1
|
Zhang W, Zhang Y, Mao W, Huang T, Yu X, Qin X, Mi LZ. Unprocessed BMP9 precursor is an intrinsic antagonist for its active growth factor. Structure 2025:S0969-2126(25)00177-7. [PMID: 40412377 DOI: 10.1016/j.str.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
BMP9, a member of the TGFβ superfamily, plays a crucial role in angiogenesis, tissue development, and innate immunity. Dysregulation of BMP9 signaling is implicated in various diseases. Unlike latent TGFβs, BMP9 is produced as a precursor that is processed into an active pro-protein complex. However, the regulatory mechanisms governing the precursor's activity and its biological functions have been largely unexplored. In this study, we demonstrate that the unprocessed BMP9 precursor acts as an intrinsic antagonist to its pro-protein in angiogenesis and osteogenesis. This inhibition occurs through competitive binding to the receptors ENG and ALK1. We also identify structural requirements for the precursor's recognition by these receptors. Our findings reveal previously underappreciated functions of the BMP9 precursor and its regulatory mechanisms in growth factor signaling, with significant implications for developmental biology and clinical interventions.
Collapse
Affiliation(s)
- Weida Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yuanyuan Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Weidong Mao
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Tao Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Xinrong Yu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Xiaohong Qin
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, P.R. China.
| | - Li-Zhi Mi
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, P.R. China.
| |
Collapse
|
2
|
Schwartze TA, Morosky SA, Rosato TL, Henrickson A, Lin G, Hinck CS, Taylor AB, Olsen SK, Calero G, Demeler B, Roman BL, Hinck AP. Molecular Basis of Interchain Disulfide Bond Formation in BMP-9 and BMP-10. J Mol Biol 2025; 437:168935. [PMID: 39793884 DOI: 10.1016/j.jmb.2025.168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin. It has been demonstrated that BMP-9/10 heterodimers are the most abundant signaling species in the blood, but it is unclear how they form. Unlike other ligands of the TGF-β family, BMP-9 and -10 are secreted as a mixture of disulfide-linked dimers and monomers, in which the interchain cysteine (Cys-392) remains either paired or unpaired. Here, we show that the monomers are secreted in a cysteinylated form that crystallizes as a non-covalent dimer. Despite this, monomers do not self-associate at micromolar or lower concentrations and have reduced signaling potency compared to disulfide-linked dimers. We further show using protein crystallography that the interchain disulfide of the BMP-9 homodimer adopts a highly strained syn-periplanar conformation. Hence, geometric strain across the interchain disulfide is responsible for infrequent interchain disulfide bond formation, not the cysteinylation. Additionally, we show that interchain disulfide bond formation occurs less in BMP-9 than BMP-10 and these frequencies can be reversed by swapping residues near the interchain disulfide that form attractive interactions with the opposing protomer. Finally, we discuss the implications of these observations on BMP-9/10 heterodimer formation.
Collapse
Affiliation(s)
- Tristin A Schwartze
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stefanie A Morosky
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Teresa L Rosato
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Guowu Lin
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cynthia S Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Guillermo Calero
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Beth L Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew P Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Spanou CES, Yang C, Godwin ARF, Morosky S, Anbalagan A, Lütke S, Mörgelin M, Marcous F, Aziz U, Wohl AP, Jabeen I, Koch M, Jowitt TA, Roman BL, Tarakanova A, Baldock C, Sengle G. Prodomain processing controls BMP-10 bioactivity and targeting to fibrillin-1 in latent conformation. FASEB J 2025; 39:e70373. [PMID: 39921464 PMCID: PMC11806408 DOI: 10.1096/fj.202401694r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Bone morphogenetic protein 10 (BMP-10) is crucial for endothelial cell signaling via activin receptor-like kinase 1 (ALK1), a pathway central to vascular homeostasis and angiogenesis. Dysregulated BMP-10 signaling contributes to cardiovascular diseases and cancer, highlighting the need to control ALK1-mediated endothelial responses to BMP-10 for therapeutic development. BMP-10 biosynthesis involves processing by proprotein convertases (PPCs) resulting in a non-covalently associated prodomain-growth factor (PD-GF) complex (CPLX), similar to other TGF-β superfamily ligands. However, the molecular requirements for BMP-10 bioactivity remain unclear. We investigated how PPC processing impacts BMP-10 structure, bioactivity, and its interaction with the extracellular matrix (ECM) protein fibrillin-1. Molecular dynamics simulations post-in silico cleavage of the BMP-10 dimer model as well as negative staining and transmission electron microscopy (TEM) revealed that PD processing increases BMP-10 flexibility converting it from a latent wide-angle conformation to a bioactive CPLX which can adopt a V-shape with tighter angle. Only processed BMP-10 demonstrated high potency in HUVEC and C2C12 cells and robust binding to immobilized BMP receptors. Circular dichroism and interaction studies revealed that the N-terminal region of the BMP-10 PD is rich in alpha-helical content, which is essential for efficient complexation with the BMP-10 GF. Binding studies and TEM analyses showed that only the processed BMP-10 CPLX interacts with the N-terminal region of fibrillin-1, causing a conformational change that renders it into a closed ring-shaped conformation. These findings suggest that PD processing induces specific folding events at the PD-GF interface, which is critical for BMP-10 bioactivity and its targeting to the ECM.
Collapse
Affiliation(s)
- Chara E. S. Spanou
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Biochemistry, Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Chengeng Yang
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticutUSA
| | - Alan R. F. Godwin
- Wellcome Centre for Cell‐Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Stefanie Morosky
- Department of Human Genetics, School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Arulselvi Anbalagan
- Department of Human Genetics, School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Steffen Lütke
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Biochemistry, Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical SciencesLund UniversityLundSweden
- Colzyx ABLundSweden
| | - Fady Marcous
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Biochemistry, Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Ubair Aziz
- School of Interdisciplinary Engineering and SciencesNational University of Science and TechnologyIslamabadPakistan
| | - Alexander P. Wohl
- Center for Biochemistry, Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and SciencesNational University of Science and TechnologyIslamabadPakistan
| | - Manuel Koch
- Center for Biochemistry, Faculty of MedicineUniversity Hospital of CologneCologneGermany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Thomas A. Jowitt
- Wellcome Centre for Cell‐Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Beth L. Roman
- Department of Human Genetics, School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Heart, Lung, Blood and Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anna Tarakanova
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticutUSA
- School of Mechanical, Aerospace, and Manufacturing EngineeringUniversity of ConnecticutStorrsConnecticutUSA
| | - Clair Baldock
- Wellcome Centre for Cell‐Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Gerhard Sengle
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Biochemistry, Faculty of MedicineUniversity Hospital of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Cologne Center for Musculoskeletal Biomechanics (CCMB)CologneGermany
| |
Collapse
|
4
|
Hennings E, Aeschbacher S, Coslovsky M, Paladini RE, Voellmin G, Lampart M, Ziegler A, Müller C, Conen D, Zuern CS, Kühne M, Osswald S, Pfister O. BMP10 reflects pre-capillary pulmonary hemodynamics: association of biomarkers and hemodynamic parameters in pulmonary hypertension. Clin Res Cardiol 2025; 114:239-250. [PMID: 39297942 PMCID: PMC11839876 DOI: 10.1007/s00392-024-02546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND AND AIMS The role of biomarkers in diagnosing pulmonary hypertension (PH) and distinguishing between pre- and post-capillary PH remains poorly understood. We aimed to identify biomarkers with a strong association with mean pulmonary arterial pressure, mPAP (PH diagnosis) and pulmonary vascular resistance, PVR (pre-capillary component), but not with pulmonary arterial wedge pressure, PAWP (post-capillary component). METHODS Blood samples were collected in patients undergoing right heart catheterization within a prospective cross-sectional study. Biomarkers measured included BMP10, NT-proBNP, ANG2, ESM1/endocan, FGF23, GDF15, IGFBP7, IL6, MyBPC3, proC3, and proC6/endotrophin. Primary outcomes were mPAP, PVR, and PAWP, while secondary outcomes included PH diagnosis (mPAP > 20 mmHg) and elevated PVR (> 2 Wood units). Multivariable linear and logistic regression models were used to assess the relationship between biomarkers and outcomes. RESULTS Of the 127 patients included (age 66 ± 13 years, 54% female), 73% were diagnosed with PH. BMP10, NT-proBNP, ANG2, MyBPC3, and FGF23 showed a strong association with mPAP (p < 0.001). BMP10 and NT-proBNP were strongly associated with PVR (p < 0.001), while NT-proBNP and ANG2 were strongly associated with PAWP (p < 0.001). NT-proBNP had the strongest association with the diagnosis of PH (area under the curve = 0.76). BMP10 was the only biomarker associated with elevated PVR (OR 1.60, 95%CI 1.01-2.54, p = 0.04) but not with PAWP (p = 0.86). CONCLUSIONS Several biomarkers were strongly associated with mPAP, PAWP, and PVR. BMP10 was the only biomarker strongly associated with mPAP and PVR, but not with PAWP, thus reflecting the pre-capillary PH component. Measurement of BMP10 along with NT-proBNP may aid in diagnosing PH.
