1
|
Davydenko K, Filatova A, Skoblov M. Assessing Splicing Variants in the PAX6 Gene: A Comprehensive Minigene Approach. J Cell Mol Med 2025; 29:e70459. [PMID: 40133207 PMCID: PMC11936725 DOI: 10.1111/jcmm.70459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Haploinsufficiency of the PAX6 gene causes aniridia, a congenital eye disorder characterised by the absence or malformation of the iris and foveal hypoplasia. Previous studies indicate that pathogenic splice variants account for up to 15% of all disease-causing PAX6 variants. However, this proportion may be significantly underestimated because the pathogenicity of splice variants can only be accurately established through experimental validation. In this study, we developed and validated a system of eight minigene constructions for the functional analysis of splicing variants in the PAX6 gene. This system covers all PAX6 coding exons and allows the analysis of any exon and most intronic variants of PAX6. Our comprehensive approach, employing fragment analysis and deep targeted sequencing, enabled us to accurately characterise 38 previously described PAX6 variants, including challenging cases with multiple splicing events. The application of our system revealed that the number of pathogenic splicing variants might be closer to 30% of all pathogenic PAX6 variants. This finding considerably reshapes our understanding of their significance in the genetic landscape of aniridia.
Collapse
Affiliation(s)
- Kseniya Davydenko
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| | - Alexandra Filatova
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| | - Mikhail Skoblov
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| |
Collapse
|
2
|
Yang DD, Rusch LM, Widney KA, Morgenthaler AB, Copley SD. Synonymous edits in the Escherichia coli genome have substantial and condition-dependent effects on fitness. Proc Natl Acad Sci U S A 2024; 121:e2316834121. [PMID: 38252823 PMCID: PMC10835057 DOI: 10.1073/pnas.2316834121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
CRISPR-Cas-based genome editing is widely used in bacteria at scales ranging from construction of individual mutants to massively parallel libraries. This procedure relies on guide RNA-directed cleavage of the genome followed by repair with a template that introduces a desired mutation along with synonymous "immunizing" mutations to prevent re-cleavage of the genome after editing. Because the immunizing mutations do not change the protein sequence, they are often assumed to be neutral. However, synonymous mutations can change mRNA structures in ways that alter levels of the encoded proteins. We have tested the assumption that immunizing mutations are neutral by constructing a library of over 50,000 edits that consist of only synonymous mutations in Escherichia coli. Thousands of edits had substantial effects on fitness during growth of E. coli on acetate, a poor carbon source that is toxic at high concentrations. The percentage of high-impact edits varied considerably between genes and at different positions within genes. We reconstructed clones with high-impact edits and found that 69% indeed had significant effects on growth in acetate. Interestingly, fewer edits affected fitness during growth in glucose, a preferred carbon source, suggesting that changes in protein expression caused by synonymous mutations may be most important when an organism encounters challenging conditions. Finally, we showed that synonymous edits can have widespread effects; a synonymous edit at the 5' end of ptsI altered expression of hundreds of genes. Our results suggest that the synonymous immunizing edits introduced during CRISPR-Cas-based genome editing should not be assumed to be innocuous.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
- Amyris, Inc., Emeryville, CA94608
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
3
|
Rao Y, Ahmed N, Pritchard J, O'Brien EP. Incorporating mutational heterogeneity to identify genes that are enriched for synonymous mutations in cancer. BMC Bioinformatics 2023; 24:462. [PMID: 38062391 PMCID: PMC10704839 DOI: 10.1186/s12859-023-05521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Synonymous mutations, which change the DNA sequence but not the encoded protein sequence, can affect protein structure and function, mRNA maturation, and mRNA half-lives. The possibility that synonymous mutations might be enriched in cancer has been explored in several recent studies. However, none of these studies control for all three types of mutational heterogeneity (patient, histology, and gene) that are known to affect the accurate identification of non-synonymous cancer-associated genes. Our goal is to adopt the current standard for non-synonymous mutations in an investigation of synonymous mutations. RESULTS Here, we create an algorithm, MutSigCVsyn, an adaptation of MutSigCV, to identify cancer-associated genes that are enriched for synonymous mutations based on a non-coding background model that takes into account the mutational heterogeneity across these levels. Using MutSigCVsyn, we first analyzed 2572 cancer whole-genome samples from the Pan-cancer Analysis of Whole Genomes (PCAWG) to identify non-synonymous cancer drivers as a quality control. Indicative of the algorithm accuracy we find that 58.6% of these candidate genes were also found in Cancer Census Gene (CGC) list, and 66.2% were found within the PCAWG cancer driver list. We then applied it to identify 30 putative cancer-associated genes that are enriched for synonymous mutations within the same samples. One of the promising gene candidates is the B cell lymphoma 2 (BCL-2) gene. BCL-2 regulates apoptosis by antagonizing the action of proapoptotic BCL-2 family member proteins. The synonymous mutations in BCL2 are enriched in its anti-apoptotic domain and likely play a role in cancer cell proliferation. CONCLUSION Our study introduces MutSigCVsyn, an algorithm that accounts for mutational heterogeneity at patient, histology, and gene levels, to identify cancer-associated genes that are enriched for synonymous mutations using whole genome sequencing data. We identified 30 putative candidate genes that will benefit from future experimental studies on the role of synonymous mutations in cancer biology.
Collapse
Affiliation(s)
- Yiyun Rao
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Nabeel Ahmed
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, State College, PA, 16802, USA
- Moderna, Inc., Cambridge, USA
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, State College, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
4
|
Vihinen M. Nonsynonymous Synonymous Variants Demand for a Paradigm Shift in Genetics. Curr Genomics 2023; 24:18-23. [PMID: 37920730 PMCID: PMC10334700 DOI: 10.2174/1389202924666230417101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 11/04/2023] Open
Abstract
Synonymous (also known as silent) variations are by definition not considered to change the coded protein. Still many variations in this category affect either protein abundance or properties. As this situation is confusing, we have recently introduced systematics for synonymous variations and those that may on the surface look like synonymous, but these may affect the coded protein in various ways. A new category, unsense variation, was introduced to describe variants that do not introduce a stop codon into the variation site, but which lead to different types of changes in the coded protein. Many of these variations lead to mRNA degradation and missing protein. Here, consequences of the systematics are discussed from the perspectives of variation annotation and interpretation, evolutionary calculations, nonsynonymous-to-synonymous substitution rates, phylogenetics and other evolutionary inferences that are based on the principle of (nearly) neutral synonymous variations. It may be necessary to reassess published results. Further, databases for synonymous variations and prediction methods for such variations should consider unsense variations. Thus, there is a need to evaluate and reflect principles of numerous aspects in genetics, ranging from variation naming and classification to evolutionary calculations.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, BMC B13, Sweden
| |
Collapse
|
5
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Leca I, Phillips AW, Ushakova L, Cushion TD, Keays DA. Codon modification of Tuba1a alters mRNA levels and causes a severe neurodevelopmental phenotype in mice. Sci Rep 2023; 13:1215. [PMID: 36681692 PMCID: PMC9867703 DOI: 10.1038/s41598-023-27782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The tubulinopathies are an umbrella of rare diseases that result from mutations in tubulin genes and are frequently characterised by severe brain malformations. The characteristics of a given disease reflect the expression pattern of the transcript, the function of a given tubulin gene, and the role microtubules play in a particular cell type. Mouse models have proved to be valuable tools that have provided insight into the molecular and cellular mechanisms that underlie the disease state. In this manuscript we compare two Tuba1a mouse models, both of which express wild-type TUBA1A protein but employ different codon usage. We show that modification of the Tuba1a mRNA sequence results in homozygous lethality and a severe neurodevelopmental phenotype. This is associated with a decrease in the number of post-mitotic neurons, PAX6 positive progenitors, and an increase in the number of apoptotic cells. We attribute this to a decrease in the stability of the modified Tuba1a transcript, and the absence of compensation by the other neurogenic tubulins. Our findings highlight the importance of maintaining the wild-type coding sequence when engineering mouse lines and the impact of synonymous genetic variation.
