1
|
Klingl YE, Petrauskas A, Jaślan D, Grimm C. TPCs: FROM PLANT TO HUMAN. Physiol Rev 2025; 105:1695-1732. [PMID: 40197126 DOI: 10.1152/physrev.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
In 2005, the Arabidopsis thaliana two-pore channel TPC1 channel was identified as a vacuolar Ca2+-release channel. In 2009, three independent groups published studies on mammalian TPCs as nicotinic acid adenine dinucleotide phosphate (NAADP)-activated endolysosomal Ca2+ release channels, results that were eventually challenged by two other groups, claiming mammalian TPCs to be phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]-activated Na+ channels. By now this dispute seems to have been largely reconciled. Lipophilic small molecule agonists of TPC2, mimicking either the NAADP or the PI(3,5)P2 mode of channel activation, revealed, together with structural evidence, that TPC2 can change its selectivity for Ca2+ versus Na+ in a ligand-dependent fashion (N- vs. P-type activation). Furthermore, the NAADP-binding proteins Jupiter microtubule-associated homolog 2 protein (JPT2) and Lsm12 were discovered, corroborating the hypothesis that NAADP activation of TPCs only works in the presence of these auxiliary NAADP-binding proteins. Pathophysiologically, loss or gain of function of TPCs has effects on autophagy, exocytosis, endocytosis, and intracellular trafficking, e.g., LDL cholesterol trafficking leading to fatty liver disease or viral and bacterial toxin trafficking, corroborating the roles of TPCs in infectious diseases such as Ebola or COVID-19. Defects in the trafficking of epidermal growth factor receptor and β1-integrin suggested roles in cancer. In neurodegenerative lysosomal storage disease models, P-type activation of TPC2 was found to have beneficial effects on both in vitro and in vivo hallmarks of Niemann-Pick disease type C1, Batten disease, and mucolipidosis type IV. Here, we cover the latest on the structure, function, physiology, and pathophysiology of these channels with a focus initially on plants followed by mammalian TPCs, and we discuss their potential as drug targets, including currently available pharmacology.
Collapse
Affiliation(s)
- Yvonne Eileen Klingl
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Arnas Petrauskas
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
3
|
Su M, Zheng S, Liu H, Tang TS, Hu Y. Ca 2+ homeostasis: a potential target for cancer therapies. BIOPHYSICS REPORTS 2024; 10:283-292. [PMID: 39539289 PMCID: PMC11554574 DOI: 10.52601/bpr.2024.230023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/19/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium ions (Ca2+) play a crucial role as secondary messengers in both excitable and non-excitable cells. A complex system of proteins and molecules involved in calcium handling allows Ca2+ signals to be transduced. In cancer cells, mutations, aberrant expression, and dysregulation of these calcium handling toolkit proteins disrupt the normal Ca2+ flux between extracellular space, cytosol, endoplasmic reticulum and mitochondria, as well as the spatio-temporal patterns of Ca2+ signalling. This leads to the dysregulation of calcium-dependent effectors that control key signaling pathways involved in cancer cell proliferation, survival and invasion. Although there has been progressing in understanding the remodelling of calcium homeostasis in cancer cells and identifying key calcium transport molecules that promote malignant phenotypes, much work remains to be done to translate these fundamental findings into new tools for diagnosing and treating cancer by targeting Ca2+ homeostasis.