Collapse
Affiliation(s)
- Elisa Hennings
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Coslovsky
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rebecca E Paladini
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Gian Voellmin
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Maurin Lampart
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - André Ziegler
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | - Christian Müller
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Christine S Zuern
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Kühne
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Stefan Osswald
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Otmar Pfister
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
5
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
6
|
Schwartze TA, Morosky SA, Rosato TL, Henrickson A, Lin G, Hinck CS, Taylor AB, Olsen SK, Calero G, Demeler B, Roman BL, Hinck AP. Molecular basis of interchain disulfide-bond formation in BMP-9 and BMP-10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618187. [PMID: 39464140 PMCID: PMC11507788 DOI: 10.1101/2024.10.14.618187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin. It has been demonstrated that BMP-9/10 heterodimers are the most abundant signaling species in the blood, but it is unclear how they form. Unlike other ligands of the TGF-β family, BMP-9 and -10 are secreted as a mixture of monomers and disulfide-linked dimers. Here, we show that the monomers are secreted in a cysteinylated form that crystallizes as a noncovalent dimer. Despite this, monomers do not self-associate at micromolar or lower concentrations and have reduced signaling potency compared to dimers. We further show using protein crystallography that the interchain disulfide of the BMP-9 homodimer adopts a highly strained syn-periplanar conformation. Hence, geometric strain across the interchain disulfide is responsible for the reduced propensity to dimerize, not the cysteinylation. Additionally, we show that the dimerization propensity of BMP-9 is lower than BMP-10 and these propensities can be reversed by swapping residues near the interchain disulfide that form attractive interactions with the opposing monomer. Finally, we discuss the implications of these observations on BMP-9/10 heterodimer formation.
Collapse
Affiliation(s)
- Tristin A. Schwartze
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stefanie A. Morosky
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Teresa L. Rosato
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Guowu Lin
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cynthia S. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander B. Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shaun K. Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Guillermo Calero
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew P. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
DeBose-Scarlett E, Ressler AK, Gallione CJ, Sapisochin Cantis G, Friday C, Weinsheimer S, Schimmel K, Spiekerkoetter E, Kim H, Gossage JR, Faughnan ME, Marchuk DA. Somatic mutations in arteriovenous malformations in hereditary hemorrhagic telangiectasia support a bi-allelic two-hit mutation mechanism of pathogenesis. Am J Hum Genet 2024; 111:2283-2298. [PMID: 39299239 PMCID: PMC11480799 DOI: 10.1016/j.ajhg.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder of vascular malformations characterized by mucocutaneous telangiectases and arteriovenous malformations (AVMs) in internal organs. HHT is caused by inheritance of a loss of function mutation in one of three genes. Although individuals with HHT are haploinsufficient for one of these genes throughout their entire body, rather than exhibiting a systemic vascular phenotype, vascular malformations occur as focal lesions in discrete anatomic locations. The inconsistency between genotype and phenotype has provoked debate over whether haploinsufficiency or a different mechanism gives rise to the vascular malformations. We previously showed that HHT-associated skin telangiectases develop by a two-hit mutation mechanism in an HHT gene. However, somatic mutations were identified in only half of the telangiectases, raising the question whether a second-hit somatic mutation is a necessary (required) event in HHT pathogenesis. Here, we show that another mechanism for the second hit is loss of heterozygosity across the chromosome bearing the germline mutation. Secondly, we investigate the two-hit mutation mechanism for internal organ AVMs, the source of much of the morbidity of HHT. Here, we identified somatic molecular genetic events in eight liver telangiectases, including point mutations and a loss of heterozygosity event. We also identified somatic mutations in one pulmonary AVM and two brain AVMs, confirming that mucocutaneous and internal organ vascular malformations undergo the same molecular mechanisms. Together, these data argue that bi-allelic loss of function in an HHT gene is a required event in the pathogenesis of HHT-associated vascular malformations.
Collapse
Affiliation(s)
- Evon DeBose-Scarlett
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew K Ressler
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol J Gallione
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gonzalo Sapisochin Cantis
- Abdominal Transplant and HPB Surgical Oncology, Toronto General Hospital and Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON PMB-11-175, Canada
| | | | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Katharina Schimmel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, Stanford, CA 94305, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, Stanford, CA 94305, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - James R Gossage
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Marie E Faughnan
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada; Toronto HHT Centre, St. Michael's Hospital and Li Ka Shing Knowledge Institute, Toronto, ON M5B 1W8, Canada
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Hemnes AR, Celermajer DS, D'Alto M, Haddad F, Hassoun PM, Prins KW, Naeije R, Vonk Noordegraaf A. Pathophysiology of the right ventricle and its pulmonary vascular interaction. Eur Respir J 2024; 64:2401321. [PMID: 39209482 PMCID: PMC11525331 DOI: 10.1183/13993003.01321-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The right ventricle and its stress response is perhaps the most important arbiter of survival in patients with pulmonary hypertension of many causes. The physiology of the cardiopulmonary unit and definition of right heart failure proposed in the 2018 World Symposium on Pulmonary Hypertension have proven useful constructs in subsequent years. Here, we review updated knowledge of basic mechanisms that drive right ventricular function in health and disease, and which may be useful for therapeutic intervention in the future. We further contextualise new knowledge on assessment of right ventricular function with a focus on metrics readily available to clinicians and updated understanding of the roles of the right atrium and tricuspid regurgitation. Typical right ventricular phenotypes in relevant forms of pulmonary vascular disease are reviewed and recent studies of pharmacological interventions on chronic right ventricular failure are discussed. Finally, unanswered questions and future directions are proposed.
Collapse
Affiliation(s)
- Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S Celermajer
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Michele D'Alto
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University and Stanford Cardiovascular Institute, Palo Alto, CA, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kurt W Prins
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
10
|
Mirza SL, Upton PD, Hodgson J, Gräf S, Morrell NW, Dunmore BJ. SEMA3G regulates BMP9 inhibition of VEGF-mediated migration and network formation in pulmonary endothelial cells. Vascul Pharmacol 2024; 155:107381. [PMID: 38795838 DOI: 10.1016/j.vph.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
AIMS Bone morphogenetic protein-9 (BMP9) is critical for bone morphogenetic protein receptor type-2 (BMPR2) signalling in pulmonary vascular endothelial cells. Furthermore, human genetics studies support the central role of disrupted BMPR2 mediated BMP9 signalling in vascular endothelial cells in the initiation of pulmonary arterial hypertension (PAH). In addition, loss-of-function mutations in BMP9 have been identified in PAH patients. BMP9 is considered to play an important role in vascular homeostasis and quiescence. METHODS AND RESULTS We identified a novel BMP9 target as the class-3 semaphorin, SEMA3G. Although originally identified as playing a role in neuronal development, class-3 semaphorins may have important roles in endothelial function. Here we show that BMP9 transcriptional regulation of SEMA3G occurs via ALK1 and the canonical Smad pathway, requiring both Smad1 and Smad5. Knockdown studies demonstrated redundancy between type-2 receptors in that BMPR2 and ACTR2A were compensatory. Increased SEMA3G expression by BMP9 was found to be regulated by the transcription factor, SOX17. Moreover, we observed that SEMA3G regulates VEGF signalling by inhibiting VEGFR2 phosphorylation and that VEGF, in contrast to BMP9, negatively regulated SEMA3G transcription. Functional endothelial cell assays of VEGF-mediated migration and network formation revealed that BMP9 inhibition of VEGF was abrogated by SEMA3G knockdown. Conversely, treatment with recombinant SEMA3G partially mimicked the inhibitory action of BMP9 in these assays. CONCLUSIONS This study provides further evidence for the anti-angiogenic role of BMP9 in microvascular endothelial cells and these functions are mediated at least in part via SOX17 and SEMA3G induction.
Collapse
Affiliation(s)
- Sarah L Mirza
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Paul D Upton
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Joshua Hodgson
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas W Morrell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Benjamin J Dunmore
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BB, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| |
Collapse
|
11
|
Wang X, Sun H, Yu H, Du B, Fan Q, Jia B, Zhang Z. Bone morphogenetic protein 10, a rising star in the field of diabetes and cardiovascular disease. J Cell Mol Med 2024; 28:e18324. [PMID: 38760897 PMCID: PMC11101671 DOI: 10.1111/jcmm.18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024] Open
Abstract
Early research suggested that bone morphogenetic protein 10 (BMP10) is primarily involved in cardiac development and congenital heart disease processes. BMP10 is a newly identified cardiac-specific protein. In recent years, reports have emphasized the effects of BMP10 on myocardial apoptosis, fibrosis and immune response, as well as its synergistic effects with BMP9 in vascular endothelium and role in endothelial dysfunction. We believe that concentrating on this aspect of the study will enhance our knowledge of the pathogenesis of diabetes and the cardiovascular field. However, there have been no reports of any reviews discussing the role of BMP10 in diabetes and cardiovascular disease. In addition, the exact pathogenesis of diabetic cardiomyopathy is not fully understood, including myocardial energy metabolism disorders, microvascular changes, abnormal apoptosis of cardiomyocytes, collagen structural changes and myocardial fibrosis, all of which cause cardiac function impairment directly or indirectly and interact with one another. This review summarizes the research results of BMP10 in cardiac development, endothelial function and cardiovascular disease in an effort to generate new ideas for future research into diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xueyin Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Helin Sun
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Haomiao Yu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Bingyu Du
- Teaching and Research Section of Internal Medicine, College of MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Qi Fan
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Baoxue Jia
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Zhongwen Zhang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
12
|
Mao Y, Miao Y, Zhu X, Duan S, Wang Y, Wang X, Wu C, Wang G. Expression of bone morphogenetic protein 10 and its role in biomineralization in Hyriopsis cumingii. Int J Biol Macromol 2023; 253:127245. [PMID: 37797863 DOI: 10.1016/j.ijbiomac.2023.127245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Shells and pearls are the products of biomineralization of shellfish after ingesting external mineral ions. Bone morphogenetic proteins (BMPs) play a role in a variety of biological function, and the genes that encode them, are considered important shell-forming genes in mollusks and are associated with shell and pearl formation, embryonic development, and other functions, but bone morphogenetic protein 10 (BMP10) is poorly understood in Hyriopsis cumingii. In this study, we cloned Hc-BMP10 and obtained a 2477 bp full-length sequence encoding 460 amino acids with a conserved TGF-β structural domain. During the embryonic developmental stages, the cleavage stage had the highest expression of Hc-BMP10, followed by juvenile clams; the expression in the mantle gradually decreased with increasing mussel age. A strong signal was detected on epidermal cells on the mantle edge by in situ hybridization. In both the shell notching and inserting operations of the pearl fragment assay, we found that the expression of Hc-BMP10 increased after the above treatments. RNA interference assays showed that the silencing of Hc-BMP10 resulted in a change in the morphology of the prismatic layer and nacreous layer, with the prismatic layer less closely aligned and the disordered aragonite flakes in the nacreous layer. These findings indicate that Hc-BMP10 is involved in the growth and development of H. cumingii, as well as the formation of shells and pearls. Therefore, this study provides some reference for selecting superior species for growth and pearl breeding of H. cumingii at a molecular level and further investigation of the molecular mechanism for biomineralization of Hc-BMP10.