Collapse
Affiliation(s)
- Ines Leca
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Alexander William Phillips
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Department of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Lyubov Ushakova
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Thomas David Cushion
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - David Anthony Keays
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
- Department of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
When a Synonymous Variant Is Nonsynonymous. Genes (Basel) 2022; 13:genes13081485. [PMID: 36011397 PMCID: PMC9408308 DOI: 10.3390/genes13081485] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/27/2022] Open
Abstract
Term synonymous variation is widely used, but frequently in a wrong or misleading meaning and context. Twenty three point eight % of possible nucleotide substitution types in the universal genetic code are for synonymous amino acid changes, but when these variants have a phenotype and functional effect, they are very seldom synonymous. Such variants may manifest changes at DNA, RNA and/or protein levels. Large numbers of variations are erroneously annotated as synonymous, which causes problems e.g., in clinical genetics and diagnosis of diseases. To facilitate precise communication, novel systematics and nomenclature are introduced for variants that when looking only at the genetic code seem like synonymous, but which have phenotypes. A new term, unsense variant is defined as a substitution in the mRNA coding region that affects gene expression and protein production without introducing a stop codon in the variation site. Such variants are common and need to be correctly annotated. Proper naming and annotation are important also to increase awareness of these variants and their consequences.
Collapse
|
8
|
Synonymous mutation rs1129293 is associated with PIK3CG expression and PI3Kγ activation in patients with chronic Chagas cardiomyopathy. Immunobiology 2022; 227:152242. [PMID: 35870262 DOI: 10.1016/j.imbio.2022.152242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Single nucleotide polymorphisms (SNPs) that do not change the composition of amino acids and cause synonymous mutations (sSNPs) were previously considered to lack any functional roles. However, sSNPs have recently been shown to interfere with protein expression owing to a myriad of factors related to the regulation of transcription, mRNA stability, and protein translation processes. In patients with Chagas disease, the presence of the synonymous mutation rs1129293 in phosphatidylinositol-4,5-bisphosphate 3-kinase gamma (PIK3CG) gene contributes to the development of the chronic Chagas cardiomyopathy (CCC), instead of the digestive or asymptomatic forms. In this study, we aimed to investigate whether rs1129293 is associated with the transcription of PIK3CG mRNA and its activity by quantifying AKT phosphorylation in the heart samples of 26 chagasic patients with CCC. Our results showed an association between rs1129293 and decreased PIK3CG mRNA expression levels in the cardiac tissues of patients with CCC. The phosphorylation levels of AKT, the protein target of PI3K, were also reduced in patients with this mutation, but were not correlated with PI3KCG mRNA expression levels. Moreover, bioinformatics analysis showed that rs1129293 and other SNPs in linkage disequilibrium (LD) were associated with the transcriptional regulatory elements, post-transcriptional modifications, and cell-specific splicing expression of PIK3CG mRNA. Therefore, our data demonstrates that the synonymous SNP rs1129293 is capable of affecting the PIK3CG mRNA expression and PI3Kγ activation.
Collapse
|
9
|
Pengelly RJ, Bakhtiar D, Borovská I, Královičová J, Vořechovský I. Exonic splicing code and protein binding sites for calcium. Nucleic Acids Res 2022; 50:5493-5512. [PMID: 35474482 PMCID: PMC9177970 DOI: 10.1093/nar/gkac270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Abstract
Auxilliary splicing sequences in exons, known as enhancers (ESEs) and silencers (ESSs), have been subject to strong selection pressures at the RNA and protein level. The protein component of this splicing code is substantial, recently estimated at ∼50% of the total information within ESEs, but remains poorly understood. The ESE/ESS profiles were previously associated with the Irving-Williams (I-W) stability series for divalent metals, suggesting that the ESE/ESS evolution was shaped by metal binding sites. Here, we have examined splicing activities of exonic sequences that encode protein binding sites for Ca2+, a weak binder in the I-W affinity order. We found that predicted exon inclusion levels for the EF-hand motifs and for Ca2+-binding residues in nonEF-hand proteins were higher than for average exons. For canonical EF-hands, the increase was centred on the EF-hand chelation loop and, in particular, on Ca2+-coordinating residues, with a 1>12>3∼5>9 hierarchy in the 12-codon loop consensus and usage bias at codons 1 and 12. The same hierarchy but a lower increase was observed for noncanonical EF-hands, except for S100 proteins. EF-hand loops preferentially accumulated exon splits in two clusters, one located in their N-terminal halves and the other around codon 12. Using splicing assays and published crosslinking and immunoprecipitation data, we identify candidate trans-acting factors that preferentially bind conserved GA-rich motifs encoding negatively charged amino acids in the loops. Together, these data provide evidence for the high capacity of codons for Ca2+-coordinating residues to be retained in mature transcripts, facilitating their exon-level expansion during eukaryotic evolution.
Collapse
Affiliation(s)
- Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Jana Královičová
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
- Slovak Academy of Sciences, Institute of Zoology, 845 06 Bratislava, Slovak Republic
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
10
|
Rosenberg AA, Marx A, Bronstein AM. Codon-specific Ramachandran plots show amino acid backbone conformation depends on identity of the translated codon. Nat Commun 2022; 13:2815. [PMID: 35595777 PMCID: PMC9123026 DOI: 10.1038/s41467-022-30390-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/28/2022] [Indexed: 12/27/2022] Open
Abstract
Synonymous codons translate into chemically identical amino acids. Once considered inconsequential to the formation of the protein product, there is evidence to suggest that codon usage affects co-translational protein folding and the final structure of the expressed protein. Here we develop a method for computing and comparing codon-specific Ramachandran plots and demonstrate that the backbone dihedral angle distributions of some synonymous codons are distinguishable with statistical significance for some secondary structures. This shows that there exists a dependence between codon identity and backbone torsion of the translated amino acid. Although these findings cannot pinpoint the causal direction of this dependence, we discuss the vast biological implications should coding be shown to directly shape protein conformation and demonstrate the usefulness of this method as a tool for probing associations between codon usage and protein structure. Finally, we urge for the inclusion of exact genetic information into structural databases.
Collapse
Affiliation(s)
- Aviv A Rosenberg
- Computer Science, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ailie Marx
- Computer Science, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alex M Bronstein
- Computer Science, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
11
|
Hagemeijer YP, Guryev V, Horvatovich P. Accurate Prediction of Protein Sequences for Proteogenomics Data Integration. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:233-260. [PMID: 34905178 DOI: 10.1007/978-1-0716-1936-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This book chapter discusses proteogenomics data integration and provides an overview into the different omics layer involved in defining the proteome of a living organism. Various aspects of genome variability affecting either the sequence or abundance level of proteins are discussed in this book chapter, such as the effect of single-nucleotide variants or larger genomic structural variants on the proteome. Next, various sequencing technologies are introduced and discussed from a proteogenomics data integration perspective such as those providing short- and long-read sequencing and listing their respective advantages and shortcomings for accurate protein variant prediction using genomic/transcriptomics sequencing data. Finally, the various bioinformatics tools used to process and analyze DNA/RNA sequencing data are discussed with the ultimate goal of obtaining accurately predicted sample-specific protein sequences that can be used as a drop-in replacement in existing approaches for peptide and protein identification using popular database search engines such as MSFragger, SearchGUI/PeptideShaker.
