1
|
Chunthorng-Orn J, Noureddine M, Dawson PWJ, Lord SO, Ng J, Boyton L, Gehmlich K, Mohammed F, Lai YC. HCM-Associated MuRF1 Variants Compromise Ubiquitylation and Are Predicted to Alter Protein Structure. Int J Mol Sci 2025; 26:3921. [PMID: 40332812 PMCID: PMC12027535 DOI: 10.3390/ijms26083921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
MuRF1 [muscle RING (Really Interesting New Gene)-finger protein-1] is an ubiquitin-protein ligase (E3), which encode by TRIM63 (tripartite motif containing 63) gene, playing a crucial role in regulating cardiac muscle size and function through ubiquitylation. Among hypertrophic cardiomyopathy (HCM) patients, 24 TRIM63 variants have been identified, with 1 additional variant linked to restrictive cardiomyopathy. However, only three variants have been previously investigated for their functional effects. The structural impacts of the 25 variants remain unexplored. This study investigated the effects of 25 MuRF1 variants on ubiquitylation activity using in vitro ubiquitylation assays and structural predictions using computational approaches. The variants were generated using site-directed PCR (Polymerase Chain Reaction) mutagenesis and subsequently purified with amylose affinity chromatography. In vitro ubiquitylation assays demonstrated that all 25 variants compromised the ability of MuRF1 to monoubiquitylate a titin fragment (A168-A170), while 17 variants significantly impaired or completely abolished auto-monoubiquitylation. Structural modelling predicted that 10 MuRF1 variants disrupted zinc binding or key stabilising interactions, compromising structural integrity. In contrast, three variants were predicted to enhance the structural stability of MuRF1, while six others were predicted to have no discernible impact on the structure. This study underscores the importance of functional assays and structural predictions in evaluating MuRF1 variant pathogenicity and provides novel insights into mechanisms by which these variants contribute to HCM and related cardiomyopathies.
Collapse
Affiliation(s)
- Jitpisute Chunthorng-Orn
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, University of Thammasat, Pathumthani 12120, Thailand
| | - Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (M.N.); or (K.G.)
| | - Peter W. J. Dawson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
| | - Samuel O. Lord
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK;
| | - Jimi Ng
- Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Luke Boyton
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (M.N.); or (K.G.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Yu-Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Burton J, Rounge TB, Haugen TB, Wojewodzic MW. Networks of pre-diagnostic circulating RNA in testicular germ cell tumour. Sci Rep 2025; 15:1910. [PMID: 39809819 PMCID: PMC11733264 DOI: 10.1038/s41598-024-84484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Testicular germ cell tumour (TGCT) is a malignancy with known inherited risk factors, affecting young men. We have previously identified several hundred differentially abundant circulating RNAs in pre-diagnostic serum from TGCT cases compared to healthy controls. In this study, we performed Weighted Gene Co-expression Network Analysis (WGCNA) on mRNA and miRNA data from these samples. Central genes (hub genes) enriched functional pathways, and regulatory feature prediction were identified for all TGCT subtypes together and according to histology. The TGCT susceptibility genes TEX14, NARS2, and G3BP2, were identified as hub genes in both seminoma and non-seminoma networks. We also identified UBCA1, RCC1, FMR1, OAS3, and UBE2W as hub genes associated with TGCT. The genes OAS3 and UBE2W have previously been associated with testicular dysgenesis. Furthermore, network module analysis indicated transcription factors for oestrogen-related receptors to have a potential role during development of TGCT. The overlap between mRNA network hub genes and TGCT susceptibility genes indicates a common role in TGCT development.