Collapse
Affiliation(s)
- Yingrui Mao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yulin Miao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiaoyue Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Shenghua Duan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Congdi Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
13
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
14
|
Hennings E, Blum S, Aeschbacher S, Coslovsky M, Knecht S, Eken C, Lischer M, Paladini RE, Krisai P, Reichlin T, Rodondi N, Beer JH, Ammann P, Conte G, De Perna ML, Kobza R, Blum MR, Bossard M, Kastner P, Ziegler A, Müller C, Bonati LH, Pfister O, Zuern CS, Conen D, Kühne M, Osswald S, the Swiss‐AF Investigators. Bone Morphogenetic Protein 10-A Novel Biomarker to Predict Adverse Outcomes in Patients With Atrial Fibrillation. J Am Heart Assoc 2023; 12:e028255. [PMID: 36926939 PMCID: PMC10111531 DOI: 10.1161/jaha.122.028255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023]
Abstract
Background Patients with atrial fibrillation (AF) face an increased risk of death and major adverse cardiovascular events (MACE). We aimed to assess the predictive value of the novel atrial-specific biomarker BMP10 (bone morphogenetic protein 10) for death and MACE in patients with AF in comparison with NT-proBNP (N-terminal prohormone of B-type natriuretic peptide). Methods and Results BMP10 and NT-proBNP were measured in patients with AF enrolled in Swiss-AF (Swiss Atrial Fibrillation Study), a prospective multicenter cohort study. A total of 2219 patients were included (median follow-up 4.3 years [interquartile range 3.9, 5.1], mean age 73±9 years, 73% male). In multivariable Cox proportional hazard models, the adjusted hazard ratio (aHR) associated with 1 ng/mL increase of BMP10 was 1.60 (95% CI, 1.37-1.87) for all-cause death, and 1.54 (95% CI, 1.35-1.76) for MACE. For all-cause death, the concordance index was 0.783 (95% CI, 0.763-0.809) for BMP10, 0.784 (95% CI, 0.765-0.810) for NT-proBNP, and 0.789 (95% CI, 0.771-0.815) for both biomarkers combined. For MACE, the concordance index was 0.732 (95% CI, 0.715-0.754) for BMP10, 0.747 (95% CI, 0.731-0.768) for NT-proBNP, and 0.750 (95% CI, 0.734-0.771) for both biomarkers combined. When grouping patients according to NT-proBNP categories (<300, 300-900, >900 ng/L), higher aHRs were observed in patients with high BMP10 in the categories of low NT-proBNP (all-cause death aHR, 2.28 [95% CI, 1.15-4.52], MACE aHR, 1.88 [95% CI, 1.07-3.28]) and high NT-proBNP (all-cause death aHR, 1.61 [95% CI, 1.14-2.26], MACE aHR, 1.38 [95% CI, 1.07-1.80]). Conclusions BMP10 strongly predicted all-cause death and MACE in patients with AF. BMP10 provided additional prognostic information in low- and high-risk patients according to NT-proBNP stratification. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02105844.
Collapse
Affiliation(s)
- Elisa Hennings
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Steffen Blum
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Michael Coslovsky
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Sven Knecht
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Ceylan Eken
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Mirko Lischer
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Rebecca E. Paladini
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Philipp Krisai
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Tobias Reichlin
- Department of CardiologyInselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Nicolas Rodondi
- Department of General Internal MedicineInselspital, Bern University Hospital, University of BernBernSwitzerland
- Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
| | - Jürg H. Beer
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Peter Ammann
- Department of CardiologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Giulio Conte
- Cardiocentro Ticino InstituteEnte Ospedaliero CantonaleLuganoSwitzerland
| | | | - Richard Kobza
- Cardiology DivisionHeart Center, Luzerner KantonsspitalLuzernSwitzerland
| | - Manuel R. Blum
- Department of General Internal MedicineInselspital, Bern University Hospital, University of BernBernSwitzerland
- Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
| | - Matthias Bossard
- Cardiology DivisionHeart Center, Luzerner KantonsspitalLuzernSwitzerland
| | | | - André Ziegler
- Roche Diagnostics International AGRotkreuzSwitzerland
| | - Christian Müller
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Leo H. Bonati
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Neurology and Stroke CenterUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Otmar Pfister
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Christine S. Zuern
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - David Conen
- Population Health Research InstituteMcMaster UniversityHamiltonCanada
| | - Michael Kühne
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Stefan Osswald
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | |
Collapse
|
15
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
16
|
Spanou CES, Wohl AP, Doherr S, Correns A, Sonntag N, Lütke S, Mörgelin M, Imhof T, Gebauer JM, Baumann U, Grobe K, Koch M, Sengle G. Targeting of bone morphogenetic protein complexes to heparin/heparan sulfate glycosaminoglycans in bioactive conformation. FASEB J 2023; 37:e22717. [PMID: 36563024 DOI: 10.1096/fj.202200904r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.
Collapse
Affiliation(s)
- Chara E S Spanou
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander P Wohl
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Doherr
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annkatrin Correns
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niklas Sonntag
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Colzyx AB, Lund, Sweden
| | - Thomas Imhof
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
17
|
Kim K, Kim MG, Lee GM. Improving bone morphogenetic protein (BMP) production in CHO cells through understanding of BMP synthesis, signaling and endocytosis. Biotechnol Adv 2023; 62:108080. [PMID: 36526238 DOI: 10.1016/j.biotechadv.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with the clinical potential to regulate cartilage and bone formation. Functionally active mature recombinant human BMPs (rhBMPs), produced primarily in Chinese hamster ovary (CHO) cells for clinical applications, are considered difficult to express because they undergo maturation processes, signaling pathways, or endocytosis. Although BMPs are a family of proteins with similar mature domain sequence identities, their individual properties are diverse. Thus, understanding the properties of individual rhBMPs is essential to improve rhBMP production in CHO cells. In this review, we discuss various approaches to improve rhBMP production in CHO cells by understanding the overall maturation process, signaling pathways and endocytosis of individual rhBMPs.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Gyeom Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
18
|
Skauli N, Savchenko E, Ottersen OP, Roybon L, Amiry-Moghaddam M. Canonical Bone Morphogenetic Protein Signaling Regulates Expression of Aquaporin-4 and Its Anchoring Complex in Mouse Astrocytes. Front Cell Neurosci 2022; 16:878154. [PMID: 35518645 PMCID: PMC9067306 DOI: 10.3389/fncel.2022.878154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aquaporin-4 (AQP4) is the predominant water channel in the brain; it is enriched in astrocytic foot processes abutting vessels where it is anchored through an interaction with the dystrophin-associated protein (DAP) complex. Enhanced expression with concomitant mislocalization of AQP4 along astrocyte plasma membranes is a hallmark of several neurological conditions. Thus, there is an urgent need to identify which signaling pathways dictate AQP4 microdistribution. Here we show that canonical bone morphogenetic proteins (BMPs), particularly BMP2 and 4, upregulate AQP4 expression in astrocytes and dysregulate the associated DAP complex by differentially affecting its individual members. We further demonstrate the presence of BMP receptors and Smad1/5/9 pathway activation in BMP treated astrocytes. Our analysis of adult mouse brain reveals BMP2 and 4 in neurons and in a subclass of endothelial cells and activated Smad1/5/9 in astrocytes. We conclude that the canonical BMP-signaling pathway might be responsible for regulating the expression of AQP4 and of DAP complex proteins that govern the subcellular compartmentation of this aquaporin.
Collapse
Affiliation(s)
- Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Karolinska Institutet, Stockholm, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Guo J, Liu B, Thorikay M, Yu M, Li X, Tong Z, Salmon RM, Read RJ, Ten Dijke P, Morrell NW, Li W. Crystal structures of BMPRII extracellular domain in binary and ternary receptor complexes with BMP10. Nat Commun 2022; 13:2395. [PMID: 35504921 PMCID: PMC9064986 DOI: 10.1038/s41467-022-30111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Heterozygous mutations in BMPR2 (bone morphogenetic protein (BMP) receptor type II) cause pulmonary arterial hypertension. BMPRII is a receptor for over 15 BMP ligands, but why BMPR2 mutations cause lung-specific pathology is unknown. To elucidate the molecular basis of BMP:BMPRII interactions, we report crystal structures of binary and ternary BMPRII receptor complexes with BMP10, which contain an ensemble of seven different BMP10:BMPRII 1:1 complexes. BMPRII binds BMP10 at the knuckle epitope, with the A-loop and β4 strand making BMPRII-specific interactions. The BMPRII binding surface on BMP10 is dynamic, and the affinity is weaker in the ternary complex than in the binary complex. Hydrophobic core and A-loop interactions are important in BMPRII-mediated signalling. Our data reveal how BMPRII is a low affinity receptor, implying that forming a signalling complex requires high concentrations of BMPRII, hence mutations will impact on tissues with highest BMPR2 expression such as the lung vasculature.
