1
|
Lee C, Lepore D, Lee SH, Kim TG, Buwa N, Lee J, Munson M, Yoon TY. Exocyst stimulates multiple steps of exocytic SNARE complex assembly and vesicle fusion. Nat Struct Mol Biol 2025; 32:150-160. [PMID: 39242980 DOI: 10.1038/s41594-024-01388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex has been proposed to tether vesicles to the plasma membrane and activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion, the key biochemical steps that exocyst stimulates in SNARE-mediated fusion are undetermined. Here we use a combination of single-molecule and bulk fluorescence assays to investigate the roles of purified octameric yeast exocyst complexes in a reconstituted yeast exocytic SNARE assembly and vesicle fusion system. Exocyst had stimulatory roles in multiple distinct steps ranging from SNARE protein activation to binary and ternary complex assembly. Importantly, exocyst had a downstream role in driving membrane fusion and full content mixing of vesicle lumens. Our data suggest that exocyst provides extensive chaperoning functions across the entire process of SNARE complex assembly and fusion, thereby governing exocytosis at multiple steps.
Collapse
Affiliation(s)
- Chanwoo Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Dante Lepore
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Seung-Hak Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Tae Gyun Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Natasha Buwa
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jongchan Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Mary Munson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
3
|
Meek S, Hernandez AC, Oliva B, Gallego O. The exocyst in context. Biochem Soc Trans 2024; 52:2113-2122. [PMID: 39377315 PMCID: PMC11555703 DOI: 10.1042/bst20231401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The exocyst is a hetero-octameric complex involved in the exocytosis arm of cellular trafficking. Specifically, it tethers secretory vesicles to the plasma membrane, but it is also a main convergence point for many players of exocytosis: regulatory proteins, motor proteins, lipids and Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor (SNARE) proteins are all connected physically by the exocyst. Despite extensive knowledge about its structure and interactions, the exocyst remains an enigma precisely because of its increasingly broad and flexible role across the exocytosis process. To solve the molecular mechanism of such a multi-tasking complex, dynamical structures with self, other proteins, and environment should be described. And to do this, interrogation within contexts increasingly close to native conditions is needed. Here we provide a perspective on how different experimental contexts have been used to study the exocyst, and those that could be used in the future. This review describes the structural breakthroughs on the isolated in vitro exocyst, followed by the use of membrane reconstitution assays for revealing in vitro exocyst functionality. Next, it moves to in situ cell contexts, reviewing imaging techniques that have been, and that ideally could be, used to look for near-native structure and organization dynamics. Finally, it looks at the exocyst structure in situ within evolutionary contexts, and the potential of structure prediction therein. From in vitro, to in situ, cross-context investigation of exocyst structure has begun, and will be critical for functional mechanism elucidation.
Collapse
Affiliation(s)
- Sasha Meek
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Altair C. Hernandez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Baldomero Oliva
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Oriol Gallego
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
4
|
Zuriegat Q, Abubakar YS, Wang Z, Chen M, Zhang J. Emerging Roles of Exocyst Complex in Fungi: A Review. J Fungi (Basel) 2024; 10:614. [PMID: 39330374 PMCID: PMC11433146 DOI: 10.3390/jof10090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The exocyst complex, an evolutionarily conserved octameric protein assembly, plays a central role in the targeted binding and fusion of vesicles at the plasma membrane. In fungal cells, this transport system is essential for polarized growth, morphogenesis, cell wall maintenance and virulence. Recent advances have greatly improved our understanding of the role and regulation of the exocyst complex in fungi. This review synthesizes these developments and focuses on the intricate interplay between the exocyst complex, specific fungal cargos and regulatory proteins. Insights into thestructure of the exocyst and its functional dynamics have revealed new dimensions of its architecture and its interactions with the cellular environment. Furthermore, the regulation of exocyst activity involves complex signaling pathways and interactions with cytoskeletal elements that are crucial for its role in vesicle trafficking. By exploring these emerging themes, this review provides a comprehensive overview of the multifaceted functions of the exocyst complex in fungal biology. Understanding these mechanisms offers potential avenues for novel therapeutic strategies against fungal pathogens and insights into the general principles of vesicle trafficking in eukaryotic cells. The review therefore highlights the importance of the exocyst complex in maintaining cellular functions and its broader implications in fungal pathogenicity and cell biology.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| |
Collapse
|
5
|
DAmico KA, Stanton AE, Shirkey JD, Travis SM, Jeffrey PD, Hughson FM. Structure of a membrane tethering complex incorporating multiple SNAREs. Nat Struct Mol Biol 2024; 31:246-254. [PMID: 38196032 PMCID: PMC10923073 DOI: 10.1038/s41594-023-01164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/26/2023] [Indexed: 01/11/2024]
Abstract
Most membrane fusion reactions in eukaryotic cells are mediated by multisubunit tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here we present a cryo-electron microscopy structure of the simplest known MTC, the 255-kDa Dsl1 complex of Saccharomyces cerevisiae, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.
Collapse
Affiliation(s)
- Kevin A DAmico
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Abigail E Stanton
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jaden D Shirkey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
6
|
Georgiou X, Dimou S, Diallinas G, Samiotaki M. The interactome of the UapA transporter reveals putative new players in anterograde membrane cargo trafficking. Fungal Genet Biol 2023; 169:103840. [PMID: 37730157 DOI: 10.1016/j.fgb.2023.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Neosynthesized plasma membrane (PM) proteins co-translationally translocate to the ER, concentrate at regions called ER-exit sites (ERes) and pack into COPII secretory vesicles which are sorted to the early-Golgi through membrane fusion. Following Golgi maturation, membrane cargoes reach the late-Golgi, from where they exit in clathrin-coated vesicles destined to the PM, directly or through endosomes. Post-Golgi membrane cargo trafficking also involves the cytoskeleton and the exocyst. The Golgi-dependent secretory pathway is thought to be responsible for the trafficking of all major membrane proteins. However, our recent findings in Aspergillus nidulans showed that several plasma membrane cargoes, such as transporters and receptors, follow a sorting route that seems to bypass Golgi functioning. To gain insight on membrane trafficking and specifically Golgi-bypass, here we used proximity dependent biotinylation (PDB) coupled with data-independent acquisition mass spectrometry (DIA-MS) for identifying transient interactors of the UapA transporter. Our assays, which included proteomes of wild-type and mutant strains affecting ER-exit or endocytosis, identified both expected and novel interactions that might be physiologically relevant to UapA trafficking. Among those, we validated, using reverse genetics and fluorescence microscopy, that COPI coatomer is essential for ER-exit and anterograde trafficking of UapA and other membrane cargoes. We also showed that ArfAArf1 GTPase activating protein (GAP) Glo3 contributes to UapA trafficking at increased temperature. This is the first report addressing the identification of transient interactions during membrane cargo biogenesis using PDB and proteomics coupled with fungal genetics. Our work provides a basis for dissecting dynamic membrane cargo trafficking via PDB assays.