Collapse
Affiliation(s)
- Joshua Burton
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Trine B Rounge
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Trine B Haugen
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Marcin W Wojewodzic
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
4
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Gingerich MA, Liu X, Chai B, Pearson GL, Vincent MP, Stromer T, Zhu J, Sidarala V, Renberg A, Sahu D, Klionsky DJ, Schnell S, Soleimanpour SA. An intrinsically disordered protein region encoded by the human disease gene CLEC16A regulates mitophagy. Autophagy 2023; 19:525-543. [PMID: 35604110 PMCID: PMC9851259 DOI: 10.1080/15548627.2022.2080383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CLEC16A regulates mitochondrial health through mitophagy and is associated with over 20 human diseases. However, the key structural and functional regions of CLEC16A, and their relevance for human disease, remain unknown. Here, we report that a disease-associated CLEC16A variant lacks a C-terminal intrinsically disordered protein region (IDPR) that is critical for mitochondrial quality control. IDPRs comprise nearly half of the human proteome, yet their mechanistic roles in human disease are poorly understood. Using carbon detect NMR, we find that the CLEC16A C terminus lacks secondary structure, validating the presence of an IDPR. Loss of the CLEC16A C-terminal IDPR in vivo impairs mitophagy, mitochondrial function, and glucose-stimulated insulin secretion, ultimately causing glucose intolerance. Deletion of the CLEC16A C-terminal IDPR increases CLEC16A ubiquitination and degradation, thus impairing assembly of the mitophagy regulatory machinery. Importantly, CLEC16A stability is dependent on proline bias within the C-terminal IDPR, but not amino acid sequence order or charge. Together, we elucidate how an IDPR in CLEC16A regulates mitophagy and implicate pathogenic human gene variants that disrupt IDPRs as novel contributors to diabetes and other CLEC16A-associated diseases.Abbreviations : CAS: carbon-detect amino-acid specific; IDPR: intrinsically disordered protein region; MEFs: mouse embryonic fibroblasts; NMR: nuclear magnetic resonance.
Collapse
Affiliation(s)
- Morgan A. Gingerich
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xueying Liu
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA,Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biaoxin Chai
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Gemma L. Pearson
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Michael P. Vincent
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tracy Stromer
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Jie Zhu
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sidarala
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Renberg
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Debashish Sahu
- BioNMR Core Facility, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Santiago Schnell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Scott A. Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA,Medicine Service, Endocrinology and Metabolism Section, VA Ann Arbor Health Care System, Ann Arbor, MI, USA,CONTACT Scott A. Soleimanpour Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Wall Street, Brehm Tower Room, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Yi S, Kim SY, Vincent MP, Yuk SA, Bobbala S, Du F, Scott EA. Dendritic peptide-conjugated polymeric nanovectors for non-toxic delivery of plasmid DNA and enhanced non-viral transfection of immune cells. iScience 2022; 25:104555. [PMID: 35769884 PMCID: PMC9234717 DOI: 10.1016/j.isci.2022.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 10/26/2022] Open
Abstract
Plasmid DNA (pDNA) transfection is advantageous for gene therapies requiring larger genetic elements, including "all-in-one" CRISPR/Cas9 plasmids, but is limited by toxicity as well as poor intracellular release and transfection efficiency in immune cell populations. Here, we developed a synthetic non-viral gene delivery platform composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers linked to a cationic dendritic peptide (DP) via a reduceable bond, PEG-b-PPS-ss-DP (PPDP). A library of self-assembling PPDP polymers was synthesized and screened to identify optimal constructs capable of transfecting macrophages with small (pCMV-DsRed, 4.6 kb) and large (pL-CRISPR.EFS.tRFP, 11.7 kb) plasmids. The optimized PPDP construct transfected macrophages, fibroblasts, dendritic cells, and T cells more efficiently and with less toxicity than a commercial Lipo2K reagent, regardless of pDNA size and under standard culture conditions in the presence of serum. The PPDP technology described herein is a stimuli-responsive polymeric nanovector that can be leveraged to meet diverse challenges in gene delivery.