Collapse
Affiliation(s)
- Jingxu Guo
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Bin Liu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Midory Thorikay
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Minmin Yu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Xiaoyan Li
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Zhen Tong
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Richard M Salmon
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Randy J Read
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Wei Li
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
20
|
Furlan AG, Spanou CES, Godwin ARF, Wohl AP, Zimmermann LMA, Imhof T, Koch M, Baldock C, Sengle G. A new MMP-mediated prodomain cleavage mechanism to activate bone morphogenetic proteins from the extracellular matrix. FASEB J 2021; 35:e21353. [PMID: 33629769 DOI: 10.1096/fj.202001264r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022]
Abstract
Since their discovery as pluripotent cytokines extractable from bone matrix, it has been speculated how bone morphogenetic proteins (BMPs) become released and activated from the extracellular matrix (ECM). In contrast to TGF-βs, most investigated BMPs are secreted as bioactive prodomain (PD)-growth factor (GF) complexes (CPLXs). Recently, we demonstrated that PD-dependent targeting of BMP-7 CPLXs to the extracellular fibrillin microfibril (FMF) components fibrillin-1 and -2 represents a BMP sequestration mechanism by rendering the GF latent. Understanding how BMPs become activated from ECM scaffolds such as FMF is crucial to elucidate pathomechanisms characterized by aberrant BMP activation and ECM destruction. Here, we describe a new MMP-dependent BMP-7 activation mechanism from ECM-targeted pools via specific PD degradation. Using Edman sequencing and mutagenesis, we identified a new and conserved MMP-13 cleavage site within the BMP-7 PD. A degradation screen with different BMP family PDs and representative MMP family members suggested utilization of the identified site in a general MMP-driven BMP activation mechanism. Furthermore, sandwich ELISA and solid phase cleavage studies in combination with bioactivity assays, single particle TEM, and in silico molecular docking experiments provided evidence that PD cleavage by MMP-13 leads to BMP-7 CPLX disintegration and bioactive GF release.
Collapse
Affiliation(s)
- Ariane G Furlan
- Center for Biochemistry, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Chara E S Spanou
- Center for Biochemistry, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alan R F Godwin
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alexander P Wohl
- Center for Biochemistry, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Laura-Marie A Zimmermann
- Center for Biochemistry, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
21
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
22
|
Controlling BMP growth factor bioavailability: The extracellular matrix as multi skilled platform. Cell Signal 2021; 85:110071. [PMID: 34217834 DOI: 10.1016/j.cellsig.2021.110071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of signaling ligands which comprise a family of pluripotent cytokines regulating a multitude of cellular events. Although BMPs were originally discovered as potent factors extractable from bone matrix that are capable to induce ectopic bone formation in soft tissues, their mode of action has been mostly studied as soluble ligands in absence of the physiologically relevant cellular microenvironment. This micro milieu is defined by supramolecular networks of extracellular matrix (ECM) proteins that specifically target BMP ligands, present them to their cellular receptors, and allow their controlled release. Here we focus on functional interactions and mechanisms that were described to control BMP bioavailability in a spatio-temporal manner within the respective tissue context. Structural disturbance of the ECM architecture due to mutations in ECM proteins leads to dysregulated BMP signaling as underlying cause for connective tissue disease pathways. We will provide an overview about current mechanistic concepts of how aberrant BMP signaling drives connective tissue destruction in inherited and chronic diseases.
Collapse
|
23
|
Bouvard C, Tu L, Rossi M, Desroches-Castan A, Berrebeh N, Helfer E, Roelants C, Liu H, Ouarne M, Chaumontel N, Mallet C, Battail C, Bikfalvi A, Humbert M, Savale L, Daubon T, Perret P, Tillet E, Guignabert C, Bailly S. Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10. Cardiovasc Res 2021; 118:1805-1820. [PMID: 34086873 PMCID: PMC9215199 DOI: 10.1093/cvr/cvab187] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Aims BMP9 and BMP10 mutations were recently identified in patients with pulmonary arterial hypertension, but their specific roles in the pathogenesis of the disease are still unclear. We aimed to study the roles of BMP9 and BMP10 in cardiovascular homeostasis and pulmonary hypertension using transgenic mouse models deficient in Bmp9 and/or Bmp10. Methods and results Single- and double-knockout mice for Bmp9 (constitutive) and/or Bmp10 (tamoxifen inducible) were generated. Single-knock-out (KO) mice developed no obvious age-dependent phenotype when compared with their wild-type littermates. However, combined deficiency in Bmp9 and Bmp10 led to vascular defects resulting in a decrease in peripheral vascular resistance and blood pressure and the progressive development of high-output heart failure and pulmonary hemosiderosis. RNAseq analysis of the lungs of the double-KO mice revealed differential expression of genes involved in inflammation and vascular homeostasis. We next challenged these mice to chronic hypoxia. After 3 weeks of hypoxic exposure, Bmp10-cKO mice showed an enlarged heart. However, although genetic deletion of Bmp9 in the single- and double-KO mice attenuated the muscularization of pulmonary arterioles induced by chronic hypoxia, we observed no differences in Bmp10-cKO mice. Consistent with these results, endothelin-1 levels were significantly reduced in Bmp9 deficient mice but not Bmp10-cKO mice. Furthermore, the effects of BMP9 on vasoconstriction were inhibited by bosentan, an endothelin receptor antagonist, in a chick chorioallantoic membrane assay. Conclusions Our data show redundant roles for BMP9 and BMP10 in cardiovascular homeostasis under normoxic conditions (only combined deletion of both Bmp9 and Bmp10 was associated with severe defects) but highlight specific roles under chronic hypoxic conditions. We obtained evidence that BMP9 contributes to chronic hypoxia-induced pulmonary vascular remodelling, whereas BMP10 plays a role in hypoxia-induced cardiac remodelling in mice.
Collapse
Affiliation(s)
- Claire Bouvard
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Martina Rossi
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | | | - Nihel Berrebeh
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Elise Helfer
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Caroline Roelants
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France.,Inovarion, 75005, Paris, France
| | - Hequn Liu
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Marie Ouarne
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Nicolas Chaumontel
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christine Mallet
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christophe Battail
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Andreas Bikfalvi
- INSERM U1029, Institut National de la Santé et de la Recherche Médicale, 33615, Pessac, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Thomas Daubon
- INSERM U1029, Institut National de la Santé et de la Recherche Médicale, 33615, Pessac, France.,Univ. Bordeaux, CNRS, IBGC, UMR5095, 33000, Bordeaux, France Bordeaux, France
| | - Pascale Perret
- Laboratory of Bioclinical Radiopharmaceutics, Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Emmanuelle Tillet
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Sabine Bailly
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| |
Collapse
|
24
|
Li W, Long L, Yang X, Tong Z, Southwood M, King R, Caruso P, Upton PD, Yang P, Bocobo GA, Nikolic I, Higuera A, Salmon RM, Jiang H, Lodge KM, Hoenderdos K, Baron RM, Yu PB, Condliffe AM, Summers C, Nourshargh S, Chilvers ER, Morrell NW. Circulating BMP9 Protects the Pulmonary Endothelium during Inflammation-induced Lung Injury in Mice. Am J Respir Crit Care Med 2021; 203:1419-1430. [PMID: 33320799 PMCID: PMC8456542 DOI: 10.1164/rccm.202005-1761oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Pulmonary endothelial permeability contributes to the high-permeability pulmonary edema that characterizes acute respiratory distress syndrome. Circulating BMP9 (bone morphogenetic protein 9) is emerging as an important regulator of pulmonary vascular homeostasis. Objectives:To determine whether endogenous BMP9 plays a role in preserving pulmonary endothelial integrity and whether loss of endogenous BMP9 occurs during LPS challenge. Methods: A BMP9-neutralizing antibody was administrated to healthy adult mice, and lung vasculature was examined. Potential mechanisms were delineated by transcript analysis in human lung endothelial cells. The impact of BMP9 administration was evaluated in a murine acute lung injury model induced by inhaled LPS. Levels of BMP9 were measured in plasma from patients with sepsis and from endotoxemic mice. Measurements and Main Results: Subacute neutralization of endogenous BMP9 in mice (N = 12) resulted in increased lung vascular permeability (P = 0.022), interstitial edema (P = 0.0047), and neutrophil extravasation (P = 0.029) compared with IgG control treatment (N = 6). In pulmonary endothelial cells, BMP9 regulated transcriptome pathways implicated in vascular permeability and cell-membrane integrity. Augmentation of BMP9 signaling in mice (N = 8) prevented inhaled LPS-induced lung injury (P = 0.0027) and edema (P < 0.0001). In endotoxemic mice (N = 12), endogenous circulating BMP9 concentrations were markedly reduced, the causes of which include a transient reduction in hepatic BMP9 mRNA expression and increased elastase activity in plasma. In human patients with sepsis (N = 10), circulating concentratons of BMP9 were also markedly reduced (P < 0.0001). Conclusions: Endogenous circulating BMP9 is a pulmonary endothelial-protective factor, downregulated during inflammation. Exogenous BMP9 offers a potential therapy to prevent increased pulmonary endothelial permeability in lung injury.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lu Long
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xudong Yang
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Zhen Tong
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark Southwood
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ross King
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paola Caruso
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul D. Upton
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Ivana Nikolic
- Cardiovascular Medicine Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Angelica Higuera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Richard M. Salmon
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - He Jiang
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Katharine M. Lodge
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kim Hoenderdos
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | | | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Charlotte Summers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Edwin R. Chilvers
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Nicholas W. Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Hodgson J, Ruiz-Llorente L, McDonald J, Quarrell O, Ugonna K, Bentham J, Mason R, Martin J, Moore D, Bergstrom K, Bayrak-Toydemir P, Wooderchak-Donahue W, Morrell NW, Condliffe R, Bernabeu C, Upton PD. Homozygous GDF2 nonsense mutations result in a loss of circulating BMP9 and BMP10 and are associated with either PAH or an "HHT-like" syndrome in children. Mol Genet Genomic Med 2021; 9:e1685. [PMID: 33834622 PMCID: PMC8683697 DOI: 10.1002/mgg3.1685] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Disrupted endothelial BMP9/10 signaling may contribute to the pathophysiology of both hereditary hemorrhagic telangiectasia (HHT) and pulmonary arterial hypertension (PAH), yet loss of circulating BMP9 has not been confirmed in individuals with ultra‐rare homozygous GDF2 (BMP9 gene) nonsense mutations. We studied two pediatric patients homozygous for GDF2 (BMP9 gene) nonsense mutations: one with PAH (c.[76C>T];[76C>T] or p.[Gln26Ter];[Gln26Ter] and a new individual with pulmonary arteriovenous malformations (PAVMs; c.[835G>T];[835G>T] or p.[Glu279Ter];[Glu279Ter]); both with facial telangiectases. Methods Plasma samples were assayed for BMP9 and BMP10 by ELISA. In parallel, serum BMP activity was assayed using an endothelial BRE‐luciferase reporter cell line (HMEC1‐BRE). Proteins were expressed for assessment of secretion and processing. Results Plasma levels of both BMP9 and BMP10 were undetectable in the two homozygous index cases and this corresponded to low serum‐derived endothelial BMP activity in the patients. Measured BMP9 and BMP10 levels were reduced in the asymptomatic heterozygous p.[Glu279Ter] parents, but serum activity was normal. Although expression studies suggested alternate translation can be initiated at Met57 in the p.[Gln26Ter] mutant, this does not result in secretion of functional BMP9. Conclusion Collectively, these data show that homozygous GDF2 mutations, leading to a loss of circulating BMP9 and BMP10, can cause either pediatric PAH and/or “HHT‐like” telangiectases and PAVMs. Although patients reported to date have manifestations that overlap with those of HHT, none meet the Curaçao criteria for HHT and seem distinct from HHT in terms of the location and appearance of telangiectases, and a tendency for tiny, diffuse PAVMs.