Collapse
Affiliation(s)
- Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece.
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, Vari 16672, Greece.
| |
Collapse
|
7
|
Stanton AE, Hughson FM. The machinery of vesicle fusion. Curr Opin Cell Biol 2023; 83:102191. [PMID: 37421936 PMCID: PMC10529041 DOI: 10.1016/j.ceb.2023.102191] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
The compartmentalization of eukaryotic cells is reliant on the fidelity of vesicle-mediated intracellular transport. Vesicles deliver their cargo via membrane fusion, a process requiring membrane tethers, Sec1/Munc18 (SM) proteins, and SNAREs. These components function in concert to ensure that membrane fusion is efficient and accurate, but the mechanisms underlying their cooperative action are still in many respects mysterious. In this brief review, we highlight recent progress toward a more integrative understanding of the vesicle fusion machinery. We focus particular attention on cryo-electron microscopy structures of intact multisubunit tethers in complex with SNAREs or SM proteins, as well as a structure of an SM protein bound to multiple SNAREs. The insights gained from this work emphasize the advantages of studying the fusion machinery intact and in context.
Collapse
Affiliation(s)
- Abigail E Stanton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Logue MJE, Farquhar RE, Eckhoff-Björngard Y, Cheung TT, Devor DC, McDonald FJ, Hamilton KL. The exocyst complex is required for the trafficking and delivery of KCa3.1 to the basolateral membrane of polarized epithelia. Am J Physiol Cell Physiol 2023; 324:C1249-C1262. [PMID: 37125772 PMCID: PMC10243536 DOI: 10.1152/ajpcell.00374.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Control of the movement of ions and water across epithelia is essential for homeostasis. Changing the number or activity of ion channels at the plasma membrane is a significant regulator of epithelial transport. In polarized epithelia, the intermediate-conductance calcium-activated potassium channel, KCa3.1 is delivered to the basolateral membrane where it generates and maintains the electrochemical gradients required for epithelial transport. The mechanisms that control the delivery of KCa3.1 to the basolateral membrane are still emerging. Herein, we investigated the role of the highly conserved tethering complex exocyst. In epithelia, exocyst is involved in the tethering of post-Golgi secretory vesicles with the basolateral membrane, which is required before membrane fusion. In our Fisher rat thyroid cell line that stably expresses KCa3.1, siRNA knockdown of either of the exocyst subunits Sec3, Sec6, or Sec8 significantly decreased KCa3.1-specific current. In addition, knockdown of exocyst complex subunits significantly reduced the basolateral membrane protein level of KCa3.1. Finally, co-immunoprecipitation experiments suggest associations between Sec6 and KCa3.1, but not between Sec8 and KCa3.1. Collectively, based on these data and our previous studies, we suggest that components of exocyst complex are crucially important in the tethering of KCa3.1 to the basolateral membrane. After which, Soluble N-ethylmaleimide-sensitive factor (SNF) Attachment Receptors (SNARE) proteins aid in the insertion of KCa3.1-containing vesicles into the basolateral membrane of polarized epithelia.NEW & NOTEWORTHY Our Ussing chamber and immunoblot experiments demonstrate that when subunits of the exocyst complex were transiently knocked down, this significantly reduced the basolateral population and functional expression of KCa3.1. These data suggest, combined with our protein association experiments, that the exocyst complex regulates the tethering of KCa3.1-containing vesicles to the basolateral membrane prior to the SNARE-dependent insertion of channels into the basolateral membrane of epithelial cells.
Collapse
Affiliation(s)
- Matthew J E Logue
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachel E Farquhar
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yoakim Eckhoff-Björngard
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel C Devor
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kirk L Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Fan T, Fan Y, Yang Y, Qian D, Niu Y, An L, Xiang Y. SEC1A and SEC6 synergistically regulate pollen tube polar growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36951316 DOI: 10.1111/jipb.13486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.
Collapse
Affiliation(s)
- Tingting Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
10
|
Zhao K, Matsunaga K, Mizuno K, Wang H, Okunishi K, Izumi T. Functional hierarchy among different Rab27 effectors involved in secretory granule exocytosis. eLife 2023; 12:82821. [PMID: 36803984 PMCID: PMC9988257 DOI: 10.7554/elife.82821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
The Rab27 effectors are known to play versatile roles in regulated exocytosis. In pancreatic beta cells, exophilin-8 anchors granules in the peripheral actin cortex, whereas granuphilin and melanophilin mediate granule fusion with and without stable docking to the plasma membrane, respectively. However, it is unknown whether these coexisting effectors function in parallel or in sequence to support the whole insulin secretory process. Here, we investigate their functional relationships by comparing the exocytic phenotypes in mouse beta cells simultaneously lacking two effectors with those lacking just one of them. Analyses of prefusion profiles by total internal reflection fluorescence microscopy suggest that melanophilin exclusively functions downstream of exophilin-8 to mobilize granules for fusion from the actin network to the plasma membrane after stimulation. The two effectors are physically linked via the exocyst complex. Downregulation of the exocyst component affects granule exocytosis only in the presence of exophilin-8. The exocyst and exophilin-8 also promote fusion of granules residing beneath the plasma membrane prior to stimulation, although they differentially act on freely diffusible granules and those stably docked to the plasma membrane by granuphilin, respectively. This is the first study to diagram the multiple intracellular pathways of granule exocytosis and the functional hierarchy among different Rab27 effectors within the same cell.