Collapse
Affiliation(s)
- Yanick Paco Hagemeijer
- Department of Analytical Biochemistry, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Analytical Biochemistry, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.
| |
Collapse
|
12
|
Lord J, Baralle D. Splicing in the Diagnosis of Rare Disease: Advances and Challenges. Front Genet 2021; 12:689892. [PMID: 34276790 PMCID: PMC8280750 DOI: 10.3389/fgene.2021.689892] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations which affect splicing are significant contributors to rare disease, but are frequently overlooked by diagnostic sequencing pipelines. Greater ascertainment of pathogenic splicing variants will increase diagnostic yields, ending the diagnostic odyssey for patients and families affected by rare disorders, and improving treatment and care strategies. Advances in sequencing technologies, predictive modeling, and understanding of the mechanisms of splicing in recent years pave the way for improved detection and interpretation of splice affecting variants, yet several limitations still prohibit their routine ascertainment in diagnostic testing. This review explores some of these advances in the context of clinical application and discusses challenges to be overcome before these variants are comprehensively and routinely recognized in diagnostics.
Collapse
Affiliation(s)
- Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
13
|
Bayoumi A, Elsayed A, Han S, Petta S, Adams LA, Aller R, Khan A, García‐Monzón C, Arias‐Loste MT, Miele L, Latchoumanin O, Alenizi S, Gallego‐Durán R, Fischer J, Berg T, Craxì A, Metwally M, Qiao L, Liddle C, Yki‐Järvinen H, Bugianesi E, Romero‐Gomez M, George J, Eslam M. Mistranslation Drives Alterations in Protein Levels and the Effects of a Synonymous Variant at the Fibroblast Growth Factor 21 Locus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004168. [PMID: 34141520 PMCID: PMC8188187 DOI: 10.1002/advs.202004168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Indexed: 05/08/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived hormone with pleiotropic beneficial effects on metabolism. Paradoxically, FGF21 levels are elevated in metabolic diseases. Interventions that restore metabolic homeostasis reduce FGF21. Whether abnormalities in FGF21 secretion or resistance in peripheral tissues is the initiating factor in altering FGF21 levels and function in humans is unknown. A genetic approach is used to help resolve this paradox. The authors demonstrate that the primary event in dysmetabolic phenotypes is the elevation of FGF21 secretion. The latter is regulated by translational reprogramming in a genotype- and context-dependent manner. To relate the findings to tissues outcomes, the minor (A) allele of rs838133 is shown to be associated with increased hepatic inflammation in patients with metabolic associated fatty liver disease. The results here highlight a dominant role for translation of the FGF21 protein to explain variations in blood levels that is at least partially inherited. These results provide a framework for translational reprogramming of FGF21 to treat metabolic diseases.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Asmaa Elsayed
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shuanglin Han
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Salvatore Petta
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Leon A. Adams
- Medical SchoolSir Charles Gairdner Hospital UnitUniversity of Western AustraliaNedlandsWA6009Australia
| | - Rocio Aller
- GastroenterologyHospital Clinico Universitario de ValladolidSchool of MedicineValladolid UniversityValladolid47002Spain
| | - Anis Khan
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Carmelo García‐Monzón
- Liver Research UnitInstituto de Investigacion Sanitaria PrincesaUniversity Hospital Santa CristinaCIBERehdMadrid28009Spain
| | - María Teresa Arias‐Loste
- Gastroenterology and Hepatology DepartmentMarqués de Valdecilla University HospitalSantander39008Spain
| | - Luca Miele
- Department of Internal MedicineCatholic University of the Sacred HeartRome20123Italy
| | - Olivier Latchoumanin
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shafi Alenizi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Rocio Gallego‐Durán
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Janett Fischer
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Thomas Berg
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Antonio Craxì
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Mayada Metwally
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Liang Qiao
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Christopher Liddle
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Hannele Yki‐Järvinen
- Department of MedicineUniversity of Helsinki and Helsinki University Hospital and Minerva Foundation Institute for Medical ResearchHelsinki00290Finland
| | - Elisabetta Bugianesi
- Division of GastroenterologyDepartment of Medical ScienceUniversity of TurinTurin10124Italy
| | - Manuel Romero‐Gomez
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Jacob George
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Mohammed Eslam
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| |
Collapse
|
14
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
Callens M, Pradier L, Finnegan M, Rose C, Bedhomme S. Read between the lines: Diversity of non-translational selection pressures on local codon usage. Genome Biol Evol 2021; 13:6263832. [PMID: 33944930 PMCID: PMC8410138 DOI: 10.1093/gbe/evab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Protein coding genes can contain specific motifs within their nucleotide sequence that function as a signal for various biological pathways. The presence of such sequence motifs within a gene can have beneficial or detrimental effects on the phenotype and fitness of an organism, and this can lead to the enrichment or avoidance of this sequence motif. The degeneracy of the genetic code allows for the existence of alternative synonymous sequences that exclude or include these motifs, while keeping the encoded amino acid sequence intact. This implies that locally, there can be a selective pressure for preferentially using a codon over its synonymous alternative in order to avoid or enrich a specific sequence motif. This selective pressure could -in addition to mutation, drift and selection for translation efficiency and accuracy- contribute to shape the codon usage bias. In this review, we discuss patterns of avoidance of (or enrichment for) the various biological signals contained in specific nucleotide sequence motifs: transcription and translation initiation and termination signals, mRNA maturation signals, and antiviral immune system targets. Experimental data on the phenotypic or fitness effects of synonymous mutations in these sequence motifs confirm that they can be targets of local selection pressures on codon usage. We also formulate the hypothesis that transposable elements could have a similar impact on codon usage through their preferred integration sequences. Overall, selection on codon usage appears to be a combination of a global selection pressure imposed by the translation machinery, and a patchwork of local selection pressures related to biological signals contained in specific sequence motifs.
Collapse
Affiliation(s)
- Martijn Callens
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Léa Pradier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Michael Finnegan
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Caroline Rose
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Stéphanie Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| |
Collapse
|
16
|
Karavidha KK, Burmeister M, Greenwald MK. β-Arrestin 2 (ARRB2) Polymorphism is Associated With Adverse Consequences of Chronic Heroin Use. Am J Addict 2021; 30:351-357. [PMID: 33783060 DOI: 10.1111/ajad.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND OBJECTIVES β-arrestin 2 is an intracellular protein recruited during the activation of G-protein-coupled receptors. In preclinical studies, β-arrestin 2 has been implicated in µ-opioid receptor desensitization and internalization and the development of opioid tolerance and dependence. The present study investigated relationships between variants in the gene encoding β-arrestin 2 (ARRB2) and clinically relevant phenotypes among individuals with opioid use disorder (OUD). We hypothesized that ARRB2 variants would be associated with the negative effects of long-term heroin use. METHODS Chronic heroin users (N = 201; n = 103 African American; n = 98 Caucasian) were genotyped for ARRB2 r1045280 (synonymous, also affecting binding motif of transcription factor GTF2IRD1), rs2036657 (3'UTR) and rs3786047 (intron) and assessed for the past-month frequency of use, injection use, and lifetime duration of heroin use, number of heroin quit-attempts, and heroin use-related consequences. RESULTS Lifetime heroin-use consequences (especially occupational and health-related) were significantly lower for African American ARRB2 r1045280 C-allele carriers compared with the TT genotype. There was no significant genotype difference in the Caucasian group. ARRB2 rs2036657 was in strong linkage disequilibrium with rs1045280. DISCUSSION AND CONCLUSIONS These results, consistent with extant data, illustrate a role for ancestry-dependent allelic variation in ARRB2 r1045280 on heroin-use consequences. The ARRB2 r1045280 C-allele played a protective role in African-descent participants. SCIENTIFIC SIGNIFICANCE These first-in-human findings, which should be replicated, provide support for mechanistic investigations of ARRB2 and related intracellular signaling molecules in OUD etiology, treatment, and relapse prevention. (Am J Addict 2021;00:00-00).