Collapse
Affiliation(s)
- Sijia Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sun-Young Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Michael P. Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Simseok A. Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Evan Alexander Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Umano A, Fang K, Qu Z, Scaglione JB, Altinok S, Treadway CJ, Wick ET, Paulakonis E, Karunanayake C, Chou S, Bardakjian TM, Gonzalez-Alegre P, Page RC, Schisler JC, Brown NG, Yan D, Scaglione KM. The molecular basis of spinocerebellar ataxia type 48 caused by a de novo mutation in the ubiquitin ligase CHIP. J Biol Chem 2022; 298:101899. [PMID: 35398354 PMCID: PMC9097460 DOI: 10.1016/j.jbc.2022.101899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a class of incurable diseases characterized by degeneration of the cerebellum that results in movement disorder. Recently, a new heritable form of SCA, spinocerebellar ataxia type 48 (SCA48), was attributed to dominant mutations in STIP1 homology and U box-containing 1 (STUB1); however, little is known about how these mutations cause SCA48. STUB1 encodes for the protein C terminus of Hsc70 interacting protein (CHIP), an E3 ubiquitin ligase. CHIP is known to regulate proteostasis by recruiting chaperones via a N-terminal tetratricopeptide repeat domain and recruiting E2 ubiquitin-conjugating enzymes via a C-terminal U-box domain. These interactions allow CHIP to mediate the ubiquitination of chaperone-bound, misfolded proteins to promote their degradation via the proteasome. Here we have identified a novel, de novo mutation in STUB1 in a patient with SCA48 encoding for an A52G point mutation in the tetratricopeptide repeat domain of CHIP. Utilizing an array of biophysical, biochemical, and cellular assays, we demonstrate that the CHIPA52G point mutant retains E3-ligase activity but has decreased affinity for chaperones. We further show that this mutant decreases cellular fitness in response to certain cellular stressors and induces neurodegeneration in a transgenic Caenorhabditis elegans model of SCA48. Together, our data identify the A52G mutant as a cause of SCA48 and provide molecular insight into how mutations in STUB1 cause SCA48.
Collapse
Affiliation(s)
- A Umano
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K Fang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Z Qu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - J B Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - S Altinok
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - C J Treadway
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E T Wick
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E Paulakonis
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - C Karunanayake
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - S Chou
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T M Bardakjian
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - P Gonzalez-Alegre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - R C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - J C Schisler
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - N G Brown
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - D Yan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K M Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA; Department of Neurology, Duke University, Durham, North Carolina, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
8
|
Taillandier D. [Metabolic pathways controlled by E3 ligases: an opportunity for therapeutic targeting]. Biol Aujourdhui 2021; 215:45-57. [PMID: 34397374 DOI: 10.1051/jbio/2021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/14/2022]
Abstract
Since its discovery, the Ubiquitin Proteasome System (UPS) has been recognized for its major role in controlling most of the cell's metabolic pathways. In addition to its essential role in the degradation of proteins, it is also involved in the addressing, signaling or repair of DNA, which makes it a key player in cellular homeostasis. Although other control systems exist in the cell, the UPS is often referred to as the conductor. In view of its importance, any dysregulation of the UPS leads to more or less severe disorders for the cell and therefore the body, which accounts for UPS implication in many pathologies (cancer, Alzheimer's disease, Huntington's disease, etc.). UPS is made up of more than 1000 different proteins, the combinations of which allow the fine targeting of virtually all proteins in the body. UPS uses an enzymatic cascade (E1, 2 members; E2 > 35; E3 > 800) which allows the transfer of ubiquitin, a small protein of 8.5 kDa onto the protein to be targeted either for its degradation or to modify its activity. This ubiquitinylation signal is reversible and many deubiquitinylases (DUB, ∼ 80 isoforms) also have an important role. E3 enzymes are the most numerous and their function is to recognize the target protein, which makes them important players in the specific action of UPS. The very nature of E3 and the complexity of their interactions with different partners offer a very broad field of investigation and therefore significant potential for the development of therapeutic approaches. Without being exhaustive, this review illustrates the different strategies that have already been implemented to fight against different pathologies (excluding bacterial or viral infections).
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, 63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021; 9:719590. [PMID: 34395449 PMCID: PMC8358657 DOI: 10.3389/fcell.2021.719590] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.
Collapse
Affiliation(s)
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci 2021; 22:ijms22157912. [PMID: 34360678 PMCID: PMC8348711 DOI: 10.3390/ijms22157912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid–liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.