Collapse
Affiliation(s)
- Kunli Zhao
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| |
Collapse
|
11
|
Miller BK, Rossi G, Hudson S, Cully D, Baker RW, Brennwald P. Allosteric regulation of exocyst: Discrete activation of tethering by two spatial signals. J Cell Biol 2023; 222:213852. [PMID: 36729146 PMCID: PMC9929655 DOI: 10.1083/jcb.202206108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
The exocyst imparts spatial control during exocytic vesicle tethering through its interactions with proteins and lipids on the vesicle and the plasma membrane. One such interaction is with the vesicle tether Sro7, although the outcome of this interaction is poorly understood. Here, we describe how Sro7 binding to the Exo84 subunit results in activation of the exocyst complex which leads to an increase in avidity for the Rab GTPase Sec4 and an increase in exocyst-mediated vesicle tethering. Gain-of-function (GOF) mutations in Exo84 that mimic Sro7 activation replicate these biochemical changes and result in allosteric changes within the complex. Direct comparison of GOF mutants which mimic Sro7- and Rho/Cdc42-activation of the exocyst reveals distinct mechanisms and outcomes. We propose a model by which these two activation pathways reside within the same tethering complex but remain insulated from one another. Structural modeling suggests a related mechanism for Sro7 activation of the exocyst in yeast and Ral GTPase activation of the exocyst in animal cells.
Collapse
Affiliation(s)
- Brittany K. Miller
- https://ror.org/0130frc33Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Guendalina Rossi
- https://ror.org/0130frc33Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Sara Hudson
- https://ror.org/0130frc33Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David Cully
- https://ror.org/0130frc33Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Richard W. Baker
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Patrick Brennwald
- https://ror.org/0130frc33Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,Correspondence to Patrick Brennwald:
| |
Collapse
|
12
|
DAmico KA, Stanton AE, Shirkey JD, Travis SM, Jeffrey PD, Hughson FM. Structure of a Membrane Tethering Complex Incorporating Multiple SNAREs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526244. [PMID: 36778436 PMCID: PMC9915479 DOI: 10.1101/2023.01.30.526244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most membrane fusion reactions in eukaryotic cells are mediated by membrane tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here, we present a cryo-EM structure of the simplest known MTC, the 255-kDa Dsl1 complex, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with remarkable and unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.
Collapse
Affiliation(s)
- Kevin A DAmico
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Abigail E Stanton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Jaden D Shirkey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
13
|
Ireton K, Gyanwali GC, Herath TUB, Lee N. Exploitation of the host exocyst complex by bacterial pathogens. Mol Microbiol 2023. [PMID: 36717381 DOI: 10.1111/mmi.15034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Intracellular bacterial pathogens remodel the plasma membrane of eukaryotic cells in order to establish infection. A common and well-studied mechanism of plasma membrane remodelling involves bacterial stimulation of polymerization of the host actin cytoskeleton. Here, we discuss recent results showing that several bacterial pathogens also exploit the host vesicular trafficking pathway of 'polarized exocytosis' to expand and reshape specific regions in the plasma membrane during infection. Polarized exocytosis is mediated by an evolutionarily conserved octameric protein complex termed the exocyst. We describe examples in which the bacteria Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Shigella flexneri co-opt the exocyst to promote internalization into human cells or intercellular spread within host tissues. We also discuss results showing that Legionella pneumophila or S. flexneri manipulate exocyst components to modify membrane vacuoles to favour intracellular replication or motility of bacteria. Finally, we propose potential ways that pathogens manipulate exocyst function, discuss how polarized exocytosis might promote infection and highlight the importance of future studies to determine how actin polymerization and polarized exocytosis are coordinated to achieve optimal bacterial infection.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicole Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Gingras RM, Sulpizio AM, Park J, Bretscher A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. eLife 2022; 11:e78750. [PMID: 36331188 PMCID: PMC9671497 DOI: 10.7554/elife.78750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most of the components in the yeast secretory pathway have been studied, yet a high-resolution temporal timeline of their participation is lacking. Here, we define the order of acquisition, lifetime, and release of critical components involved in late secretion from the Golgi to the plasma membrane. Of particular interest is the timing of the many reported effectors of the secretory vesicle Rab protein Sec4, including the myosin-V Myo2, the exocyst complex, the lgl homolog Sro7, and the small yeast-specific protein Mso1. At the trans-Golgi network (TGN) Sec4's GEF, Sec2, is recruited to Ypt31-positive compartments, quickly followed by Sec4 and Myo2 and vesicle formation. While transported to the bud tip, the entire exocyst complex, including Sec3, is assembled on to the vesicle. Before fusion, vesicles tether for 5 s, during which the vesicle retains the exocyst complex and stimulates lateral recruitment of Rho3 on the plasma membrane. Sec2 and Myo2 are rapidly lost, followed by recruitment of cytosolic Sro7, and finally the SM protein Sec1, which appears for just 2 s prior to fusion. Perturbation experiments reveal an ordered and robust series of events during tethering that provide insights into the function of Sec4 and effector exchange.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Abigail M Sulpizio
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Joelle Park
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
15
|
Žárský V. Exocyst functions in plants - secretion and autophagy. FEBS Lett 2022; 596:2324-2334. [PMID: 35729750 DOI: 10.1002/1873-3468.14430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
Tethering complexes mediate vesicle-target compartment contact. Octameric complex exocyst initiates vesicle exocytosis at specific cytoplasmic membrane domains. Plant exocyst is possibly stabilized at the membrane by a direct interaction between SEC3 and EXO70A. Land plants evolved three basic membrane-targeting EXO70 subfamilies, the evolution of which resulted in several types of exocyst with distinct functions within the same cell. Surprisingly, some of these EXO70-exocyst versions are implicated in autophagy as is animal exocyst or are involved in host defense, cell-wall fortification and secondary metabolites transport. Interestingly, EXO70Ds act as selective autophagy receptors in the regulation of cytokinin signalling pathway. Secretion of double membrane autophagy-related structures formed with the contribution of EXO70s to the apoplast hints at the possibility of secretory autophagy in plants.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague, Czech Republic.,Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová 263, 165 02, Prague, Czech Republic
| |
Collapse
|
16
|
A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion. Curr Biol 2022; 32:2821-2833.e6. [PMID: 35609603 PMCID: PMC9382030 DOI: 10.1016/j.cub.2022.04.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane. Complete reconstitution and subunit connectivity of the human exocyst complex Binding to PI(4,5)P2 in trans by each subcomplex enables membrane tethering PI(4)P to PI(4,5)P2 conversion is sufficient for exocyst recruitment and tethering Arf6 controls phosphoinositide conversion by PIP5K1C in cells and in vitro
Collapse
|
17
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
18
|
Ortmannová J, Sekereš J, Kulich I, Šantrůček J, Dobrev P, Žárský V, Pečenková T. Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:742-755. [PMID: 34664667 DOI: 10.1093/jxb/erab457] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In the reaction to non-adapted Blumeria graminis f. sp. hordei (Bgh), Arabidopsis thaliana leaf epidermal cells deposit cell wall reinforcements called papillae or seal fungal haustoria in encasements, both of which involve intensive exocytosis. A plant syntaxin, SYP121/PEN1, has been found to be of key importance for the timely formation of papillae, and the vesicle tethering complex exocyst subunit EXO70B2 has been found to contribute to their morphology. Here, we identify a specific role for the EXO70B2-containing exocyst complex in the papillae membrane domains important for callose deposition and GFP-SYP121 delivery to the focal attack sites, as well as its contribution to encasement formation. The mRuby2-EXO70B2 co-localizes with the exocyst core subunit SEC6 and GFP-SYP121 in the membrane domain of papillae, and EXO70B2 and SYP121 proteins have the capacity to directly interact. The exo70B2/syp121 double mutant produces a reduced number of papillae and haustorial encasements in response to Bgh, indicating an additive role of the exocyst in SYP121-coordinated non-host resistance. In summary, we report cooperation between the plant exocyst and a SNARE protein in penetration resistance against non-adapted fungal pathogens.