Collapse
Affiliation(s)
- Klevis K Karavidha
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Margit Burmeister
- Department of Computational Medicine & Bioinformatics, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Mark K Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan.,Department of Pharmacy Practice, Wayne State University, Detroit, Michigan
| |
Collapse
|
17
|
Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res 2021; 49:636-645. [PMID: 33337476 PMCID: PMC7826271 DOI: 10.1093/nar/gkaa1209] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Phase-separated membraneless bodies play important roles in nucleic acid biology. While current models for the roles of phase separation largely focus on the compartmentalization of constituent proteins, we reason that other properties of phase separation may play functional roles. Specifically, we propose that interfaces of phase-separated membraneless bodies could have functional roles in spatially organizing biochemical reactions. Here we propose such a model for the nuclear speckle, a membraneless body implicated in RNA splicing. In our model, sequence-dependent RNA positioning along the nuclear speckle interface coordinates RNA splicing. Our model asserts that exons are preferentially sequestered into nuclear speckles through binding by SR proteins, while introns are excluded through binding by nucleoplasmic hnRNP proteins. As a result, splice sites at exon-intron boundaries are preferentially positioned at nuclear speckle interfaces. This positioning exposes splice sites to interface-localized spliceosomes, enabling the subsequent splicing reaction. Our model provides a simple mechanism that seamlessly explains much of the complex logic of splicing. This logic includes experimental results such as the antagonistic duality between splicing factors, the position dependence of splicing sequence motifs, and the collective contribution of many motifs to splicing decisions. Similar functional roles for phase-separated interfaces may exist for other membraneless bodies.
Collapse
Affiliation(s)
- Susan E Liao
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Oded Regev
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| |
Collapse
|
18
|
CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR. Methods 2020; 191:3-14. [PMID: 33172594 DOI: 10.1016/j.ymeth.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 10/18/2020] [Indexed: 12/26/2022] Open
Abstract
Successful gene knock-in by CRISPR-Cas9 in the mouse zygote requires three components; guideRNA, Cas9 protein and a suitable donor template, which usually comprises homology flanked insert sequence. Recently, long single stranded DNA (lssDNA) donors have emerged as a popular choice of DNA donor, outperforming dsDNA templates in terms of knock-in efficiency for gene tagging and generating conditional alleles. The generation of these donors can be achieved through several methods that may introduce errors in the sequence, result in poor yields, and contain dsDNA contamination. We have developed our own cost-effective lssDNA synthesis methodology that results in high purity, sequence verified, low contamination lssDNA donors. We provide a detailed methodology on the design and generation of such donors for gene tagging experiments and generating conditional alleles.
Collapse
|
19
|
Wisotsky SR, Kosakovsky Pond SL, Shank SD, Muse SV. Synonymous Site-to-Site Substitution Rate Variation Dramatically Inflates False Positive Rates of Selection Analyses: Ignore at Your Own Peril. Mol Biol Evol 2020; 37:2430-2439. [PMID: 32068869 PMCID: PMC7403620 DOI: 10.1093/molbev/msaa037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most molecular evolutionary studies of natural selection maintain the decades-old assumption that synonymous substitution rate variation (SRV) across sites within genes occurs at levels that are either nonexistent or negligible. However, numerous studies challenge this assumption from a biological perspective and show that SRV is comparable in magnitude to that of nonsynonymous substitution rate variation. We evaluated the impact of this assumption on methods for inferring selection at the molecular level by incorporating SRV into an existing method (BUSTED) for detecting signatures of episodic diversifying selection in genes. Using simulated data we found that failing to account for even moderate levels of SRV in selection testing is likely to produce intolerably high false positive rates. To evaluate the effect of the SRV assumption on actual inferences we compared results of tests with and without the assumption in an empirical analysis of over 13,000 Euteleostomi (bony vertebrate) gene alignments from the Selectome database. This exercise reveals that close to 50% of positive results (i.e., evidence for selection) in empirical analyses disappear when SRV is modeled as part of the statistical analysis and are thus candidates for being false positives. The results from this work add to a growing literature establishing that tests of selection are much more sensitive to certain model assumptions than previously believed.
Collapse
Affiliation(s)
- Sadie R Wisotsky
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | | | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Spencer V Muse
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Department of Statistics, North Carolina State University, Raleigh, NC
| |
Collapse
|
20
|
MISHRA ADARSH, ROY PARIMAL. Tetra-primer amplification refractory mutation system-polymerase chain reaction (TARMS-PCR) assay in genotyping of single nucleotide polymorphism in goatpox virus p32 gene. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i2.98764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are most often associated with some pathological implications. Screening out the presence of such mutations is extremely sought to know the nature of the disease outbreak. Furthermore, the allele specific distributions of the virus are to be known for effective epidemiological strategies. Tetra-primer amplification refractory mutation system-polymerase chain reaction (TARMS-PCR) is a simple, rapid and inexpensive technique as compared to high thoroughput sequencing methods for genotyping SNPs. In the present report, a novel TARMS-PCR was utilized to ascertain the presence of a particular allele (645GTPVC/T) in the p32 gene of goatpox virus (GTPV), one of the most widespread Capripoxvirus affecting small ruminants exhibiting moderate to even severe pathological consequences in the endemic areas. It was found that GTPV of Chinese origin are GTPVC/T type whereas only single genotype (GTPVT) was found among GTPV of Indian origins. Possibly, this is the first report of development of a TARMS-PCR technique for genotyping of virus to ascertain the presence of a specific allele. This technique can be applied further to unveil the presence of deleterious mutations in any other viral genome. Further, this technique can be applied for cross-border surveillance of GTPV among China and India.
