the N-terminal HEC1(1-80) region at Ser-55 and Ser-62, which is governed by Aurora B and regulates NDC80-microtubule dynamics, indicating functional cross-talk between these two post-translation modifications of HEC1. Moreover, the TIP60-mediated acetylation was specifically reversed by sirtuin 1 (SIRT1). Taken together, our results define a conserved signaling hierarchy, involving HEC1, TIP60, Aurora B, and SIRT1, that integrates dynamic HEC1 acetylation and phosphorylation for accurate kinetochore-microtubule attachment in the maintenance of genomic stability during mitosis.
Collapse
Affiliation(s)
- Gangyin Zhao
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Yubao Cheng
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Ping Gui
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Meiying Cui
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Wei Liu
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Wenwen Wang
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xueying Wang
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Mahboob Ali
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Zhen Dou
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Liwen Niu
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Haiyan Liu
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Leonard Anderson
- the Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Ke Ruan
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Jingjun Hong
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| | - Xuebiao Yao
- From the Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Molecular Cell Sciences, Hefei 230027, China and
| |
Collapse
|
14
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
15
|
Yuan X, Yao PY, Jiang J, Zhang Y, Su Z, Yao W, Wang X, Gui P, Mullen M, Henry C, Ward T, Wang W, Brako L, Tian R, Zhao X, Wang F, Cao X, Wang D, Liu X, Ding X, Yao X. MST4 kinase phosphorylates ACAP4 protein to orchestrate apical membrane remodeling during gastric acid secretion. J Biol Chem 2017; 292:16174-16187. [PMID: 28808054 DOI: 10.1074/jbc.m117.808212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Digestion in the stomach depends on acidification of the lumen. Histamine-elicited acid secretion is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. Our recent study revealed the functional role of PKA-MST4-ezrin signaling axis in histamine-elicited acid secretion. However, it remains uncharacterized how the PKA-MST4-ezrin signaling axis operates the insertion of H,K-ATPases into the apical plasma membranes of gastric parietal cells. Here we show that MST4 phosphorylates ACAP4, an ARF6 GTPase-activating protein, at Thr545 Histamine stimulation activates MST4 and promotes MST4 interaction with ACAP4. ACAP4 physically interacts with MST4 and is a cognate substrate of MST4 during parietal cell activation. The phosphorylation site of ACAP4 by MST4 was mapped to Thr545 by mass spectrometric analyses. Importantly, phosphorylation of Thr545 is essential for acid secretion in parietal cells because either suppression of ACAP4 or overexpression of non-phosphorylatable ACAP4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, persistent overexpression of MST4 phosphorylation-deficient ACAP4 results in inhibition of gastric acid secretion and blockage of tubulovesicle fusion to the apical membranes. Significantly, phosphorylation of Thr545 enables ACAP4 to interact with ezrin. Given the location of Thr545 between the GTPase-activating protein domain and the first ankyrin repeat, we reason that MST4 phosphorylation elicits a conformational change that enables ezrin-ACAP4 interaction. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ACAP4 signaling cascade to polarized acid secretion in gastric parietal cells.
Collapse
Affiliation(s)
- Xiao Yuan
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Phil Y Yao
- the Beijing University of Chinese Medicine, Beijing 100029, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Jiying Jiang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Yin Zhang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeqi Su
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wendy Yao
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xueying Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Ping Gui
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - McKay Mullen
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Calmour Henry
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Tarsha Ward
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Wenwen Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Larry Brako
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Ruijun Tian
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuannv Zhao
- the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fengsong Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310.,the Department of Biochemistry, Anhui Medical University, Hefei 230027, China, and
| | - Xinwang Cao
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310.,the Department of Biochemistry, Anhui Medical University, Hefei 230027, China, and
| | - Dongmei Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China, .,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xia Ding
- the Beijing University of Chinese Medicine, Beijing 100029, China,
| | - Xuebiao Yao
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China, .,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
16
|