Collapse
Affiliation(s)
- Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Juraj Sekereš
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Jiří Šantrůček
- Laboratory of Applied Proteomics, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| |
Collapse
|
19
|
An SJ, Rivera-Molina F, Anneken A, Xi Z, McNellis B, Polejaev VI, Toomre D. An active tethering mechanism controls the fate of vesicles. Nat Commun 2021; 12:5434. [PMID: 34521845 PMCID: PMC8440521 DOI: 10.1038/s41467-021-25465-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Vesicle tethers are thought to underpin the efficiency of intracellular fusion by bridging vesicles to their target membranes. However, the interplay between tethering and fusion has remained enigmatic. Here, through optogenetic control of either a natural tether-the exocyst complex-or an artificial tether, we report that tethering regulates the mode of fusion. We find that vesicles mainly undergo kiss-and-run instead of full fusion in the absence of functional exocyst. Full fusion is rescued by optogenetically restoring exocyst function, in a manner likely dependent on the stoichiometry of tether engagement with the plasma membrane. In contrast, a passive artificial tether produces mostly kissing events, suggesting that kiss-and-run is the default mode of vesicle fusion. Optogenetic control of tethering further shows that fusion mode has physiological relevance since only full fusion could trigger lamellipodial expansion. These findings demonstrate that active coupling between tethering and fusion is critical for robust membrane merger.
Collapse
Affiliation(s)
- Seong J An
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Anneken
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Brian McNellis
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Vladimir I Polejaev
- International Science and Technology Center, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Sundaram RVK, Jin H, Li F, Shu T, Coleman J, Yang J, Pincet F, Zhang Y, Rothman JE, Krishnakumar SS. Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS Lett 2021; 595:297-309. [PMID: 33222163 PMCID: PMC8068094 DOI: 10.1002/1873-3468.14006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022]
Abstract
Synaptic vesicle fusion is mediated by SNARE proteins-VAMP2 on the vesicle and Syntaxin-1/SNAP25 on the presynaptic membrane. Chaperones Munc18-1 and Munc13-1 cooperatively catalyze SNARE assembly via an intermediate 'template' complex containing Syntaxin-1 and VAMP2. How SNAP25 enters this reaction remains a mystery. Here, we report that Munc13-1 recruits SNAP25 to initiate the ternary SNARE complex assembly by direct binding, as judged by bulk FRET spectroscopy and single-molecule optical tweezer studies. Detailed structure-function analyses show that the binding is mediated by the Munc13-1 MUN domain and is specific for the SNAP25 'linker' region that connects the two SNARE motifs. Consequently, freely diffusing SNAP25 molecules on phospholipid bilayers are concentrated and bound in ~ 1 : 1 stoichiometry by the self-assembled Munc13-1 nanoclusters.
Collapse
Affiliation(s)
- R Venkat Kalyana Sundaram
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Huaizhou Jin
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Feng Li
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Tong Shu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Laboratoire de Physique de Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris 06, F-75005 Paris, France
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - James E. Rothman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Shyam S. Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queens Square House, London WC1 3BG, UK
| |
Collapse
|
21
|
Rossi G, Lepore D, Kenner L, Czuchra AB, Plooster M, Frost A, Munson M, Brennwald P. Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J Cell Biol 2020; 219:133563. [PMID: 31904797 PMCID: PMC7041683 DOI: 10.1083/jcb.201904161] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/26/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
The exocyst complex plays a critical role in determining both temporal and spatial dynamics of exocytic vesicle tethering and fusion with the plasma membrane. However, the mechanism by which the exocyst functions and how it is regulated remain poorly understood. Here we describe a novel biochemical assay for the examination of exocyst function in vesicle tethering. Importantly, the assay is stimulated by gain-of-function mutations in the Exo70 component of the exocyst, selected for their ability to bypass Rho/Cdc42 activation in vivo. Single-particle electron microscopy and 3D reconstructions of negatively stained exocyst complexes reveal a structural change in the mutant exocyst that exposes a binding site for the v-SNARE. We demonstrate a v-SNARE requirement in our tethering assay and increased v-SNARE binding to exocyst gain-of-function complexes. Together, these data suggest an allosteric mechanism for activation involving a conformational change in one subunit of the complex, which is relayed through the complex to regulate its biochemical activity in vitro, as well as overall function in vivo.