Collapse
|
21
|
Pavone P, Corsello G, Cho SY, Pappalardo XG, Ruggieri M, Marino SD, Jin DK, Marino S, Falsaperla R. PRRT2 gene variant in a child with dysmorphic features, congenital microcephaly, and severe epileptic seizures: genotype-phenotype correlation? Ital J Pediatr 2019; 45:159. [PMID: 31801583 PMCID: PMC6894132 DOI: 10.1186/s13052-019-0755-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Mutations in Proline-rich Transmembrane Protein 2 (PRRT2) have been primarily associated with individuals presenting with infantile epilepsy, including benign familial infantile epilepsy, benign infantile epilepsy, and benign myoclonus of early infancy, and/or with dyskinetic paroxysms such as paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, and exercise-induced dyskinesia. However, the clinical manifestations of this disorder vary widely. PRRT2 encodes a protein expressed in the central nervous system that is mainly localized in the pre-synaptic neurons and is involved in the modulation of synaptic neurotransmitter release. The anomalous function of this gene has been proposed to cause dysregulation of neuronal excitability and cerebral disorders. Case presentation We hereby report on a young child followed-up for three years who presents with a spectrum of clinical manifestations such as congenital microcephaly, dysmorphic features, severe intellectual disability, and drug-resistant epileptic encephalopathy in association with a synonymous variant in PRRT2 gene (c.501C > T; p.Thr167Ile) of unknown clinical significance variant (VUS) revealed by diagnostic exome sequencing. Conclusion Several hypotheses have been advanced on the specific role that PRRT2 gene mutations play to cause the clinical features of affected patients. To our knowledge, the severe phenotype seen in this case has never been reported in association with any clinically actionable variant, as the missense substitution detected in PRRT2 gene. Intriguingly, the same mutation was reported in the healthy father: the action of modifying factors in the affected child may be hypothesized. The report of similar observations could extend the spectrum of clinical manifestations linked to this mutation.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Pediatrics, University-Hospital "Policlinico-Vittorio Emanuele", University of Catania, Via Santa Sofia 78, 95124, Catania, Italy.
| | | | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Xena Giada Pappalardo
- National Council of Research, CNR, Institute for Research and for Biomedicine Innovation (IRIB) unit of Catania, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Department of Pediatrics, University-Hospital "Policlinico-Vittorio Emanuele", University of Catania, Via Santa Sofia 78, 95124, Catania, Italy
| | - Dong Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Silvia Marino
- Department of Pediatrics, University-Hospital "Policlinico-Vittorio Emanuele", University of Catania, Via Santa Sofia 78, 95124, Catania, Italy
| | - Raffaele Falsaperla
- Department of Pediatrics, University-Hospital "Policlinico-Vittorio Emanuele", University of Catania, Via Santa Sofia 78, 95124, Catania, Italy
| |
Collapse
|
22
|
Movassat M, Forouzmand E, Reese F, Hertel KJ. Exon size and sequence conservation improves identification of splice-altering nucleotides. RNA (NEW YORK, N.Y.) 2019; 25:1793-1805. [PMID: 31554659 PMCID: PMC6859846 DOI: 10.1261/rna.070987.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Pre-mRNA splicing is regulated through multiple trans-acting splicing factors. These regulators interact with the pre-mRNA at intronic and exonic positions. Given that most exons are protein coding, the evolution of exons must be modulated by a combination of selective coding and splicing pressures. It has previously been demonstrated that selective splicing pressures are more easily deconvoluted when phylogenetic comparisons are made for exons of identical size, suggesting that exon size-filtered sequence alignments may improve identification of nucleotides evolved to mediate efficient exon ligation. To test this hypothesis, an exon size database was created, filtering 76 vertebrate sequence alignments based on exon size conservation. In addition to other genomic parameters, such as splice-site strength, gene position, or flanking intron length, this database permits the identification of exons that are size- and/or sequence-conserved. Highly size-conserved exons are always sequence-conserved. However, sequence conservation does not necessitate exon size conservation. Our analysis identified evolutionarily young exons and demonstrated that length conservation is a strong predictor of alternative splicing. A published data set of approximately 5000 exonic SNPs associated with disease was analyzed to test the hypothesis that exon size-filtered sequence comparisons increase detection of splice-altering nucleotides. Improved splice predictions could be achieved when mutations occur at the third codon position, especially when a mutation decreases exon inclusion efficiency. The results demonstrate that coding pressures dominate nucleotide composition at invariable codon positions and that exon size-filtered sequence alignments permit identification of splice-altering nucleotides at wobble positions.
Collapse
Affiliation(s)
- Maliheh Movassat
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| | - Elmira Forouzmand
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| | - Fairlie Reese
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
23
|
Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process. PLoS One 2019; 14:e0223132. [PMID: 31581208 PMCID: PMC6776343 DOI: 10.1371/journal.pone.0223132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing diversifies mRNA transcripts in human cells. While the spliceosome pairs exons with a high degree of accuracy, the rates of rare aberrant and non-canonical pre-mRNA splicing have not been evaluated at the nucleotide level to determine the quantity and identity of these events across splice junctions. Using ultra-deep sequencing the frequency of aberrant and non-canonical splicing events for three splice junctions flanking exon 7 of SMN1 were determined at single nucleotide resolution. After correction for background noise introduced by PCR amplification and sequencing steps, pre-mRNA splicing was shown to maintain a low overall rate of aberrant and non-canonically spliced events. Several previously unannotated splicing events across 3 exon|intron junctions in SMN1 were identified. Mutations within SMN exon 7 were shown to affect splicing fidelity by modulating RNA secondary structures, by altering the binding site of regulatory proteins and by changing the 5’ splice site strength. Mutations also create a truncated SMN1 exon 7 through the introduction of a de novo non-canonical 5’ splice site. The results from the ultra-deep sequencing approach highlight the impressive fidelity of pre-mRNA splicing and demonstrate that the immediate sequence context around splice sites is the main driving force behind non-canonical splice site pairing.
Collapse
|
24
|
Carli D, Giorgio E, Pantaleoni F, Bruselles A, Barresi S, Riberi E, Licciardi F, Gazzin A, Baldassarre G, Pizzi S, Niceta M, Radio FC, Molinatto C, Montin D, Calvo PL, Ciolfi A, Fleischer N, Ferrero GB, Brusco A, Tartaglia M. NBAS
pathogenic variants: Defining the associated clinical and facial phenotype and genotype–phenotype correlations. Hum Mutat 2019; 40:721-728. [DOI: 10.1002/humu.23734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Carli
- Department of Public Health and PediatricsUniversity of TorinoTorino Italy
| | - Elisa Giorgio
- Department of Medical SciencesUniversity of TorinoTorino Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù IRCSSRome Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Sabina Barresi
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù IRCSSRome Italy
| | - Evelise Riberi
- Department of Public Health and PediatricsUniversity of TorinoTorino Italy
| | | | - Andrea Gazzin
- Department of Public Health and PediatricsUniversity of TorinoTorino Italy
| | | | - Simone Pizzi
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù IRCSSRome Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù IRCSSRome Italy
| | - Francesca C. Radio
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù IRCSSRome Italy
| | - Cristina Molinatto
- Department of Public Health and PediatricsUniversity of TorinoTorino Italy
| | - Davide Montin
- Department of Public Health and PediatricsUniversity of TorinoTorino Italy
| | - Pier L. Calvo
- Pediatric Gastroenterology UnitCittà della Salute e della Scienza University HospitalTorino Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù IRCSSRome Italy
| | | | | | - Alfredo Brusco
- Department of Medical SciencesUniversity of TorinoTorino Italy
- Medical Genetics UnitCittà della Salute e della Scienza University HospitalTorino Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù IRCSSRome Italy
| |
Collapse
|
25
|
Maharaj A, Buonocore F, Meimaridou E, Ruiz-Babot G, Guasti L, Peng HM, Capper CP, Burgos-Tirado N, Prasad R, Hughes CR, Maudhoo A, Crowne E, Cheetham TD, Brain CE, Suntharalingham JP, Striglioni N, Yuksel B, Gurbuz F, Gupta S, Lindsay R, Couch R, Spoudeas HA, Guran T, Johnson S, Fowler DJ, Conwell LS, McInerney-Leo AM, Drui D, Cariou B, Lopez-Siguero JP, Harris M, Duncan EL, Hindmarsh PC, Auchus RJ, Donaldson MD, Achermann JC, Metherell LA. Predicted Benign and Synonymous Variants in CYP11A1 Cause Primary Adrenal Insufficiency Through Missplicing. J Endocr Soc 2018; 3:201-221. [PMID: 30620006 PMCID: PMC6316989 DOI: 10.1210/js.2018-00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/25/2018] [Indexed: 01/11/2023] Open