Collapse
Affiliation(s)
- Min Su
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Akerman EC, Read MJ, Bose SJ, Koschinski A, Capel RA, Chao YC, Folkmanaite M, Ayagama T, Broadbent SD, Ahamed R, Simon JN, Terrar DA, Zaccolo M, Burton RAB. Activation of IP 3R in atrial cardiomyocytes leads to generation of cytosolic cAMP. Am J Physiol Heart Circ Physiol 2024; 327:H830-H846. [PMID: 39093001 PMCID: PMC11482242 DOI: 10.1152/ajpheart.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the inositol (1,4,5)-trisphosphate (IP3) signaling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process. We expressed the fluorescence resonance energy transfer (FRET)-based cytosolic cyclic adenosine monophosphate (cAMP) sensor EPAC-SH187 in neonatal rat atrial myocytes (NRAMs) and neonatal rat ventricular myocytes (NRVMs). In NRAMs, the addition of the α1-agonist, phenylephrine (PE, 3 µM), resulted in a FRET change of 21.20 ± 7.43%, and the addition of membrane-permeant IP3 derivative 2,3,6-tri-O-butyryl-myo-IP3(1,4,5)-hexakis(acetoxymethyl)ester (IP3-AM, 20 μM) resulted in a peak of 20.31 ± 6.74%. These FRET changes imply an increase in cAMP. Prior application of IP3 receptor (IP3R) inhibitors 2-aminoethyl diphenylborinate (2-APB, 2.5 μM) or Xestospongin-C (0.3 μM) significantly inhibited the change in FRET in NRAMs in response to PE. Xestospongin-C (0.3 μM) significantly inhibited the change in FRET in NRAMs in response to IP3-AM. The FRET change in response to PE in NRVMs was not inhibited by 2-APB or Xestospongin-C. Finally, the localization of cAMP signals was tested by expressing the FRET-based cAMP sensor, AKAP79-CUTie, which targets the intracellular surface of the plasmalemma. We found in NRAMs that PE led to FRET change corresponding to an increase in cAMP that was inhibited by 2-APB and Xestospongin-C. These data support further investigation of the proarrhythmic nature and components of IP3-induced cAMP signaling to identify potential pharmacological targets.NEW & NOTEWORTHY This study shows that indirect activation of the IP3 pathway in atrial myocytes using phenylephrine and direct activation using IP3-AM leads to an increase in cAMP and is in part localized to the cell membrane. These changes can be pharmacologically inhibited using IP3R inhibitors. However, the cAMP rise in ventricular myocytes is independent of IP3R calcium release. Our data support further investigation into the proarrhythmic nature of IP3-induced cAMP signaling.
Collapse
Affiliation(s)
- Emily C Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthew J Read
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samuel J Bose
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rebecca A Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Milda Folkmanaite
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | | | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rebecca A B Burton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Krukenberg S, Möckl F, Weiß M, Dekiert P, Hofmann M, Gerlach F, Winterberg KJ, Kovacevic D, Khansahib I, Troost B, Hinrichs M, Granato V, Nawrocki M, Hub T, Tsvilovskyy V, Medert R, Woelk LM, Förster F, Li H, Werner R, Altfeld M, Huber S, Clarke OB, Freichel M, Diercks BP, Meier C, Guse AH. MASTER-NAADP: a membrane permeable precursor of the Ca 2+ mobilizing second messenger NAADP. Nat Commun 2024; 15:8008. [PMID: 39271671 PMCID: PMC11399135 DOI: 10.1038/s41467-024-52024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Upon stimulation of membrane receptors, nicotinic acid adenine dinucleotide phosphate (NAADP) is formed as second messenger within seconds and evokes Ca2+ signaling in many different cell types. Here, to directly stimulate NAADP signaling, MASTER-NAADP, a Membrane permeAble, STabilized, bio-rEversibly pRotected precursor of NAADP is synthesized and release of its active NAADP mimetic, benzoic acid C-nucleoside, 2'-phospho-3'F-adenosine-diphosphate, by esterase digestion is confirmed. In the presence of NAADP receptor HN1L/JPT2 (hematological and neurological expressed 1-like protein, HN1L, also known as Jupiter microtubule-associated homolog 2, JPT2), this active NAADP mimetic releases Ca2+ and increases the open probability of type 1 ryanodine receptor. When added to intact cells, MASTER-NAADP initially evokes single local Ca2+ signals of low amplitude. Subsequently, also global Ca2+ signaling is observed in T cells, natural killer cells, and Neuro2A cells. In contrast, control compound MASTER-NADP does not stimulate Ca2+ signaling. Likewise, in cells devoid of HN1L/JPT2, MASTER-NAADP does not affect Ca2+ signaling, confirming that the product released from MASTER-NAADP is a bona fide NAADP mimetic.
Collapse
Affiliation(s)
- Sarah Krukenberg
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Franziska Möckl
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Mariella Weiß
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Patrick Dekiert
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Melanie Hofmann
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Fynn Gerlach
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kai J Winterberg
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dejan Kovacevic
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Imrankhan Khansahib
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Berit Troost
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Macarena Hinrichs
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Viviana Granato
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tobis Hub
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lena-Marie Woelk
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fritz Förster
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Huan Li
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - René Werner
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marcus Altfeld
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
7
|
de Zélicourt A, Fayssoil A, Mansart A, Zarrouki F, Karoui A, Piquereau J, Lefebvre F, Gerbaud P, Mika D, Dakouane-Giudicelli M, Lanchec E, Feng M, Leblais V, Bobe R, Launay JM, Galione A, Gomez AM, de la Porte S, Cancela JM. Two-pore channels (TPCs) acts as a hub for excitation-contraction coupling, metabolism and cardiac hypertrophy signalling. Cell Calcium 2024; 117:102839. [PMID: 38134531 DOI: 10.1016/j.ceca.2023.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2-/-) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2-/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.