Collapse
Affiliation(s)
- Guendalina Rossi
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Dante Lepore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lillian Kenner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Alexander B Czuchra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Melissa Plooster
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA.,California Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
22
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
23
|
Mitra G. Emerging Role of Mass Spectrometry-Based Structural Proteomics in Elucidating Intrinsic Disorder in Proteins. Proteomics 2020; 21:e2000011. [PMID: 32959512 DOI: 10.1002/pmic.202000011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Inherent disorder is an integral part of all proteomes, represented as fully or partially unfolded proteins. The lack of order in intrinsically disordered proteins (IDPs) results in an incredibly flexible, floppy, and heterogeneous ensemble, contrary to the well-structured and unique organization of folded proteins. Despite such unusual demeanor, IDPs are crucial for numerous cellular processes and are increasingly being associated with disease-causing pathologies. These warrant more intensive investigation of this atypical class of protein. Traditional biophysical tools, however, fall short of analyzing IDPs, thus making their structure-function characterization challenging. Mass spectrometry (MS) in recent years has evolved as a valuable tool for elucidating the unusual conformational facets of IDPs. In this review, the features of advanced MS techniques such as Hydrogen-deuterium exchange (HDX)-MS, native MS, limited proteolysis (LiP)-MS, chemical cross-linking (XL)-MS, and Fast photochemical oxidation of proteins (FPOP)-MS are briefly discussed. Recent MS studies on IDPs and the unique advantages/shortfalls associated with the above methods while evaluating structural proteomics of IDPs, are illustrated. Eventually the future scope of the MS methods in further decoding the unexplored landscapes of IDPs is presented.
Collapse
Affiliation(s)
- Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, St. John's National Academy of Health Sciences, 100 Feet Road, Koramangala, Bangalore, Karnataka, 560034, India
| |
Collapse
|
24
|
Pečenková T, Potocká A, Potocký M, Ortmannová J, Drs M, Janková Drdová E, Pejchar P, Synek L, Soukupová H, Žárský V, Cvrčková F. Redundant and Diversified Roles Among Selected Arabidopsis thaliana EXO70 Paralogs During Biotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:960. [PMID: 32676093 PMCID: PMC7333677 DOI: 10.3389/fpls.2020.00960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 05/28/2023]
Abstract
The heterooctameric vesicle-tethering complex exocyst is important for plant development, growth, and immunity. Multiple paralogs exist for most subunits of this complex; especially the membrane-interacting subunit EXO70 underwent extensive amplification in land plants, suggesting functional specialization. Despite this specialization, most Arabidopsis exo70 mutants are viable and free of developmental defects, probably as a consequence of redundancy among isoforms. Our in silico data-mining and modeling analysis, corroborated by transcriptomic experiments, pinpointed several EXO70 paralogs to be involved in plant biotic interactions. We therefore tested corresponding single and selected double mutant combinations (for paralogs EXO70A1, B1, B2, H1, E1, and F1) in their two biologically distinct responses to Pseudomonas syringae, root hair growth stimulation and general plant susceptibility. A shift in defense responses toward either increased or decreased sensitivity was found in several double mutants compared to wild type plants or corresponding single mutants, strongly indicating both additive and compensatory effects of exo70 mutations. In addition, our experiments confirm the lipid-binding capacity of selected EXO70s, however, without the clear relatedness to predicted C-terminal lipid-binding motifs. Our analysis uncovers that there is less of functional redundancy among isoforms than we could suppose from whole sequence phylogeny and that even paralogs with overlapping expression pattern and similar membrane-binding capacity appear to have exclusive roles in plant development and biotic interactions.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Martin Potocký
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Matěj Drs
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Edita Janková Drdová
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Synek
- Institute of Experimental Botany, CAS, Prague, Czechia
| | | | - Viktor Žárský
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
25
|
Travis SM, DAmico K, Yu IM, McMahon C, Hamid S, Ramirez-Arellano G, Jeffrey PD, Hughson FM. Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1. J Biol Chem 2020; 295:10125-10135. [PMID: 32409579 DOI: 10.1074/jbc.ra120.013654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/01/2020] [Indexed: 01/02/2023] Open
Abstract
Multisubunit-tethering complexes (MTCs) are large (250 to >750 kDa), conserved macromolecular machines that are essential for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in all eukaryotes. MTCs are thought to organize membrane trafficking by mediating the initial long-range interaction between a vesicle and its target membrane and promoting the formation of membrane-bridging SNARE complexes. Previously, we reported the structure of the yeast Dsl1 complex, the simplest known MTC, which is essential for coat protein I (COPI) mediated transport from the Golgi to the endoplasmic reticulum (ER). This structure suggests how the Dsl1 complex might tether a vesicle to its target membrane by binding at one end to the COPI coat and at the other to ER-associated SNAREs. Here, we used X-ray crystallography to investigate these Dsl1-SNARE interactions in greater detail. The Dsl1 complex comprises three subunits that together form a two-legged structure with a central hinge. We found that distal regions of each leg bind N-terminal Habc domains of the ER SNAREs Sec20 (a Qb-SNARE) and Use1 (a Qc-SNARE). The observed binding modes appear to anchor the Dsl1 complex to the ER target membrane while simultaneously ensuring that both SNAREs are in open conformations, with their SNARE motifs available for assembly. The proximity of the two SNARE motifs, and therefore their ability to enter the same SNARE complex, will depend on the relative orientation of the two Dsl1 legs. These results underscore the critical roles of SNARE N-terminal domains in mediating interactions with other elements of the vesicle docking and fusion machinery.
Collapse
Affiliation(s)
- Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kevin DAmico
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - I-Mei Yu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Conor McMahon
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Safraz Hamid
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
26
|
Ganesan SJ, Feyder MJ, Chemmama IE, Fang F, Rout MP, Chait BT, Shi Y, Munson M, Sali A. Integrative structure and function of the yeast exocyst complex. Protein Sci 2020; 29:1486-1501. [PMID: 32239688 DOI: 10.1002/pro.3863] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
Exocyst is an evolutionarily conserved hetero-octameric tethering complex that plays a variety of roles in membrane trafficking, including exocytosis, endocytosis, autophagy, cell polarization, cytokinesis, pathogen invasion, and metastasis. Exocyst serves as a platform for interactions between the Rab, Rho, and Ral small GTPases, SNARE proteins, and Sec1/Munc18 regulators that coordinate spatial and temporal fidelity of membrane fusion. However, its mechanism is poorly described at the molecular level. Here, we determine the molecular architecture of the yeast exocyst complex by an integrative approach, based on a 3D density map from negative-stain electron microscopy (EM) at ~16 Å resolution, 434 disuccinimidyl suberate and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride cross-links from chemical-crosslinking mass spectrometry, and partial atomic models of the eight subunits. The integrative structure is validated by a previously determined cryo-EM structure, cross-links, and distances from in vivo fluorescence microscopy. Our subunit configuration is consistent with the cryo-EM structure, except for Sec5. While not observed in the cryo-EM map, the integrative model localizes the N-terminal half of Sec3 near the Sec6 subunit. Limited proteolysis experiments suggest that the conformation of Exo70 is dynamic, which may have functional implications for SNARE and membrane interactions. This study illustrates how integrative modeling based on varied low-resolution structural data can inform biologically relevant hypotheses, even in the absence of high-resolution data.