Collapse
Affiliation(s)
- Joshua Hodgson
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Jamie McDonald
- HHT Center, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Oliver Quarrell
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Kelechi Ugonna
- Department of Respiratory Medicine, Sheffield Children's Hospital, Sheffield, UK
| | - James Bentham
- Department of Paediatric Congenital Heart Disease, Leeds Children's Hospital, Leeds, UK
| | - Rebecca Mason
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Jennifer Martin
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David Moore
- NHS Lothian Molecular Genetics Service, Western General Hospital, Edinburgh, UK
| | - Katie Bergstrom
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | | | | | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Abstract
The transforming growth factor β (TGFβ) signaling family is evolutionarily conserved in metazoans. The signal transduction mechanisms of TGFβ family members have been expansively investigated and are well understood. During development and homeostasis, numerous TGFβ family members are expressed in various cell types with temporally changing levels, playing diverse roles in embryonic development, adult tissue homeostasis and human diseases by regulating cell proliferation, differentiation, adhesion, migration and apoptosis. Here, we discuss the molecular mechanisms underlying signal transduction and regulation of the TGFβ subfamily pathways, and then highlight their key functions in mesendoderm induction, dorsoventral patterning and laterality development, as well as in the formation of several representative tissues/organs.
Collapse
Affiliation(s)
- Shunji Jia
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Owen NE, Nyimanu D, Kuc RE, Upton PD, Morrell NW, Alexander GJ, Maguire JJ, Davenport AP. Plasma levels of apelin are reduced in patients with liver fibrosis and cirrhosis but are not correlated with circulating levels of bone morphogenetic protein 9 and 10. Peptides 2021; 136:170440. [PMID: 33171278 PMCID: PMC7883214 DOI: 10.1016/j.peptides.2020.170440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/06/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The peptide apelin is expressed in human healthy livers and is implicated in the development of hepatic fibrosis and cirrhosis. Mutations in the bone morphogenetic protein receptor type II (BMPR-II) result in reduced plasma levels of apelin in patients with heritable pulmonary arterial hypertension. Ligands for BMPR-II include bone morphogenetic protein 9 (BMP9), highly expressed in liver, and BMP10, expressed in heart and to a lesser extent liver. However, it is not known whether reductions in BMP9 and/or BMP10, with associated reduction in BMPR-II signalling, correlate with altered levels of apelin in patients with liver fibrosis and cirrhosis. METHODS Plasma from patients with liver fibrosis (n = 14), cirrhosis (n = 56), and healthy controls (n = 25) was solid-phase extracted using a method optimised for recovery of apelin, which was measured by ELISA. RESULTS Plasma apelin was significantly reduced in liver fibrosis (8.3 ± 1.2 pg/ml) and cirrhosis (6.5 ± 0.6 pg/ml) patients compared with controls (15.4 ± 2.0 pg/ml). There was no obvious relationship between apelin and BMP 9 or BMP10 previously measured in these patients. Within the cirrhotic group, there was no significant correlation between apelin levels and disease severity scores, age, sex, or treatment with β-blockers. CONCLUSIONS Apelin was significantly reduced in plasma of patients with both early (fibrosis) and late-stage (cirrhosis) liver disease. Fibrosis is more easily reversible and may represent a potential target for new therapeutic interventions. However, it remains unclear whether apelin signalling is detrimental in liver disease or is beneficial and therefore, whether an apelin antagonist or agonist have clinical use.
Collapse
Affiliation(s)
- Nicola E Owen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Graeme J Alexander
- Institute for Liver and Digestive Health, Upper 3rd Floor, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
28
|
Dunmore BJ, Jones RJ, Toshner MR, Upton PD, Morrell NW. Approaches to treat pulmonary arterial hypertension by targeting bmpr2 - from cell membrane to nucleus. Cardiovasc Res 2021; 117:2309-2325. [PMID: 33399862 DOI: 10.1093/cvr/cvaa350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is estimated to affect between 10-50 people per million worldwide. The lack of cure and devastating nature of the disease means that treatment is crucial to arrest rapid clinical worsening. Current therapies are limited by their focus on inhibiting residual vasoconstriction rather than targeting key regulators of the cellular pathology. Potential disease-modifying therapies may come from research directed towards causal pathways involved in the cellular and molecular mechanisms of disease. It is widely acknowledged, that targeting reduced expression of the critical bone morphogenetic protein type-2 receptor (BMPR2) and its associated signalling pathways is a compelling therapeutic avenue to explore. In this review we highlight the advances that have been made in understanding this pathway and the therapeutics that are being tested in clinical trials and the clinic to treat PAH.
Collapse
Affiliation(s)
- Benjamin J Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Rowena J Jones
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Mark R Toshner
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| |
Collapse
|
29
|
Reyat JS, Chua W, Cardoso VR, Witten A, Kastner PM, Kabir SN, Sinner MF, Wesselink R, Holmes AP, Pavlovic D, Stoll M, Kääb S, Gkoutos GV, de Groot JR, Kirchhof P, Fabritz L. Reduced left atrial cardiomyocyte PITX2 and elevated circulating BMP10 predict atrial fibrillation after ablation. JCI Insight 2020; 5:139179. [PMID: 32814717 PMCID: PMC7455124 DOI: 10.1172/jci.insight.139179] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDGenomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess if this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation.METHODSmRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAAs) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n = 83) or in LAA cardiomyocytes (n = 52), and combined with clinical parameters to predict AF recurrence. Literature suggests that BMP10 is a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with 11 cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients.RESULTSReduced concentrations of cardiomyocyte PITX2, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2-(ΔΔCt) increase in PITX2). RNA sequencing, quantitative PCR, and Western blotting confirmed that BMP10 is one of the most PITX2-repressed atrial genes. Left atrial size (HR per mm increase [95% CI], 1.055 [1.028, 1.082]); nonparoxysmal AF (HR 1.672 [1.206, 2.318]), and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed 11 other cardiovascular biomarkers in predicting recurrent AF.CONCLUSIONSReduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted atrial protein BMP10 identify patients at risk of recurrent AF after ablation.TRIAL REGISTRATIONClinicalTrials.gov NCT01091389, NL50069.018.14, Dutch National Registry of Clinical Research Projects EK494-16.FUNDINGBritish Heart Foundation, European Union (H2020), Leducq Foundation.