Collapse
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA;
| | - Victoria L. Robinson
- Department of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA;
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
- Correspondence: ; Tel.: +1-860-486-3053
| |
Collapse
|
11
|
Li B, Yang J, He J, Peng X, Zeng Q, Song Y, Xu K, Ma H. Characterization of the whole transcriptome of spleens from Chinese indigenous breed Ningxiang pig reveals diverse coding and non-coding RNAs for immunity regulation. Genomics 2021; 113:2468-2482. [PMID: 34062231 DOI: 10.1016/j.ygeno.2021.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The spatio-temporal expression patterns of RNA and comparisons between different developmental stages have been one of the useful techniques for studying animal physiology and functional gene regulations. A Chinese indigenous breed Ningxiang pig is known for its quality meat production, disease resistance and slow growth performances in pig industry. To gain a better understanding of pig immunity and disease resistance, we comprehensively analyzed the whole transcriptome of the spleens from three important developmental nodes of Ningxiang pig at 30, 90 and 210 days of age. By three ways of comparisons (30vs 90 days, 30 vs 210 days and 90 vs 210 days), a total of 364to 865 differentially expressed mRNAs, 37 to 98 differentially expressed miRNAs,220 to 278 lncRNAs, and 96 to 113 circRNAs were identified. Further analysis of expression patterns, potential function and interactions with miRNAs identified the potential non-coding RNAs related to immunomodulation such as ssc-miRNA-150, ssc-miRNA-497, MSTRG24160, MSTRG18646. The results revealed that miRNAs and circRNAs may have evolved to regulate a large set of biological processes of spleen function in Ningxiang pigs, and circRNAs play a role of miRNA sponges. The results from study is the first report of whole transcriptome analysis of Ningxiang pig spleen and provide new insights into the expression changes of RNAs during the spleen development, which contribute to the phenotypic formation of immunity and disease resistancesin Chinese indigenous pig breeds.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Sciences, Hunan Agricultural University, Changsha, Hunan, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA(.)
| | - Jun He
- College of Animal Sciences, Hunan Agricultural University, Changsha, Hunan, China.
| | - Xing Peng
- College of Animal Sciences, Hunan Agricultural University, Changsha, Hunan, China
| | - Qinghua Zeng
- College of Animal Sciences, Hunan Agricultural University, Changsha, Hunan, China; Ningxiang pig farm of Dalong Livestock Technology Co. Ltd., Ningxiang, Hunan 410600, China
| | - Yukun Song
- College of Animal Sciences, Hunan Agricultural University, Changsha, Hunan, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process of the State Key Laboratory of Agro ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Haiming Ma
- College of Animal Sciences, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
12
|
Lei B, Xie L, Zhang S, Lv D, Shu F, Deng Y. UBE2W down-regulation promotes cell apoptosis and correlates with hypospermatogenesis. Andrologia 2019; 52:e13474. [PMID: 31710394 DOI: 10.1111/and.13474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023] Open
Abstract
Ubiquitin conjugating enzyme (E2) is crucial for mediating N-terminal ubiquitination. Recent study reports that UBE2W is involved in male infertility. However, the correlation between UBE2W expression and hypospermatogenesis is unclear. The present study is to explore the biological role of UBE2W and its association with hypospermatogenesis. Results showed that the sexpression levels of UBE2W in mouse testes were gradually elevated from 2 to 10 weeks, while were significantly deceased in the testes with hypospermatogenesis. When UBE2W expression was successfully down-regulated in spermatogenic cells, the rate of apoptosis was significantly increased and the P53/Bcl-2/caspase 6/caspase 9 signal pathways were activated. Thus, these data indicate that UBE2W down-regulation promotes cell apoptosis and correlates with hypospermatogenesis, which may be helpful for the diagnosis of male infertility.
Collapse
Affiliation(s)
- Bin Lei
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lixia Xie
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shoubo Zhang
- Center for Reproductive Medicine, Guangdong Armed Police Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daojun Lv
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fangpeng Shu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yushu Deng
- Hospital of Integrated Traditional Chinese Medicine & Western medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Abstract
Many receptor tyrosine kinases (RTKs, such as EGFR, MET) are negatively regulated by ubiquitination and degradation mediated by Cbl proteins, a family of RING finger (RF) ubiquitin ligases (E3s). Loss of Cbl protein function is associated with malignant transformation driven by increased RTK activity. RF E3s, such as the Cbl proteins, interact with a ubiquitin-conjugating enzyme (E2) to confer specificity to the ubiquitination process and direct the transfer of ubiquitin from the E2 to one or more lysines on the target proteins. Using in vitro E3 assays and yeast two-hybrid screens, we found that Ube2d, Ube2e families, Ube2n/2v1, and Ube2w catalyze autoubiquitination of the Cbl protein and Ube2d2, Ube2e1, and Ube 2n/2v1 catalyze Cbl-mediated substrate ubiquitination of the EGFR and SYK. Phosphorylation of the Cbl protein by by Src resulted in increased E3 activity compared to unphosphorylated cbl or Cbl containing a phosphomimetic Y371E mutation. Ubiquitin chain formation depended on the E2 tested with Cbl with Ube2d2 forming both K48 and K63 linked chains, Ube2n/2v1 forming only K63 linked chains, and Ube2w inducing monoubiquitination. In cells, the Ube2d family, Ube2e family, and Ube2n/2v1 contributed to EGFR ubiquitination. Our data suggest that multiple E2s can interact with Cbl and modulate its E3 activity in vitro and in cells.