Collapse
Affiliation(s)
- Sai J Ganesan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Michael J Feyder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ilan E Chemmama
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Wang S, Crisman L, Miller J, Datta I, Gulbranson DR, Tian Y, Yin Q, Yu H, Shen J. Inducible Exoc7/Exo70 knockout reveals a critical role of the exocyst in insulin-regulated GLUT4 exocytosis. J Biol Chem 2019; 294:19988-19996. [PMID: 31740584 PMCID: PMC6937574 DOI: 10.1074/jbc.ra119.010821] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin promotes glucose uptake by triggering the translocation of glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane through exocytosis. GLUT4 exocytosis is a vesicle fusion event involving fusion of GLUT4-containing vesicles with the plasma membrane. For GLUT4 vesicle fusion to occur, GLUT4 vesicles must first be tethered to the plasma membrane. A key tethering factor in exocytosis is a heterooctameric protein complex called the exocyst. The role of the exocyst in GLUT4 exocytosis, however, remains incompletely understood. Here we first systematically analyzed data from a genome-scale CRISPR screen in HeLa cells that targeted virtually all known genes in the human genome, including 12 exocyst genes. The screen recovered only a subset of the exocyst genes, including exocyst complex component 7 (Exoc7/Exo70). Other exocyst genes, however, were not isolated in the screen, likely because of functional redundancy. Our findings suggest that selection of an appropriate exocyst gene is critical for genetic studies of exocyst functions. Next we developed an inducible adipocyte genome editing system that enabled Exoc7 gene deletion in adipocytes without interfering with adipocyte differentiation. We observed that insulin-stimulated GLUT4 exocytosis was markedly inhibited in Exoc7 KO adipocytes. Insulin signaling, however, remained intact in these KO cells. These results indicate that the exocyst plays a critical role in insulin-stimulated GLUT4 exocytosis in adipocytes. We propose that the strategy outlined in this work could be instrumental in genetically dissecting other membrane-trafficking pathways in adipocytes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lauren Crisman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Jessica Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Ishara Datta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Daniel R Gulbranson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
28
|
Nishida‐Fukuda H. The Exocyst: Dynamic Machine or Static Tethering Complex? Bioessays 2019; 41:e1900056. [DOI: 10.1002/bies.201900056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Hisayo Nishida‐Fukuda
- Department of Genome Editing, Institute of Biomedical ScienceKansai Medical University2‐5‐1 Shin‐machi, Hirakata Osaka 5731010 Japan
| |
Collapse
|
29
|
Tang H, de Keijzer J, Overdijk EJR, Sweep E, Steentjes M, Vermeer JEM, Janson ME, Ketelaar T. Exocyst subunit Sec6 is positioned by microtubule overlaps in the moss phragmoplast prior to cell plate membrane arrival. J Cell Sci 2019; 132:jcs222430. [PMID: 30635445 DOI: 10.1242/jcs.222430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
During plant cytokinesis a radially expanding membrane-enclosed cell plate is formed from fusing vesicles that compartmentalizes the cell in two. How fusion is spatially restricted to the site of cell plate formation is unknown. Aggregation of cell-plate membrane starts near regions of microtubule overlap within the bipolar phragmoplast apparatus of the moss Physcomitrella patens Since vesicle fusion generally requires coordination of vesicle tethering and subsequent fusion activity, we analyzed the subcellular localization of several subunits of the exocyst, a tethering complex active during plant cytokinesis. We found that the exocyst complex subunit Sec6 but not the Sec3 or Sec5 subunits localized to microtubule overlap regions in advance of cell plate construction in moss. Moreover, Sec6 exhibited a conserved physical interaction with an ortholog of the Sec1/Munc18 protein KEULE, an important regulator for cell-plate membrane vesicle fusion in Arabidopsis Recruitment of the P. patens protein KEULE and vesicles to the early cell plate was delayed upon Sec6 gene silencing. Our findings, thus, suggest that vesicle-vesicle fusion is, in part, enabled by a pool of exocyst subunits at microtubule overlaps, which is recruited independently of vesicle delivery.
Collapse
Affiliation(s)
- Han Tang
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Elysa J R Overdijk
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Els Sweep
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maikel Steentjes
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Marcel E Janson
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
30
|
Lepore DM, Martínez-Núñez L, Munson M. Exposing the Elusive Exocyst Structure. Trends Biochem Sci 2018; 43:714-725. [PMID: 30055895 PMCID: PMC6108956 DOI: 10.1016/j.tibs.2018.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/18/2018] [Accepted: 06/29/2018] [Indexed: 11/18/2022]
Abstract
A major challenge for a molecular understanding of membrane trafficking has been the elucidation of high-resolution structures of large, multisubunit tethering complexes that spatially and temporally control intracellular membrane fusion. Exocyst is a large hetero-octameric protein complex proposed to tether secretory vesicles at the plasma membrane to provide quality control of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion. Breakthroughs in methodologies, including sample preparation, biochemical characterization, fluorescence microscopy, and single-particle cryoelectron microscopy, are providing critical insights into the structure and function of the exocyst. These studies now pose more questions than answers for understanding fundamental functional mechanisms, and they open wide the door for future studies to elucidate interactions with protein and membrane partners, potential conformational changes, and molecular insights into tethering reactions.