Li LY, Xie YH, Xie YM, Liao LD, Xu XE, Zhang Q, Zeng FM, Tao LH, Xie WM, Xie JJ, Xu LY, Li EM. Ezrin Ser66 phosphorylation regulates invasion and metastasis of esophageal squamous cell carcinoma cells by mediating filopodia formation. Int J Biochem Cell Biol 2017; 88:162-171. [PMID: 28504189 DOI: 10.1016/j.biocel.2017.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/18/2017] [Accepted: 05/09/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ezrin, links the plasma membrane to the actin cytoskeleton, and plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC). However, the roles of ezrin S66 phosphorylation in tumorigenesis of ESCC remain unclear. METHODS Distribution of ezrin in membrane and cytosol fractions was examined by analysis of detergent-soluble/-insoluble fractions and cytosol/membrane fractionation. Both immunofluorescence and live imaging were used to explore the role of ezrin S66 phosphorylation in the behavior of ezrin and actin in cell filopodia. Cell proliferation, migration and invasion of ESCC cells were investigated by proliferation and migration assays, respectively. Tumorigenesis, local invasion and metastasis were assessed in a nude mouse model of regional lymph node metastasis. RESULTS Ezrin S66 phosphorylation enhanced the recruitment of ezrin to the membrane in ESCC cells. Additionally, non-phosphorylatable ezrin (S66A) significantly prevented filopodia formation, as well as caused a reduction in the number, length and lifetime of filopodia. Moreover, functional experiments revealed that expression of non-phosphorylatable ezrin (S66A) markedly suppressed migration and invasion but not proliferation of ESCC cells in vitro, and attenuated local invasion and regional lymph node metastasis, but not primary tumor growth of ESCC cells in vivo. CONCLUSION Ezrin S66 phosphorylation enhances filopodia formation, contributing to the regulation of invasion and metastasis of esophageal squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Yang-Min Xie
- Experimental Animal Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Qiang Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Fa-Min Zeng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Hua Tao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Wen-Ming Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The present review summarizes the past year's literature, both clinical and basic science, regarding neuroendocrine and intracellular regulation of gastric acid secretion and proper use of antisecretory medications. RECENT FINDINGS Gastric acid kills microorganisms, modulates the gut microbiome, assists in digestion of protein, and facilitates absorption of iron, calcium, and vitamin B12. The main stimulants of acid secretion are gastrin, released from antral G cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Other stimulants include ghrelin, motilin, and hydrogen sulfide. The main inhibitor of acid secretion is somatostatin, released from oxyntic and antral D cells. Glucagon-like peptide-1 also inhibits acid secretion. Proton pump inhibitors (PPIs) reduce acid secretion and, as a result, decrease somatostatin and thus stimulate gastrin secretion. Although considered well tolerated drugs, concerns have been raised this past year regarding associations between PPI use and kidney disease, dementia, and myocardial infarction; the quality of evidence, however, is very low. SUMMARY Our understanding of the physiology of gastric secretion and proper use of PPIs continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders.
Collapse
|
18
|
Duan H, Wang C, Wang M, Gao X, Yan M, Akram S, Peng W, Zou H, Wang D, Zhou J, Chu Y, Dou Z, Barrett G, Green HN, Wang F, Tian R, He P, Wang W, Liu X, Yao X. Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation. J Biol Chem 2016; 291:21123-21136. [PMID: 27557660 PMCID: PMC5076521 DOI: 10.1074/jbc.m116.745372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
During cell division, accurate chromosome segregation is tightly regulated by Polo-like kinase 1 (PLK1) and opposing activities of Aurora B kinase and protein phosphatase 1 (PP1). However, the regulatory mechanisms underlying the aforementioned hierarchical signaling cascade during mitotic chromosome segregation have remained elusive. Sds22 is a conserved regulator of PP1 activity, but how it regulates PP1 activity in space and time during mitosis remains elusive. Here we show that Sds22 is a novel and cognate substrate of PLK1 in mitosis, and the phosphorylation of Sds22 by PLK1 elicited an inhibition of PP1-mediated dephosphorylation of Aurora B at threonine 232 (Thr232) in a dose-dependent manner. Overexpression of a phosphomimetic mutant of Sds22 causes a dramatic increase in mitotic delay, whereas overexpression of a non-phosphorylatable mutant of Sds22 results in mitotic arrest. Mechanistically, the phosphorylation of Sds22 by PLK1 strengthens the binding of Sds22 to PP1 and inhibits the dephosphorylation of Thr232 of Aurora B to ensure a robust, error-free metaphase-anaphase transition. These findings delineate a conserved signaling hierarchy that orchestrates dynamic protein phosphorylation and dephosphorylation of critical mitotic regulators during chromosome segregation to guard chromosome stability.
Collapse
Affiliation(s)
- Hequan Duan
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Chunli Wang
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Ming Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Xinjiao Gao
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Maomao Yan
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Saima Akram
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Wei Peng
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Hanfa Zou
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Dong Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Jiajia Zhou
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Youjun Chu
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Zhen Dou
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Gregory Barrett
- the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Hadiyah-Nicole Green
- the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Fangjun Wang
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Ruijun Tian
- the Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and the Center of Molecular Proteomics, South University of Science & Technology of China, Shenzhen 518055, China
| | - Ping He
- the Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and the Center of Molecular Proteomics, South University of Science & Technology of China, Shenzhen 518055, China
| | - Wenwen Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310,
| | - Xing Liu
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310,
| | - Xuebiao Yao
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China,
| |
Collapse
|