Collapse
|
14
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
15
|
Vincent M, Uversky VN, Schnell S. On the Need to Develop Guidelines for Characterizing and Reporting Intrinsic Disorder in Proteins. Proteomics 2019; 19:e1800415. [PMID: 30793871 PMCID: PMC6571172 DOI: 10.1002/pmic.201800415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Since the early 2000s, numerous computational tools have been created and used to predict intrinsic disorder in proteins. At present, the output from these algorithms is difficult to interpret in the absence of standards or references for comparison. There are many reasons to establish a set of standard-based guidelines to evaluate computational protein disorder predictions. This viewpoint explores a handful of these reasons, including standardizing nomenclature to improve communication, rigor and reproducibility, and making it easier for newcomers to enter the field. An approach for reporting predicted disorder in single proteins with respect to whole proteomes is discussed. The suggestions are not intended to be formulaic; they should be viewed as a starting point to establish guidelines for interpreting and reporting computational protein disorder predictions.
Collapse
Affiliation(s)
- Michael Vincent
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Moscow region, Russia
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Michigan 48109, USA
| |
Collapse
|
16
|
Fletcher AJ, Vaysburd M, Maslen S, Zeng J, Skehel JM, Towers GJ, James LC. Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling. Cell Host Microbe 2018; 24:761-775.e6. [PMID: 30503508 PMCID: PMC6299210 DOI: 10.1016/j.chom.2018.10.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/31/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
Abstract
TRIM5 is a RING domain E3 ubiquitin ligase with potent antiretroviral function. TRIM5 assembles into a hexagonal lattice on retroviral capsids, causing envelopment of the infectious core. Concomitantly, TRIM5 initiates innate immune signaling and orchestrates disassembly of the viral particle, yet how these antiviral responses are regulated by capsid recognition is unclear. We show that hexagonal assembly triggers N-terminal polyubiquitination of TRIM5 that collectively drives antiviral responses. In uninfected cells, N-terminal monoubiquitination triggers non-productive TRIM5 turnover. Upon TRIM5 assembly on virus, a trivalent RING arrangement allows elongation of N-terminally anchored K63-linked ubiquitin chains (N-K63-Ub). N-K63-Ub drives TRIM5 innate immune stimulation and proteasomal degradation. Inducing ubiquitination before TRIM5 assembly triggers premature degradation and ablates antiviral restriction. Conversely, driving N-K63 ubiquitination after TRIM5 assembly enhances innate immune signaling. Thus, the hexagonal geometry of TRIM5's antiviral lattice converts a capsid-binding protein into a multifunctional antiviral platform.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jingwei Zeng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Greg J Towers
- Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
17
|
Wang B, Zeng L, Merillat SA, Fischer S, Ochaba J, Thompson LM, Barmada SJ, Scaglione KM, Paulson HL. The ubiquitin conjugating enzyme Ube2W regulates solubility of the Huntington's disease protein, huntingtin. Neurobiol Dis 2017; 109:127-136. [PMID: 28986324 DOI: 10.1016/j.nbd.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion that encodes a polyglutamine (polyQ) expansion in the HD disease protein, huntingtin (HTT). PolyQ expansion promotes misfolding and aggregation of mutant HTT (mHTT) within neurons. The cellular pathways, including ubiquitin-dependent processes, by which mHTT is regulated remain incompletely understood. Ube2W is the only ubiquitin conjugating enzyme (E2) known to ubiquitinate substrates at their amino (N)-termini, likely favoring substrates with disordered N-termini. By virtue of its N-terminal polyQ domain, HTT has an intrinsically disordered amino terminus. In studies employing immortalized cells, primary neurons and a knock-in (KI) mouse model of HD, we tested the effect of Ube2W deficiency on mHTT levels, aggregation and neurotoxicity. In cultured cells, deficiency of Ube2W activity markedly decreases mHTT aggregate formation and increases the level of soluble monomers, while reducing mHTT-induced cytotoxicity. Consistent with this result, the absence of Ube2W in HdhQ200 KI mice significantly increases levels of soluble monomeric mHTT while reducing insoluble oligomeric species. This study sheds light on the potential function of the non-canonical ubiquitin-conjugating enzyme, Ube2W, in this polyQ neurodegenerative disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zeng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, Sichuan Provincial Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Sean A Merillat
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenneth M Scaglione
- Neuroscience Research Center and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J 2017; 473:3401-3419. [PMID: 27729585 PMCID: PMC5095918 DOI: 10.1042/bcj20160028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase. Many disease states are associated with dysfunction of ubiquitin signalling, with the E3s being a particular focus. However, recent evidence demonstrates that mutations or impairment of the E2s can lead to severe disease states, including chromosome instability syndromes, cancer predisposition, and immunological disorders. Given their relevance to diseases, E2s may represent an important class of therapeutic targets. In the present study, we review the current understanding of the mechanism of this important family of enzymes, and the role of selected E2s in disease.