Collapse
Affiliation(s)
- Dante M Lepore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Liu D, Li X, Shen D, Novick P. Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane. Mol Biol Cell 2018; 29:736-750. [PMID: 29343551 PMCID: PMC6003224 DOI: 10.1091/mbc.e17-08-0518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/18/2022] Open
Abstract
The exocyst is an octameric complex that tethers secretory vesicles to the plasma membrane in preparation for fusion. We anchored each subunit with a transmembrane (TM) domain at its N- or C-terminus. Only N-terminally anchored TM-Sec3p and C-terminally anchored Exo70p-TM proved functional. These findings orient the complex with respect to the membrane and establish that Sec3p and Exo70p can function exclusively on the membrane. The functions of TM-Sec3p and Exo70p-TM were largely unaffected by blocks in endocytic recycling, suggesting that they act on the plasma membrane rather than on secretory vesicles. Cytosolic pools of the other exocyst subunits were unaffected in TM-sec3 cells, while they were partially depleted in exo70-TM cells. Blocking actin-dependent delivery of secretory vesicles in act1-3 cells results in loss of Sec3p from the purified complex. Our results are consistent with a model in which Sec3p and Exo70p can function exclusively on the plasma membrane while the other subunits are brought to them on secretory vesicles.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92130
| | - Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92130
| | - David Shen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92130
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92130
| |
Collapse
|
32
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
33
|
The In Vivo Architecture of the Exocyst Provides Structural Basis for Exocytosis. Cell 2017; 168:400-412.e18. [PMID: 28129539 DOI: 10.1016/j.cell.2017.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 11/21/2022]
Abstract
The structural characterization of protein complexes in their native environment is challenging but crucial for understanding the mechanisms that mediate cellular processes. We developed an integrative approach to reconstruct the 3D architecture of protein complexes in vivo. We applied this approach to the exocyst, a hetero-octameric complex of unknown structure that is thought to tether secretory vesicles during exocytosis with a poorly understood mechanism. We engineered yeast cells to anchor the exocyst on defined landmarks and determined the position of its subunit termini at nanometer precision using fluorescence microscopy. We then integrated these positions with the structural properties of the subunits to reconstruct the exocyst together with a vesicle bound to it. The exocyst has an open hand conformation made of rod-shaped subunits that are interlaced in the core. The exocyst architecture explains how the complex can tether secretory vesicles, placing them in direct contact with the plasma membrane.
Collapse
|
34
|
Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V, Potocký M. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:1659-1675. [PMID: 28082718 PMCID: PMC5338673 DOI: 10.1104/pp.16.01709] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 05/05/2023]
Abstract
The vesicle-tethering complex exocyst is one of the crucial cell polarity regulators. The EXO70 subunit is required for the targeting of the complex and is represented by many isoforms in angiosperm plant cells. This diversity could be partly responsible for the establishment and maintenance of membrane domains with different composition. To address this hypothesis, we employed the growing pollen tube, a well-established cell polarity model system, and performed large-scale expression, localization, and functional analysis of tobacco (Nicotiana tabacum) EXO70 isoforms. Various isoforms localized to different regions of the pollen tube plasma membrane, apical vesicle-rich inverted cone region, nucleus, and cytoplasm. The overexpression of major pollen-expressed EXO70 isoforms resulted in growth arrest and characteristic phenotypic deviations of tip swelling and apical invaginations. NtEXO70A1a and NtEXO70B1 occupied two distinct and mutually exclusive plasma membrane domains. Both isoforms partly colocalized with the exocyst subunit NtSEC3a at the plasma membrane, possibly forming different exocyst complex subpopulations. NtEXO70A1a localized to the small area previously characterized as the site of exocytosis in the tobacco pollen tube, while NtEXO70B1 surprisingly colocalized with the zone of clathrin-mediated endocytosis. Both NtEXO70A1a and NtEXO70B1 colocalized to different degrees with markers for the anionic signaling phospholipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid. In contrast, members of the EXO70 C class, which are specifically expressed in tip-growing cells, exhibited exocytosis-related functional effects in pollen tubes despite the absence of apparent plasma membrane localization. Taken together, our data support the existence of multiple membrane-trafficking domains regulated by different EXO70-containing exocyst complexes within a single cell.
Collapse
Affiliation(s)
- Juraj Sekereš
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Jiří Šantrůček
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Nemanja Vukašinović
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Viktor Žárský
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.);
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| |
Collapse
|
35
|
Yue P, Zhang Y, Mei K, Wang S, Lesigang J, Zhu Y, Dong G, Guo W. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat Commun 2017; 8:14236. [PMID: 28112172 PMCID: PMC5267525 DOI: 10.1038/ncomms14236] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/12/2016] [Indexed: 01/04/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) constitute the core machinery for membrane fusion during eukaryotic cell vesicular trafficking. However, how the assembly of the SNARE complex is initiated is unknown. Here we report that Sec3, a component of the exocyst complex that mediates vesicle tethering during exocytosis, directly interacts with the t-SNARE protein Sso2. This interaction promotes the formation of an Sso2-Sec9 'binary' t-SNARE complex, the early rate-limiting step in SNARE complex assembly, and stimulates membrane fusion. The crystal structure of the Sec3-Sso2 complex suggests that Sec3 binding induces conformational changes of Sso2 that are crucial for the relief of its auto-inhibition. Interestingly, specific disruption of the Sec3-Sso2 interaction in cells blocks exocytosis without affecting the function of Sec3 in vesicle tethering. Our study reveals an activation mechanism for SNARE complex assembly, and uncovers a role of the exocyst in promoting membrane fusion in addition to vesicle tethering.
Collapse
Affiliation(s)
- Peng Yue
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yubo Zhang
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Kunrong Mei
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shaoxiao Wang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Johannes Lesigang
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Yueyao Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gang Dong
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Boehm CM, Obado S, Gadelha C, Kaupisch A, Manna PT, Gould GW, Munson M, Chait BT, Rout MP, Field MC. The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathog 2017; 13:e1006063. [PMID: 28114397 PMCID: PMC5256885 DOI: 10.1371/journal.ppat.1006063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
Membrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence. We directly determined the composition of the Trypanosoma brucei exocyst by affinity isolation and demonstrate that the parasite complex is nonameric, retaining all eight canonical subunits (albeit highly divergent at the sequence level) plus a novel essential subunit, Exo99. Exo99 and Sec15 knockdowns have remarkably similar phenotypes in terms of viability and impact on morphology and trafficking pathways. Significantly, both Sec15 and Exo99 have a clear function in endocytosis, and global proteomic analysis indicates an important role in maintaining the surface proteome. Taken together these data indicate additional exocyst functions in trypanosomes, which likely include endocytosis, recycling and control of surface composition. Knockdowns in HeLa cells suggest that the role in endocytosis is shared with metazoan cells. We conclude that, whilst the trypanosome exocyst has novel components, overall functionality appears conserved, and suggest that the unique subunit may provide therapeutic opportunities.