Abstract
Primary adrenal insufficiency (PAI) is a potentially life-threatening condition that can present with nonspecific features and can be difficult to diagnose. We undertook next generation sequencing in a cohort of children and young adults with PAI of unknown etiology from around the world and identified a heterozygous missense variant (rs6161, c.940G>A, p.Glu314Lys) in CYP11A1 in 19 individuals from 13 different families (allele frequency within undiagnosed PAI in our cohort, 0.102 vs 0.0026 in the Genome Aggregation Database; P < 0.0001). Seventeen individuals harbored a second heterozygous rare disruptive variant in CYP11A1 and two had very rare synonymous changes in trans (c.990G>A, Thr330 = ; c.1173C>T, Ser391 =). Although p.Glu314Lys is predicted to be benign and showed no loss-of-function in an Escherichia coli assay system, in silico and in vitro studies revealed that the rs6161/c.940G>A variant, plus the c.990G>A and c.1173C>T changes, affected splicing and that p.Glu314Lys produces a nonfunctional protein in mammalian cells. Taken together, these findings show that compound heterozygosity involving a relatively common and predicted "benign" variant in CYP11A1 is a major contributor to PAI of unknown etiology, especially in European populations. These observations have implications for personalized management and demonstrate how variants that might be overlooked in standard analyses can be pathogenic when combined with other very rare disruptive changes.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Eirini Meimaridou
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Cameron P Capper
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Neikelyn Burgos-Tirado
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claire R Hughes
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ashwini Maudhoo
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Elizabeth Crowne
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Timothy D Cheetham
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Caroline E Brain
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jenifer P Suntharalingham
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Niccolò Striglioni
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Bilgin Yuksel
- Department of Pediatric Endocrinology and Diabetes, Cukurova University, Adana, Turkey
| | - Fatih Gurbuz
- Department of Pediatric Endocrinology and Diabetes, Cukurova University, Adana, Turkey
| | - Sangay Gupta
- Department of Pediatrics, Hull Royal Infirmary, Hull, United Kingdom
| | - Robert Lindsay
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Couch
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Helen A Spoudeas
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Tulay Guran
- Department Pediatric Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Stephanie Johnson
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Dallas J Fowler
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Louise S Conwell
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Aideen M McInerney-Leo
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Delphine Drui
- Department of Endocrinology, l’Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Bertrand Cariou
- INSERM UMR 1087, CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, Nantes, France
| | - Juan P Lopez-Siguero
- Pediatric Endocrinology Unit, Children’s Hospital, Institute of Biomedical Research in Malaga, Málaga, Spain
| | - Mark Harris
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Emma L Duncan
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia,Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Peter C Hindmarsh
- Department of Paediatrics, University College London Hospitals, London, United Kingdom
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Malcolm D Donaldson
- Section of Child Health, Glasgow University School of Medicine, Glasgow, United Kingdom
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Correspondence: Louise A. Metherell, PhD, Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom. E-mail:
| |
Collapse
|
26
|
Braun S, Enculescu M, Setty ST, Cortés-López M, de Almeida BP, Sutandy FXR, Schulz L, Busch A, Seiler M, Ebersberger S, Barbosa-Morais NL, Legewie S, König J, Zarnack K. Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis. Nat Commun 2018; 9:3315. [PMID: 30120239 PMCID: PMC6098099 DOI: 10.1038/s41467-018-05748-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/19/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations causing aberrant splicing are frequently implicated in human diseases including cancer. Here, we establish a high-throughput screen of randomly mutated minigenes to decode the cis-regulatory landscape that determines alternative splicing of exon 11 in the proto-oncogene MST1R (RON). Mathematical modelling of splicing kinetics enables us to identify more than 1000 mutations affecting RON exon 11 skipping, which corresponds to the pathological isoform RON∆165. Importantly, the effects correlate with RON alternative splicing in cancer patients bearing the same mutations. Moreover, we highlight heterogeneous nuclear ribonucleoprotein H (HNRNPH) as a key regulator of RON splicing in healthy tissues and cancer. Using iCLIP and synergy analysis, we pinpoint the functionally most relevant HNRNPH binding sites and demonstrate how cooperative HNRNPH binding facilitates a splicing switch of RON exon 11. Our results thereby offer insights into splicing regulation and the impact of mutations on alternative splicing in cancer.
Collapse
Affiliation(s)
- Simon Braun
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Samarth T Setty
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | | | - Bernardo P de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.,Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | | | - Laura Schulz
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Markus Seiler
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | | | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany.
| |
Collapse
|
27
|
Takata MA, Soll SJ, Emery A, Blanco-Melo D, Swanstrom R, Bieniasz PD. Global synonymous mutagenesis identifies cis-acting RNA elements that regulate HIV-1 splicing and replication. PLoS Pathog 2018; 14:e1006824. [PMID: 29377940 PMCID: PMC5805364 DOI: 10.1371/journal.ppat.1006824] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/08/2018] [Accepted: 12/16/2017] [Indexed: 01/22/2023] Open
Abstract
The ~9.5 kilobase HIV-1 genome contains RNA sequences and structures that control many aspects of viral replication, including transcription, splicing, nuclear export, translation, packaging and reverse transcription. Nonetheless, chemical probing and other approaches suggest that the HIV-1 genome may contain many more RNA secondary structures of unknown importance and function. To determine whether there are additional, undiscovered cis-acting RNA elements in the HIV-1 genome that are important for viral replication, we undertook a global silent mutagenesis experiment. Sixteen mutant proviruses containing clusters of ~50 to ~200 synonymous mutations covering nearly the entire HIV-1 protein coding sequence were designed and synthesized. Analyses of these mutant viruses resulted in their division into three phenotypic groups. Group 1 mutants exhibited near wild-type replication, Group 2 mutants exhibited replication defects accompanied by perturbed RNA splicing, and Group 3 mutants had replication defects in the absence of obvious splicing perturbation. The three phenotypes were caused by mutations that exhibited a clear regional bias in their distribution along the viral genome, and those that caused replication defects all caused reductions in the level of unspliced RNA. We characterized in detail the underlying defects for Group 2 mutants. Second-site revertants that enabled viral replication could be derived for Group 2 mutants, and generally contained point mutations that reduced the utilization of proximal splice sites. Mapping of the changes responsible for splicing perturbations in Group 2 viruses revealed the presence of several RNA sequences that apparently suppressed the use of cryptic or canonical splice sites. Some sequences that affected splicing were diffusely distributed, while others could be mapped to discrete elements, proximal or distal to the affected splice site(s). Overall, our data indicate complex negative regulation of HIV-1 splicing by RNA elements in various regions of the HIV-1 genome that enable balanced splicing and viral replication. In addition to encoding viral proteins, the HIV-1 genome contains sequence elements that act at the level of RNA to enable replication. We undertook an experiment to discover new RNA elements that act in this way by altering nearly the entire coding sequence of the viral genome so as to change the RNA sequence without changing protein sequences. This experiment uncovered two classes of defective mutants. One class had profound defects in RNA splicing, the other had no obvious defects in splicing. Through an analysis of the splicing-defective mutants, we found several previously RNA sequences in the viral genome that affected splicing, enabling a nearly complete catalogue of signals that regulate HIV-1 alternative splicing in infected cells to be derived. Because these newly described sequences lack sequence motifs that are known to bind to canonical splicing-regulatory proteins, they may function through novel mechanisms.