Collapse
|
19
|
Vincent M, Schnell S. A collection of intrinsic disorder characterizations from eukaryotic proteomes. Sci Data 2016; 3:160045. [PMID: 27326998 PMCID: PMC4915274 DOI: 10.1038/sdata.2016.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Intrinsically disordered proteins and protein regions lack a stable three-dimensional structure under physiological conditions. Several proteomic investigations of intrinsic disorder have been performed to date and have found disorder to be prevalent in eukaryotic proteomes. Here we present descriptive statistics of intrinsic disorder features for ten model eukaryotic proteomes that have been calculated from computational disorder prediction algorithms. The data descriptor also provides consensus disorder annotations as well as additional physical parameters relevant to protein disorder, and further provides protein existence information for all proteins included in our analysis. The complete datasets can be downloaded freely, and it is envisaged that they will be updated periodically with new proteomes and protein disorder prediction algorithms. These datasets will be especially useful for assessing protein disorder, and conducting novel analyses that advance our understanding of intrinsic disorder and protein structure.
Collapse
Affiliation(s)
- Michael Vincent
- Department of Molecular &Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | - Santiago Schnell
- Department of Molecular &Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.,Department of Computational Medicine &Bioinformatics, University of Michigan Medical School, Michigan 48109-2218, USA.,Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105-1912, USA
| |
Collapse
|
20
|
Maure JF, Moser SC, Jaffray EG, F. Alpi A, Hay RT. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Sci Rep 2016; 6:26178. [PMID: 27185577 PMCID: PMC4868978 DOI: 10.1038/srep26178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways.
Collapse
Affiliation(s)
- Jean-François Maure
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Sandra C. Moser
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Ellis G. Jaffray
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Arno F. Alpi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| |
Collapse
|
21
|
Vincent M, Whidden M, Schnell S. Quantitative proteome-based guidelines for intrinsic disorder characterization. Biophys Chem 2016; 213:6-16. [PMID: 27085142 DOI: 10.1016/j.bpc.2016.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered proteins fail to adopt a stable three-dimensional structure under physiological conditions. It is now understood that many disordered proteins are not dysfunctional, but instead engage in numerous cellular processes, including signaling and regulation. Disorder characterization from amino acid sequence relies on computational disorder prediction algorithms. While numerous large-scale investigations of disorder have been performed using these algorithms, and have offered valuable insight regarding the prevalence of protein disorder in many organisms, critical proteome-based descriptive statistical guidelines that would enable the objective assessment of intrinsic disorder in a protein of interest remain to be established. Here we present a quantitative characterization of numerous disorder features using a rigorous non-parametric statistical approach, providing expected values and percentile cutoffs for each feature in ten eukaryotic proteomes. Our estimates utilize multiple ab initio disorder prediction algorithms grounded on physicochemical principles. Furthermore, we present novel threshold values, specific to both the prediction algorithms and the proteomes, defining the longest primary sequence length in which the significance of a continuous disordered region can be evaluated on the basis of length alone. The guidelines presented here are intended to improve the interpretation of disorder content and continuous disorder predictions from the proteomic point of view.
Collapse
Affiliation(s)
- Michael Vincent
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Whidden
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, MI, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|