Collapse
Affiliation(s)
| | | | - Victor R. Cardoso
- Institute of Cardiovascular Sciences and
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Anika Witten
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Münster, Germany
| | | | | | - Moritz F. Sinner
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Robin Wesselink
- Department of Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Heart Center, Amsterdam, Netherlands
| | | | | | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Münster, Germany
- Cardiovascular Research Institute Maastricht, Genetic Epidemiology and Statistical Genetics, Maastricht University, Maastricht, Netherlands
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Munich, Germany
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
| | - Georgios V. Gkoutos
- Institute of Cardiovascular Sciences and
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Health Data Research Midlands, Birmingham, United Kingdom
| | - Joris R. de Groot
- Department of Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Heart Center, Amsterdam, Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences and
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Hospitals Birmingham (UHB) and Sandwell and West Birmingham (SWBH) NHS Trusts, Birmingham, United Kingdom
- University Heart and Vascular Center, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences and
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Hospitals Birmingham (UHB) and Sandwell and West Birmingham (SWBH) NHS Trusts, Birmingham, United Kingdom
| |
Collapse
|
30
|
Upton PD, Park JES, De Souza PM, Davies RJ, Griffiths MJD, Wort SJ, Morrell NW. Endothelial protective factors BMP9 and BMP10 inhibit CCL2 release by human vascular endothelial cells. J Cell Sci 2020; 133:jcs239715. [PMID: 32576665 PMCID: PMC7390625 DOI: 10.1242/jcs.239715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) and BMP10 are circulating ligands that mediate endothelial cell (EC) protection via complexes of the type I receptor ALK1 and the type II receptors activin type-IIA receptor (ACTR-IIA) and bone morphogenetic type II receptor (BMPR-II). We previously demonstrated that BMP9 induces the expression of interleukin-6, interleukin-8 and E-selectin in ECs and might influence their interactions with monocytes and neutrophils. We asked whether BMP9 and BMP10 regulate the expression of chemokine (C-C motif) ligand 2 (CCL2), a key chemokine involved in monocyte-macrophage chemoattraction. Here, we show that BMP9 and BMP10 repress basal CCL2 expression and release from human pulmonary artery ECs and aortic ECs. The repression was dependent on ALK1 and co-dependent on ACTR-IIA and BMPR-II. Assessment of canonical Smad signalling indicated a reliance of this response on Smad4. Of note, Smad1/5 signalling contributed only at BMP9 concentrations similar to those in the circulation. In the context of inflammation, BMP9 did not alter the induction of CCL2 by TNF-α. As CCL2 promotes monocyte/macrophage chemotaxis and endothelial permeability, these data support the concept that BMP9 preserves basal endothelial integrity.
Collapse
Affiliation(s)
- Paul D Upton
- University of Cambridge School of Clinical Medicine, Addenbrooke's/CUHNHSFT and Papworth Hospitals, Cambridge CB2 0QQ, UK
| | - John E S Park
- Unit of Critical Care, NHLI, Imperial College, London SW3 6LY, UK
| | | | - Rachel J Davies
- Unit of Critical Care, NHLI, Imperial College, London SW3 6LY, UK
| | | | - Stephen J Wort
- Unit of Critical Care, NHLI, Imperial College, London SW3 6LY, UK
| | - Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's/CUHNHSFT and Papworth Hospitals, Cambridge CB2 0QQ, UK
| |
Collapse
|
31
|
Owen NE, Alexander GJ, Sen S, Bunclark K, Polwarth G, Pepke-Zaba J, Davenport AP, Morrell NW, Upton PD. Reduced circulating BMP10 and BMP9 and elevated endoglin are associated with disease severity, decompensation and pulmonary vascular syndromes in patients with cirrhosis. EBioMedicine 2020; 56:102794. [PMID: 32454407 PMCID: PMC7248419 DOI: 10.1016/j.ebiom.2020.102794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background BMP9, originating from the liver, and BMP10 are circulating BMPs that preserve vascular endothelial integrity. We assessed BMP9, BMP10 and soluble endoglin (sEng) levels and their relationships to liver disease severity and associated pulmonary vascular syndromes in a cohort of well-characterised liver disease patients. Methods Plasma samples from patients with liver disease (n = 83) and non-disease controls (n = 21) were assayed for BMP9, BMP10 and sEng. Levels were also assessed in a separate cohort of controls (n = 27) and PoPH patients (n = 8). Expression of mRNA and immunohistochemical staining was undertaken in liver biopsy specimens. Plasma BMP activity was assessed using an endothelial cell bioassay. Findings Plasma BMP9 and BMP10 levels were normal in patients with compensated cirrhosis or fibrosis without cirrhosis, but markedly reduced in patients with decompensated cirrhosis, including those with hepatopulmonary syndrome (HPS) or portopulmonary hypertension (PoPH). Liver biopsy specimens revealed reduced mRNA expression and immunostaining for these ligands. Patient plasma samples with reduced BMP9 and BMP10 levels exhibited low BMP activity that was restored with exogenous BMP9. Endoglin mRNA expression was increased in cirrhotic livers and elevated circulating sEng levels in PoPH and HPS patients suggested increased endothelial sEng shedding in these syndromes. Interpretation Plasma BMP9 and BMP10 levels are reduced in decompensated cirrhosis, leading to reduced circulating BMP activity on the vascular endothelium. The pulmonary complications of cirrhosis, PoPH and HPS, are associated with markedly reduced BMP9 and BMP10 and increased sEng levels, suggesting that supplementation with exogenous ligands might be a therapeutic approach for PoPH and HPS.
Collapse
Affiliation(s)
- Nicola E Owen
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Graeme J Alexander
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital Pond St, Hampstead, London NW3 2QG, UK, Royal Free Hospital, London, United Kingdom
| | - Sambit Sen
- Luton and Dunstable Hospital NHS Foundation Trust, Luton, United Kingdom
| | | | - Gary Polwarth
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Joanna Pepke-Zaba
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics (EMIT), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, United Kingdom.
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, United Kingdom.
| |
Collapse
|
32
|
Salmon RM, Guo J, Wood JH, Tong Z, Beech JS, Lawera A, Yu M, Grainger DJ, Reckless J, Morrell NW, Li W. Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms. Nat Commun 2020; 11:1621. [PMID: 32238803 PMCID: PMC7113306 DOI: 10.1038/s41467-020-15425-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1)-mediated endothelial cell signalling in response to bone morphogenetic protein 9 (BMP9) and BMP10 is of significant importance in cardiovascular disease and cancer. However, detailed molecular mechanisms of ALK1-mediated signalling remain unclear. Here, we report crystal structures of the BMP10:ALK1 complex at 2.3 Å and the prodomain-bound BMP9:ALK1 complex at 3.3 Å. Structural analyses reveal a tripartite recognition mechanism that defines BMP9 and BMP10 specificity for ALK1, and predict that crossveinless 2 is not an inhibitor of BMP9, which is confirmed by experimental evidence. Introduction of BMP10-specific residues into BMP9 yields BMP10-like ligands with diminished signalling activity in C2C12 cells, validating the tripartite mechanism. The loss of osteogenic signalling in C2C12 does not translate into non-osteogenic activity in vivo and BMP10 also induces bone-formation. Collectively, these data provide insight into ALK1-mediated BMP9 and BMP10 signalling, facilitating therapeutic targeting of this important pathway.
Collapse
Affiliation(s)
- Richard M Salmon
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jingxu Guo
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jennifer H Wood
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Zhen Tong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - John S Beech
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Aleksandra Lawera
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Minmin Yu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David J Grainger
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jill Reckless
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
33
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
34
|
Hodgson J, Swietlik EM, Salmon RM, Hadinnapola C, Nikolic I, Wharton J, Guo J, Liley J, Haimel M, Bleda M, Southgate L, Machado RD, Martin JM, Treacy CM, Yates K, Daugherty LC, Shamardina O, Whitehorn D, Holden S, Bogaard HJ, Church C, Coghlan G, Condliffe R, Corris PA, Danesino C, Eyries M, Gall H, Ghio S, Ghofrani HA, Gibbs JSR, Girerd B, Houweling AC, Howard L, Humbert M, Kiely DG, Kovacs G, Lawrie A, MacKenzie Ross RV, Moledina S, Montani D, Olschewski A, Olschewski H, Ouwehand WH, Peacock AJ, Pepke-Zaba J, Prokopenko I, Rhodes CJ, Scelsi L, Seeger W, Soubrier F, Suntharalingam J, Toshner MR, Trembath RC, Noordegraaf AV, Wort SJ, Wilkins MR, Yu PB, Li W, Gräf S, Upton PD, Morrell NW. Characterization of GDF2 Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2020; 201:575-585. [PMID: 31661308 PMCID: PMC7047445 DOI: 10.1164/rccm.201906-1141oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Recently, rare heterozygous mutations in GDF2 were identified in patients with pulmonary arterial hypertension (PAH). GDF2 encodes the circulating BMP (bone morphogenetic protein) type 9, which is a ligand for the BMP2 receptor.Objectives: Here we determined the functional impact of GDF2 mutations and characterized plasma BMP9 and BMP10 levels in patients with idiopathic PAH.Methods: Missense BMP9 mutant proteins were expressed in vitro and the impact on BMP9 protein processing and secretion, endothelial signaling, and functional activity was assessed. Plasma BMP9 and BMP10 levels and activity were assayed in patients with PAH with GDF2 variants and in control subjects. Levels were also measured in a larger cohort of control subjects (n = 120) and patients with idiopathic PAH (n = 260).Measurements and Main Results: We identified a novel rare variation at the GDF2 and BMP10 loci, including copy number variation. In vitro, BMP9 missense proteins demonstrated impaired cellular processing and secretion. Patients with PAH who carried these mutations exhibited reduced plasma levels of BMP9 and reduced BMP activity. Unexpectedly, plasma BMP10 levels were also markedly reduced in these individuals. Although overall BMP9 and BMP10 levels did not differ between patients with PAH and control subjects, BMP10 levels were lower in PAH females. A subset of patients with PAH had markedly reduced plasma levels of BMP9 and BMP10 in the absence of GDF2 mutations.Conclusions: Our findings demonstrate that GDF2 mutations result in BMP9 loss of function and are likely causal. These mutations lead to reduced circulating levels of both BMP9 and BMP10. These findings support therapeutic strategies to enhance BMP9 or BMP10 signaling in PAH.