Collapse
Affiliation(s)
- Matthew A. Takata
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Steven J. Soll
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Ann Emery
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel Blanco-Melo
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ke S, Anquetil V, Zamalloa JR, Maity A, Yang A, Arias MA, Kalachikov S, Russo JJ, Ju J, Chasin LA. Saturation mutagenesis reveals manifold determinants of exon definition. Genome Res 2017; 28:11-24. [PMID: 29242188 PMCID: PMC5749175 DOI: 10.1101/gr.219683.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
Abstract
To illuminate the extent and roles of exonic sequences in the splicing of human RNA transcripts, we conducted saturation mutagenesis of a 51-nt internal exon in a three-exon minigene. All possible single and tandem dinucleotide substitutions were surveyed. Using high-throughput genetics, 5560 minigene molecules were assayed for splicing in human HEK293 cells. Up to 70% of mutations produced substantial (greater than twofold) phenotypes of either increased or decreased splicing. Of all predicted secondary structural elements, only a single 15-nt stem–loop showed a strong correlation with splicing, acting negatively. The in vitro formation of exon-protein complexes between the mutant molecules and proteins associated with spliceosome formation (U2AF35, U2AF65, U1A, and U1-70K) correlated with splicing efficiencies, suggesting exon definition as the step affected by most mutations. The measured relative binding affinities of dozens of human RNA binding protein domains as reported in the CISBP-RNA database were found to correlate either positively or negatively with splicing efficiency, more than could fit on the 51-nt test exon simultaneously. The large number of these functional protein binding correlations point to a dynamic and heterogeneous population of pre-mRNA molecules, each responding to a particular collection of binding proteins.
Collapse
Affiliation(s)
- Shengdong Ke
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vincent Anquetil
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jorge Rojas Zamalloa
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Alisha Maity
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Anthony Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Mauricio A Arias
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Sergey Kalachikov
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - James J Russo
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Jingyue Ju
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Lawrence A Chasin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
29
|
CRISPR/Cas9 mediated mutation of mouse IL-1α nuclear localisation sequence abolishes expression. Sci Rep 2017; 7:17077. [PMID: 29213066 PMCID: PMC5719027 DOI: 10.1038/s41598-017-17387-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023] Open
Abstract
Inflammation is a host defense process against infection. Inflammatory mediators include cytokines of the interleukin-1 family, such as IL-1α and IL-1β. Unlike IL-1β, IL-1α carries an N-terminal nuclear localisation sequence (NLS) and is trafficked to the nucleus. The importance of IL-1α nuclear localisation is poorly understood. Here, we used CRISPR/Cas9 to make inactivating mutations to the NLS on the Il1a gene. A colony of NLS mutant mice was successfully generated with precise knock-in mutations to incapacitate NLS function. NLS mutant mice had no gross changes in immunophenotype or inflammatory response but, surprisingly, failed to express IL-1α. We deduced that, in making specific mutations in the Il1a gene, we also mutated a long-noncoding (lnc)RNA in the complementary strand which has cis-regulatory transcriptional control of the Il1a gene itself. The mutations generated in the Il1a gene also result in mutation of the lncRNA sequence and a predicted alteration of its secondary structure, potentially explaining a subsequent failure to function as a transcriptional activator of Il1a expression. Thus, lncRNA secondary structure may regulate IL-1α expression. Our results serve as a cautionary note that CRISPR -mediated genome editing without full knowledge of genomic context can result in unexpected, yet potentially informative observations.
Collapse
|
30
|
Tracing the Evolutionary History of the CAP Superfamily of Proteins Using Amino Acid Sequence Homology and Conservation of Splice Sites. J Mol Evol 2017; 85:137-157. [DOI: 10.1007/s00239-017-9813-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
|
31
|
Savisaar R, Hurst LD. Both Maintenance and Avoidance of RNA-Binding Protein Interactions Constrain Coding Sequence Evolution. Mol Biol Evol 2017; 34:1110-1126. [PMID: 28138077 PMCID: PMC5400389 DOI: 10.1093/molbev/msx061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
While the principal force directing coding sequence (CDS) evolution is selection on protein function, to ensure correct gene expression CDSs must also maintain interactions with RNA-binding proteins (RBPs). Understanding how our genes are shaped by these RNA-level pressures is necessary for diagnostics and for improving transgenes. However, the evolutionary impact of the need to maintain RBP interactions remains unresolved. Are coding sequences constrained by the need to specify RBP binding motifs? If so, what proportion of mutations are affected? Might sequence evolution also be constrained by the need not to specify motifs that might attract unwanted binding, for instance because it would interfere with exon definition? Here, we have scanned human CDSs for motifs that have been experimentally determined to be recognized by RBPs. We observe two sets of motifs-those that are enriched over nucleotide-controlled null and those that are depleted. Importantly, the depleted set is enriched for motifs recognized by non-CDS binding RBPs. Supporting the functional relevance of our observations, we find that motifs that are more enriched are also slower-evolving. The net effect of this selection to preserve is a reduction in the over-all rate of synonymous evolution of 2-3% in both primates and rodents. Stronger motif depletion, on the other hand, is associated with stronger selection against motif gain in evolution. The challenge faced by our CDSs is therefore not only one of attracting the right RBPs but also of avoiding the wrong ones, all while also evolving under selection pressures related to protein structure.
Collapse
Affiliation(s)
- Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
32
|
Luo D, Wang Y, Huan X, Huang C, Yang C, Fan H, Xu Z, Yang L. Identification of a synonymous variant in TRIM59 gene for gastric cancer risk in a Chinese population. Oncotarget 2017; 8:11507-11516. [PMID: 28009992 PMCID: PMC5355281 DOI: 10.18632/oncotarget.14075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
Tripartite motif 59 (TRIM59) is a novel oncogenic driver in gastric cancer (GC) that is implicated in disease progression as well as dismal survival. Genetic variants in peculiar gene are likely candidates for conferring hereditary susceptibility. The role of TRIM59 polymorphism in predicting the risk of malignant diseases and its relevance to TRIM59 expression have not been discussed. Using a HapMap tagSNPs approach, we screened three tag TRIM59 single nucleotide polymorphisms (SNPs) (rs1141023G>A, rs7629A>G, rs11706810T>C) which were genotyped in 602 GC patients and 868 healthy controls. Our study provided convincing result that carries of variant rs1141023A allele markedly increased GC risk (P=0.006). In comparison with the GG homozygotes, the variant GA heterozygotes demonstrated 1.50-fold elevated risk of GC (p=0.014, 95% confidence interval [CI] = 1.09–2.08). Subjects who carried the (GA+AA) genotypes of rs1141023 were associated with remarkable increased GC risk compared with the common genotype (P = 0.013, adjusted OR = 1.50, 95% CI = 1.09–2.05). Further stratified analyses displayed that the relationship between mutant genotype of rs1141023 and GC risk was more profound in male individuals. Intriguingly, there is no significant distinction of TRIM59 mRNA expression between rs1141023GA genotype and GG genotype in 44 normal gastric tissues. Taken together, our results suggest that rs1141023 polymorphism contributes to increased predisposition to GC and thus may be responsible for predicting early GC.
Collapse
Affiliation(s)
- Dakui Luo
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Younan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangkun Huan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Yang
- Liver Transplantation Center of the First Affiliated Hospital and Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Fan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:85-141. [PMID: 29305015 DOI: 10.1016/bs.ircmb.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.