Collapse
Affiliation(s)
- Cordula M. Boehm
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Samson Obado
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexandra Kaupisch
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul T. Manna
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Gwyn W. Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Brian T. Chait
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Michael P. Rout
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Mark C. Field
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
37
|
Huisman R, Hontelez J, Mysore KS, Wen J, Bisseling T, Limpens E. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis. THE NEW PHYTOLOGIST 2016; 211:1338-51. [PMID: 27110912 DOI: 10.1111/nph.13973] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and rhizobium bacteria are accommodated in specialized membrane compartments that form a host-microbe interface. To better understand how these interfaces are made, we studied the regulation of exocytosis during interface formation. We used a phylogenetic approach to identify target soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (t-SNAREs) that are dedicated to symbiosis and used cell-specific expression analysis together with protein localization to identify t-SNAREs that are present on the host-microbe interface in Medicago truncatula. We investigated the role of these t-SNAREs during the formation of a host-microbe interface. We showed that multiple syntaxins are present on the peri-arbuscular membrane. From these, we identified SYNTAXIN OF PLANTS 13II (SYP13II) as a t-SNARE that is essential for the formation of a stable symbiotic interface in both AM and rhizobium symbiosis. In most dicot plants, the SYP13II transcript is alternatively spliced, resulting in two isoforms, SYP13IIα and SYP13IIβ. These splice-forms differentially mark functional and degrading arbuscule branches. Our results show that vesicle traffic to the symbiotic interface is specialized and required for its maintenance. Alternative splicing of SYP13II allows plants to replace a t-SNARE involved in traffic to the plasma membrane with a t-SNARE that is more stringent in its localization to functional arbuscules.
Collapse
Affiliation(s)
- Rik Huisman
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Jan Hontelez
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Kirankumar S Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Erik Limpens
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| |
Collapse
|
38
|
Fontaine SN, Zheng D, Sabbagh JJ, Martin MD, Chaput D, Darling A, Trotter JH, Stothert AR, Nordhues BA, Lussier A, Baker J, Shelton L, Kahn M, Blair LJ, Stevens SM, Dickey CA. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 2016; 35:1537-49. [PMID: 27261198 PMCID: PMC4946142 DOI: 10.15252/embj.201593489] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022] Open
Abstract
It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dali Zheng
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jonathan J Sabbagh
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Mackenzie D Martin
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - April Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Justin H Trotter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Andrew R Stothert
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Bryce A Nordhues
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - April Lussier
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jeremy Baker
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Lindsey Shelton
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Mahnoor Kahn
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Laura J Blair
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Stanley M Stevens
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - Chad A Dickey
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| |
Collapse
|
39
|
Abstract
Intracellular membrane fusion is mediated in most cases by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). However, the assembly of such complexes in vitro is inefficient, and their uncatalysed disassembly is undetectably slow. Here, we focus on the cellular machinery that orchestrates assembly and disassembly of SNARE complexes, thereby regulating processes ranging from vesicle trafficking to organelle fusion to neurotransmitter release. Rapid progress is being made on many fronts, including the development of more realistic cell-free reconstitutions, the application of single-molecule biophysics, and the elucidation of X-ray and high-resolution electron microscopy structures of the SNARE assembly and disassembly machineries 'in action'.
Collapse
Affiliation(s)
- Richard W Baker
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Present address: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
40
|
Inamdar SM, Hsu SC, Yeaman C. Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies. Front Cell Dev Biol 2016; 4:51. [PMID: 27376061 PMCID: PMC4891948 DOI: 10.3389/fcell.2016.00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA
| | - Shu-Chan Hsu
- Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| | - Charles Yeaman
- Molecular and Cellular Biology Program, University of IowaIowa City, IA, USA; Department of Anatomy and Cell Biology, University of IowaIowa City, IA, USA
| |
Collapse
|
41
|
Dubuke ML, Munson M. The Secret Life of Tethers: The Role of Tethering Factors in SNARE Complex Regulation. Front Cell Dev Biol 2016; 4:42. [PMID: 27243006 PMCID: PMC4860414 DOI: 10.3389/fcell.2016.00042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/25/2016] [Indexed: 02/03/2023] Open
Abstract
Trafficking in eukaryotic cells is a tightly regulated process to ensure correct cargo delivery to the proper destination organelle or plasma membrane. In this review, we focus on how the vesicle fusion machinery, the SNARE complex, is regulated by the interplay of the multisubunit tethering complexes (MTC) with the SNAREs and Sec1/Munc18 (SM) proteins. Although these factors are used in different stages of membrane trafficking, e.g., Golgi to plasma membrane transport vs. vacuolar fusion, and in a variety of diverse eukaryotic cell types, many commonalities between their functions are being revealed. We explore the various protein-protein interactions and findings from functional reconstitution studies in order to highlight both their common features and the differences in their modes of regulation. These studies serve as a starting point for mechanistic explorations in other systems.
Collapse
Affiliation(s)
- Michelle L Dubuke
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, MA USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, MA USA
| |
Collapse
|
42
|
Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Curr Opin Chem Biol 2015; 29:66-71. [PMID: 26498108 DOI: 10.1016/j.cbpa.2015.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022]
Abstract
Membrane fusion is a tightly controlled process in all eukaryotic cell types. The SNARE family of proteins is required for fusion throughout the exocytic and endocytic trafficking pathways. SNAREs on a transport vesicle interact with the cognate SNAREs on the target membrane, forming an incredibly stable SNARE complex that provides energy for the membranes to fuse, although many aspects of the mechanism remain elusive. Recent advances in single-molecule and high-resolution structural methods provide exciting new insights into how SNARE complexes assemble, including measurements of assembly energetics and identification of intermediates in the assembly pathway. These techniques were also key in elucidating mechanistic details into how the SNARE complex is disassembled, including details of the energetics required for ATP-dependent α-SNAP/NSF-mediated SNARE complex disassembly, and the structural changes that accompany ATP hydrolysis by the disassembly machinery. Additionally, SNARE complex formation and disassembly are tightly regulated processes; innovative biochemical and biophysical characterization has deepened our understanding of how these regulators work to control membrane fusion and exocytosis.
Collapse
|