Collapse
Affiliation(s)
| | - Emilia M. Swietlik
- Department of Medicine and,Royal Papworth Hospital, Papworth, United Kingdom
| | | | | | - Ivana Nikolic
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Matthias Haimel
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | | | - Laura Southgate
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom,Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Rajiv D. Machado
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Jennifer M. Martin
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Carmen M. Treacy
- Department of Medicine and,Royal Papworth Hospital, Papworth, United Kingdom
| | - Katherine Yates
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Louise C. Daugherty
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Olga Shamardina
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Deborah Whitehorn
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | - Simon Holden
- Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Harm J. Bogaard
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Colin Church
- Golden Jubilee National Hospital, Glasgow, United Kingdom
| | | | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy,Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mélanie Eyries
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Henning Gall
- University of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL) and of the Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
| | - Stefano Ghio
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Hossein-Ardeschir Ghofrani
- Department of Medicine and,University of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL) and of the Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
| | - J. Simon R. Gibbs
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, Université Paris-Sud, Paris, France,Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France,Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR_S 999, Paris, France
| | - Arjan C. Houweling
- Department of Clinical Genetics, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Université Paris-Sud, Paris, France,Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France,Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR_S 999, Paris, France
| | - David G. Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,Medical University of Graz, Graz, Austria
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | | | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Université Paris-Sud, Paris, France,Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France,Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR_S 999, Paris, France
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,Medical University of Graz, Graz, Austria
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | | | | | | | | | - Laura Scelsi
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Werner Seeger
- University of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL) and of the Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
| | - Florent Soubrier
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | | | - Mark R. Toshner
- Department of Medicine and,Royal Papworth Hospital, Papworth, United Kingdom
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Anton Vonk Noordegraaf
- Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Stephen J. Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom,Royal Brompton Hospital, London, United Kingdom
| | | | - Paul B. Yu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Department of Medicine and
| | - Stefan Gräf
- Department of Medicine and,Department of Haematology, University of Cambridge, Cambridge, United Kingdom,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| | | | - Nicholas W. Morrell
- Department of Medicine and,National Institute for Health Research BioResource–Rare Diseases, Cambridge, United Kingdom
| |
Collapse
|
35
|
Gomez‐Puerto MC, van Zuijen I, Huang CJZ, Szulcek R, Pan X, van Dinther MAH, Kurakula K, Wiesmeijer CC, Goumans M, Bogaard H, Morrell NW, Rana AA, ten Dijke P. Autophagy contributes to BMP type 2 receptor degradation and development of pulmonary arterial hypertension. J Pathol 2019; 249:356-367. [PMID: 31257577 PMCID: PMC6852495 DOI: 10.1002/path.5322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure which almost invariably leads to right heart failure and premature death. More than 70% of familial PAH and 20% of idiopathic PAH patients carry heterozygous mutations in the bone morphogenetic protein (BMP) type 2 receptor (BMPR2). However, the incomplete penetrance of BMPR2 mutations suggests that other genetic and environmental factors contribute to the disease. In the current study, we investigate the contribution of autophagy in the degradation of BMPR2 in pulmonary vascular cells. We demonstrate that endogenous BMPR2 is degraded through the lysosome in primary human pulmonary artery endothelial (PAECs) and smooth muscle cells (PASMCs): two cell types that play a key role in the pathology of the disease. By means of an elegant HaloTag system, we show that a block in lysosomal degradation leads to increased levels of BMPR2 at the plasma membrane. In addition, pharmacological or genetic manipulations of autophagy allow us to conclude that autophagy activation contributes to BMPR2 degradation. It has to be further investigated whether the role of autophagy in the degradation of BMPR2 is direct or through the modulation of the endocytic pathway. Interestingly, using an iPSC-derived endothelial cell model, our findings indicate that BMPR2 heterozygosity alone is sufficient to cause an increased autophagic flux. Besides BMPR2 heterozygosity, pro-inflammatory cytokines also contribute to an augmented autophagy in lung vascular cells. Furthermore, we demonstrate an increase in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) levels in lung sections from PAH induced in rats. Accordingly, pulmonary microvascular endothelial cells (MVECs) from end-stage idiopathic PAH patients present an elevated autophagic flux. Our findings support a model in which an increased autophagic flux in PAH patients contributes to a greater decrease in BMPR2 levels. Altogether, this study sheds light on the basic mechanisms of BMPR2 degradation and highlights a crucial role for autophagy in PAH. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Arterial Pressure
- Autophagy
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cell Line
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Heterozygote
- Humans
- Inflammation Mediators/metabolism
- Lysosomes/metabolism
- Lysosomes/pathology
- Male
- Microtubule-Associated Proteins/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteolysis
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats
- Signal Transduction
- Young Adult
Collapse
Affiliation(s)
- Maria Catalina Gomez‐Puerto
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Iris van Zuijen
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | | | - Robert Szulcek
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary MedicineAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Xiaoke Pan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary MedicineAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Maarten AH van Dinther
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Kondababu Kurakula
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Catharina C Wiesmeijer
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Marie‐Jose Goumans
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Harm‐Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary MedicineAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | | | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
36
|
Advances in the molecular regulation of endothelial BMP9 signalling complexes and implications for cardiovascular disease. Biochem Soc Trans 2019; 47:779-791. [PMID: 31127068 DOI: 10.1042/bst20180137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Bone morphogenetic protein 9 (BMP9), a member of the transforming growth factor β (TGFβ) superfamily, is a circulating vascular quiescence and endothelial protective factor, accounting for the majority of BMP activities in plasma. BMP9 and BMP10 bind preferentially to the high-affinity type I receptor activin receptor-like kinase 1 on vascular endothelial cells. Recently, many reports have highlighted the important roles of BMP9 in cardiovascular disease, particularly pulmonary arterial hypertension. In vivo, BMP9 activity and specificity are determined by tightly regulated protein-protein recognition with cognate receptors and a co-receptor, and may also be influenced by other proteins present on the endothelial cell surface (such as low-affinity receptors) and in circulation (such as TGFβ family ligands competing for the same receptors). In this review, we summarise recent findings on the role and therapeutic potential of BMP9 in cardiovascular disease and review the current understanding of how the extracellular protein-protein interaction milieu could play a role in regulating endothelial BMP9 signalling specificity and activity.
Collapse
|
37
|
Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, Ten Dijke P, Sanchez-Duffhues G. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol 2018; 247:9-20. [PMID: 30246251 PMCID: PMC6587955 DOI: 10.1002/path.5170] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines that were initially discovered on the basis of their ability to induce bone. Several decades of research have now established that these proteins function in a large variety of physiopathological processes. There are about 15 BMP family members, which signal via three transmembrane type II receptors and four transmembrane type I receptors. Mechanistically, BMP binding leads to phosphorylation of the type I receptor by the type II receptor. This activated heteromeric complex triggers intracellular signaling that is initiated by phosphorylation of receptor‐regulated SMAD1, 5, and 8 (also termed R‐SMADs). Activated R‐SMADs form heteromeric complexes with SMAD4, which engage in specific transcriptional responses. There is convergence along the signaling pathway and, besides the canonical SMAD pathway, BMP‐receptor activation can also induce non‐SMAD signaling. Each step in the pathway is fine‐tuned by positive and negative regulation and crosstalk with other signaling pathways. For example, ligand bioavailability for the receptor can be regulated by ligand‐binding proteins that sequester the ligand from interacting with receptors. Accessory co‐receptors, also known as BMP type III receptors, lack intrinsic enzymatic activity but enhance BMP signaling by presenting ligands to receptors. In this review, we discuss the role of BMP receptor signaling and how corruption of this pathway contributes to cardiovascular and musculoskeletal diseases and cancer. We describe pharmacological tools to interrogate the function of BMP receptor signaling in specific biological processes and focus on how these agents can be used as drugs to inhibit or activate the function of the receptor, thereby normalizing dysregulated BMP signaling. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Catalina Gomez-Puerto
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Prasanna Vasudevan Iyengar
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Amaya García de Vinuesa
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Tillet E, Ouarné M, Desroches-Castan A, Mallet C, Subileau M, Didier R, Lioutsko A, Belthier G, Feige JJ, Bailly S. A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma. J Biol Chem 2018; 293:10963-10974. [PMID: 29789425 DOI: 10.1074/jbc.ra118.002968] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/04/2018] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) and BMP10 are the two high-affinity ligands for the endothelial receptor activin receptor-like kinase 1 (ALK1) and are key regulators of vascular remodeling. They are both present in the blood, but their respective biological activities are still a matter of debate. The aim of the present work was to characterize their circulating forms to better understand how their activities are regulated in vivo First, by cotransfecting BMP9 and BMP10, we found that both can form a disulfide-bonded heterodimer in vitro and that this heterodimer is functional on endothelial cells via ALK1. Next, we developed an ELISA that could specifically recognize the BMP9-BMP10 heterodimer and which indicated its presence in both human and mouse plasma. In addition to using available Bmp9-KO mice, we generated a conditional Bmp10-KO mouse strain. The plasma from Bmp10-KO mice, similarly to that of Bmp9-KO mice, completely lacked the ability to activate ALK1-transfected 3T3 cells or phospho-Smad1-5 on endothelial cells, indicating that the circulating BMP activity is mostly due to the BMP9-BMP10 heterodimeric form. This result was confirmed in human plasma that had undergone affinity chromatography to remove BMP9 homodimer. Finally, we provide evidence that hepatic stellate cells in the liver could be the source of the BMP9-BMP10 heterodimer. Together, our findings demonstrate that BMP9 and BMP10 can heterodimerize and that this heterodimer is responsible for most of the biological BMP activity found in plasma.