Collapse
|
34
|
Bhagavatula G, Rich MS, Young DL, Marin M, Fields S. A Massively Parallel Fluorescence Assay to Characterize the Effects of Synonymous Mutations on TP53 Expression. Mol Cancer Res 2017; 15:1301-1307. [PMID: 28652265 DOI: 10.1158/1541-7786.mcr-17-0245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Although synonymous mutations can affect gene expression, they have generally not been considered in genomic studies that focus on mutations that increase the risk of cancer. However, mounting evidence implicates some synonymous mutations as driver mutations in cancer. Here, a massively parallel assay, based on cell sorting of a reporter containing a segment of p53 fused to GFP, was used to measure the effects of nearly all synonymous mutations in exon 6 of TP53 In this reporter context, several mutations within the exon caused strong expression changes including mutations that may cause potential gain or loss of function. Further analysis indicates that these effects are largely attributed to errors in splicing, including exon skipping, intron inclusion, and exon truncation, resulting from mutations both at exon-intron junctions and within the body of the exon. These mutations are found at extremely low frequencies in healthy populations and are enriched a few-fold in cancer genomes, suggesting that some of them may be driver mutations in TP53 This assay provides a general framework to identify previously unknown detrimental synonymous mutations in cancer genes.Implications: Using a massively parallel assay, this study demonstrates that synonymous mutations in the TP53 gene affect protein expression, largely through their impact on splicing.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/15/10/1301/F1.large.jpg Mol Cancer Res; 15(10); 1301-7. ©2017 AACR.
Collapse
Affiliation(s)
- Geetha Bhagavatula
- Department of Genome Sciences, University of Washington, Seattle, Washington.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Matthew S Rich
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - David L Young
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Maximillian Marin
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington. .,Howard Hughes Medical Institute, University of Washington, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
35
|
Savisaar R, Hurst LD. Estimating the prevalence of functional exonic splice regulatory information. Hum Genet 2017; 136:1059-1078. [PMID: 28405812 PMCID: PMC5602102 DOI: 10.1007/s00439-017-1798-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
In addition to coding information, human exons contain sequences necessary for correct splicing. These elements are known to be under purifying selection and their disruption can cause disease. However, the density of functional exonic splicing information remains profoundly uncertain. Several groups have experimentally investigated how mutations at different exonic positions affect splicing. They have found splice information to be distributed widely in exons, with one estimate putting the proportion of splicing-relevant nucleotides at >90%. These results suggest that splicing could place a major pressure on exon evolution. However, analyses of sequence conservation have concluded that the need to preserve splice regulatory signals only slightly constrains exon evolution, with a resulting decrease in the average human rate of synonymous evolution of only 1–4%. Why do these two lines of research come to such different conclusions? Among other reasons, we suggest that the methods are measuring different things: one assays the density of sites that affect splicing, the other the density of sites whose effects on splicing are visible to selection. In addition, the experimental methods typically consider short exons, thereby enriching for nucleotides close to the splice junction, such sites being enriched for splice-control elements. By contrast, in part owing to correction for nucleotide composition biases and to the assumption that constraint only operates on exon ends, the conservation-based methods can be overly conservative.
Collapse
Affiliation(s)
- Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
36
|
Wu N, Qin H, Wang M, Bian Y, Dong B, Sun G, Zhao W, Chang G, Xu Q, Chen G. Variations in endothelin receptor B subtype 2 (EDNRB2) coding sequences and mRNA expression levels in 4 Muscovy duck plumage colour phenotypes. Br Poult Sci 2017; 58:116-121. [DOI: 10.1080/00071668.2016.1259531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- N. Wu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - H. Qin
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - M. Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - Y. Bian
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - B. Dong
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - G. Sun
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - W. Zhao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - G. Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - Q. Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - G. Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
37
|
Srivastava K, Polin H, Sheldon SL, Wagner FF, Grabmer C, Gabriel C, Denomme GA, Flegel WA. The DAU cluster: a comparative analysis of 18 RHD alleles, some forming partial D antigens. Transfusion 2016; 56:2520-2531. [PMID: 27480171 PMCID: PMC5499517 DOI: 10.1111/trf.13739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The Rh system is the most complex and polymorphic blood group system in humans with more than 460 alleles known for the RHD gene. The DAU cluster of RHD alleles is characterized by the single-nucleotide change producing the p.Thr379Met amino acid substitution. It is called the DAU-0 allele and has been postulated to be the primordial allele, from which all other alleles of the DAU cluster have eventually evolved. STUDY DESIGN AND METHODS For two novel DAU alleles, the nucleotide sequences of all 10 exons as well as adjacent intronic regions, including the 5' and 3' untranslated regions (UTR), were determined for the RHD and RHCE genes. A phylogenetic tree for all DAU alleles was established using the neighbor-joining method with Pan troglodytes as root. Standard hemagglutination and flow cytometry tests were performed. RESULTS We characterized two DAU alleles, DAU-11 and DAU-5.1, closely related to DAU-3 and DAU-5, respectively. A phylogenetic analysis of the 18 known DAU alleles indicated point mutations and interallelic recombination contributing to diversification of the DAU cluster. CONCLUSIONS The DAU alleles encode a group of RhD protein variants, some forming partial D antigens known to permit anti-D in carriers; all are expected to cause anti-D alloimmunization in recipients of red blood cell transfusions. The DAU alleles evolved through genomic point mutations and recombination. These results suggest that the cluster of DAU alleles represent a clade, which is concordant with our previous postulate that they derived from the primordial DAU-0 allele.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Helene Polin
- Red Cross Transfusion Service of Upper Austria, Linz, Austria
| | - Sherry Lynne Sheldon
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | | | - Christoph Grabmer
- Department of Blood Group Serology and Transfusion Medicine, SALK-Paracelsus Medical University, Salzburg, Austria
| | - Christian Gabriel
- Red Cross Transfusion Service of Upper Austria, Linz, Austria
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | | | - Willy Albert Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
38
|
Julien P, Miñana B, Baeza-Centurion P, Valcárcel J, Lehner B. The complete local genotype-phenotype landscape for the alternative splicing of a human exon. Nat Commun 2016; 7:11558. [PMID: 27161764 PMCID: PMC4866304 DOI: 10.1038/ncomms11558] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/08/2016] [Indexed: 01/21/2023] Open
Abstract
The properties of genotype–phenotype landscapes are crucial for understanding evolution but are not characterized for most traits. Here, we present a >95% complete local landscape for a defined molecular function—the alternative splicing of a human exon (FAS/CD95 exon 6, involved in the control of apoptosis). The landscape provides important mechanistic insights, revealing that regulatory information is dispersed throughout nearly every nucleotide in an exon, that the exon is more robust to the effects of mutations than its immediate neighbours in genotype space, and that high mutation sensitivity (evolvability) will drive the rapid divergence of alternative splicing between species unless it is constrained by selection. Moreover, the extensive epistasis in the landscape predicts that exonic regulatory sequences may diverge between species even when exon inclusion levels are functionally important and conserved by selection. Genotype–phenotype landscapes are an important characteristic for understanding the evolution of traits. Here the authors construct the local landscape for the alternative splicing of FAS/CD95 exon 6, revealing the regulation of splicing and the evolution of regulatory information between species.
Collapse
Affiliation(s)
- Philippe Julien
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Belén Miñana
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Pablo Baeza-Centurion
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Juan Valcárcel
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|