Collapse
Affiliation(s)
- Emmanuelle Tillet
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Marie Ouarné
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Agnès Desroches-Castan
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Christine Mallet
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Mariela Subileau
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Robin Didier
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Anna Lioutsko
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Guillaume Belthier
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Jean-Jacques Feige
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| | - Sabine Bailly
- From the University of Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000 Grenoble, France
| |
Collapse
|
39
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
40
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Anderson EN, Wharton KA. Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences. J Biol Chem 2017; 292:19160-19178. [PMID: 28924042 DOI: 10.1074/jbc.m117.793513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/14/2017] [Indexed: 12/27/2022] Open
Abstract
The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer-mediated wing vein patterning but not for Gbb15-Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.
Collapse
Affiliation(s)
- Edward N Anderson
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
42
|
Abstract
Bone morphogenetic protein (BMP)9 and BMP10 are high affinity ligands for activin receptor-like kinase 1 (ALK1), a type I BMP receptor mainly expressed on vascular endothelial cells (ECs). ALK1-mediated BMP9/BMP10 signalling pathways have emerged as essential in EC biology and in angiogenesis. Several genetic mutations in the genes encoding the ligands and receptors of this pathway have been reported in two cardiovascular diseases, pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). Administration of recombinant BMP9 reverses experimental PAH in preclinical rodent models. Dalantercept, an Fc-fusion protein of the extracellular domain of ALK1 and a ligand trap for BMP9 and BMP10, is in phase II clinical trials for anti-tumour angiogenesis. Understanding the regulation of BMP9 and BMP10, at both gene and protein levels, under physiological and pathological conditions, will reveal essential information and potential novel prognostic markers for the BMP9/BMP10-targeted therapies.
Collapse
|
43
|
Jumabay M, Zhumabai J, Mansurov N, Niklason KC, Guihard PJ, Cubberly MR, Fogelman AM, Iruela-Arispe L, Yao Y, Saparov A, Boström KI. Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 2017; 233:1812-1822. [PMID: 28464239 DOI: 10.1002/jcp.25983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 05/01/2017] [Indexed: 11/09/2022]
Abstract
Bone morphogenetic protein (BMP) 10, a cardiac-restricted BMP family member, is essential in cardiomyogenesis, especially during trabeculation. Crossveinless-2 (CV2, also known as BMP endothelial cell precursor derived regulator [BMPER]) is a BMP-binding protein that modulates the activity of several BMPs. The objective of this study was to examine the combined effects of BMP10 and CV2 on cardiomyocyte differentiation using mouse dedifferentiated fat (mDFAT) cells, which spontaneously differentiate into cardiomyocyte-like cells, as a model. Our results revealed that CV2 binds directly to BMP10, as determined by co-immunoprecipitation, and inhibits BMP10 from initiating SMAD signaling, as determined by luciferase reporter gene assays. BMP10 treatment induced mDFAT cell proliferation, whereas CV2 modulated the BMP10-induced proliferation. Differentiation of cardiomyocyte-like cells proceeded in a reproducible fashion in mDFAT cells, starting with small round Nkx2.5-positive progenitor cells that progressively formed myotubes of increasing length that assembled into beating colonies and stained strongly for Troponin I and sarcomeric alpha-actinin. BMP10 enhanced proliferation of the small progenitor cells, thereby securing sufficient numbers to support formation of myotubes. CV2, on the other hand, enhanced formation and maturation of large myotubes and myotube-colonies and was expressed by endothelial-like cells in the mDFAT cultures. Thus BMP10 and CV2 have important roles in coordinating cardiomyogenesis in progenitor cells.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jiayinaguli Zhumabai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Nurlan Mansurov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Katharine C Niklason
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mark R Cubberly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alan M Fogelman
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Arman Saparov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Molecular Biology Institute, UCLA, Los Angeles, California
| |
Collapse
|
44
|
Verma R, Jaiswal H, Chauhan KS, Kaushik M, Tailor P. Cutting Edge: ACVRL1 Signaling Augments CD8α+ Dendritic Cell Development. THE JOURNAL OF IMMUNOLOGY 2016; 197:1029-34. [PMID: 27421479 DOI: 10.4049/jimmunol.1501849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/16/2016] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are a collection of different subtypes, each of which is characterized by specific surface markers, gene-expression patterns, and distinct functions. Members of the IFN regulatory factor family play critical roles in DC development and functions. Recently, Irf8 was shown to activate TGF-β signaling, which led to exacerbated neuroinflammation in the experimental autoimmune encephalomyelitis mouse model. We analyzed the effect of Irf8 on TGF-β/bone morphogenetic protein pathway-specific genes in DCs and identified Acvrl1, a type I TGF-β superfamily receptor, as a gene strongly induced by Irf8 expression. Among various DC subtypes, Acvrl1 is differentially expressed in CD8α(+) DCs. ACVRL1 signaling augmented Irf8-directed classical CD8α(+) DC development. Irf8 expression is essential for plasmacytoid DC and CD8α(+) DC development, and this study demonstrates that ACVRL1 signaling plays a pivotal role whereby it suppresses plasmacytoid DC development while enhancing that of CD8α(+) DCs, thus contributing to DC diversity development.
Collapse
Affiliation(s)
- Rohit Verma
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Hemant Jaiswal
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Kuldeep Singh Chauhan
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Monika Kaushik
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| |
Collapse
|
45
|
Wohl AP, Troilo H, Collins RF, Baldock C, Sengle G. Extracellular Regulation of Bone Morphogenetic Protein Activity by the Microfibril Component Fibrillin-1. J Biol Chem 2016; 291:12732-12746. [PMID: 27059954 PMCID: PMC4933460 DOI: 10.1074/jbc.m115.704734] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of bone morphogenetic proteins (BMPs) as pluripotent cytokines extractable from bone matrix, it has been speculated how targeting of BMPs to the extracellular matrix (ECM) modulates their bioavailability. Understanding these processes is crucial for elucidating pathomechanisms of connective tissue disorders characterized by ECM deficiency and growth factor dysregulation. Here, we provide evidence for a new BMP targeting and sequestration mechanism that is controlled by the ECM molecule fibrillin-1. We present the nanoscale structure of the BMP-7 prodomain-growth factor complex using electron microscopy, small angle x-ray scattering, and circular dichroism spectroscopy, showing that it assumes an open V-like structure when it is bioactive. However, upon binding to fibrillin-1, the BMP-7 complex is rendered into a closed ring shape, which also confers latency to the growth factor, as demonstrated by bioactivity measurements. BMP-7 prodomain variants were used to map the critical epitopes for prodomain-growth factor and prodomain-prodomain binding. Together, these data show that upon prodomain binding to fibrillin-1, the BMP-7 complex undergoes a conformational change, which denies access of BMP receptors to the growth factor.
Collapse
Affiliation(s)
- Alexander P Wohl
- From the Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931 Cologne, Germany
| | - Helen Troilo
- the Wellcome Trust Centre for Cell-Matrix Research and; Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, United Kingdom, and
| | - Richard F Collins
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, United Kingdom, and
| | - Clair Baldock
- the Wellcome Trust Centre for Cell-Matrix Research and; Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, United Kingdom, and
| | - Gerhard Sengle
- From the Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931 Cologne, Germany,; the Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Street 21, 50931 Cologne, Germany.
| |
Collapse
|
46
|
Kienast Y, Jucknischke U, Scheiblich S, Thier M, de Wouters M, Haas A, Lehmann C, Brand V, Bernicke D, Honold K, Lorenz S. Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains. J Biol Chem 2015; 291:3395-410. [PMID: 26677222 DOI: 10.1074/jbc.m115.680009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/21/2022] Open
Abstract
By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants.
Collapse
Affiliation(s)
- Yvonne Kienast
- From the Roche Pharma Research and Early Development (pRED), Discovery Oncology, Roche Innovation Center Penzberg, 82377 Penzberg, Germany,
| | - Ute Jucknischke
- From the Roche Pharma Research and Early Development (pRED), Discovery Oncology, Roche Innovation Center Penzberg, 82377 Penzberg, Germany
| | - Stefan Scheiblich
- From the Roche Pharma Research and Early Development (pRED), Discovery Oncology, Roche Innovation Center Penzberg, 82377 Penzberg, Germany
| | - Martina Thier
- From the Roche Pharma Research and Early Development (pRED), Translational Technologies and Bioinformatics, Roche Innovation Center, Basel, 4070 Basel, Switzerland, and
| | - Mariana de Wouters
- From the Roche Pharma Research and Early Development (pRED), Translational Technologies and Bioinformatics, Roche Innovation Center, Basel, 4070 Basel, Switzerland, and
| | - Alexander Haas
- From the Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Penzberg, 82377 Penzberg Germany
| | - Christian Lehmann
- From the Roche Pharma Research and Early Development (pRED), Discovery Oncology, Roche Innovation Center Penzberg, 82377 Penzberg, Germany
| | - Verena Brand
- From the Roche Pharma Research and Early Development (pRED)
| | - Dirk Bernicke
- From the Roche Pharma Research and Early Development (pRED), Discovery Oncology, Roche Innovation Center Penzberg, 82377 Penzberg, Germany
| | - Konrad Honold
- From the Roche Pharma Research and Early Development (pRED), Discovery Oncology, Roche Innovation Center Penzberg, 82377 Penzberg, Germany
| | - Stefan Lorenz
- From the Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Penzberg, 82377 Penzberg Germany
| |
Collapse
|