Collapse
Affiliation(s)
- Antoine de Zélicourt
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Abdallah Fayssoil
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm, 2I, 78000 Versailles, France
| | - Faouzi Zarrouki
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Ahmed Karoui
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Jérome Piquereau
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Florence Lefebvre
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Pascale Gerbaud
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Delphine Mika
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | | | - Erwan Lanchec
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Miao Feng
- UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Leblais
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Régis Bobe
- UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Hôpital Lariboisière, Paris, France
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Ana Maria Gomez
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Sabine de la Porte
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - José-Manuel Cancela
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France.
| |
Collapse
|
8
|
Fameli N, van Breemen C, Groschner K. Nanojunctions: Specificity of Ca 2+ signaling requires nano-scale architecture of intracellular membrane contact sites. Cell Calcium 2024; 117:102837. [PMID: 38011822 DOI: 10.1016/j.ceca.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Spatio-temporal definition of Ca2+ signals involves the assembly of signaling complexes within the nano-architecture of contact sites between the sarco/endoplasmic reticulum (SR/ER) and the plasma membrane (PM). While the requirement of precise spatial assembly and positioning of the junctional signaling elements is well documented, the role of the nano-scale membrane architecture itself, as an ion-reflecting confinement of the signalling unit, remains as yet elusive. Utilizing the Na+/Ca2+ Exchanger-1 / SR/ER Ca2+ ATPase-2-mediated ER Ca2+ refilling process as a junctional signalling paradigm, we provide here the first evidence for an indispensable cellular function of the junctional membrane architecture. Our stochastic modeling approach demonstrates that junctional ER Ca2+ refilling operates exclusively at nano-scale membrane spacing, with a strong inverse relationship between junctional width and signaling efficiency. Our model predicts a breakdown of junctional Ca2+ signaling with loss of reflecting membrane confinement. In addition we consider interactions between Ca2+ and the phospholipid membrane surface, which may support interfacial Ca2+ transport and promote receptor targeting. Alterations in the molecular and nano-scale membrane organization at organelle-PM contacts are suggested as a new concept in pathophysiology.
Collapse
Affiliation(s)
| | - Cornelis van Breemen
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Klaus Groschner
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
10
|
Meng Z, Capel RA, Bose SJ, Bosch E, de Jong S, Planque R, Galione A, Burton RAB, Bueno-Orovio A. Lysosomal calcium loading promotes spontaneous calcium release by potentiating ryanodine receptors. Biophys J 2023; 122:3044-3059. [PMID: 37329137 PMCID: PMC10432190 DOI: 10.1016/j.bpj.2023.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Spontaneous calcium release by ryanodine receptors (RyRs) due to intracellular calcium overload results in delayed afterdepolarizations, closely associated with life-threatening arrhythmias. In this regard, inhibiting lysosomal calcium release by two-pore channel 2 (TPC2) knockout has been shown to reduce the incidence of ventricular arrhythmias under β-adrenergic stimulation. However, mechanistic investigations into the role of lysosomal function on RyR spontaneous release remain missing. We investigate the calcium handling mechanisms by which lysosome function modulates RyR spontaneous release, and determine how lysosomes are able to mediate arrhythmias by its influence on calcium loading. Mechanistic studies were conducted using a population of biophysically detailed mouse ventricular models including for the first time modeling of lysosomal function, and calibrated by experimental calcium transients modulated by TPC2. We demonstrate that lysosomal calcium uptake and release can synergistically provide a pathway for fast calcium transport, by which lysosomal calcium release primarily modulates sarcoplasmic reticulum calcium reuptake and RyR release. Enhancement of this lysosomal transport pathway promoted RyR spontaneous release by elevating RyR open probability. In contrast, blocking either lysosomal calcium uptake or release revealed an antiarrhythmic impact. Under conditions of calcium overload, our results indicate that these responses are strongly modulated by intercellular variability in L-type calcium current, RyR release, and sarcoplasmic reticulum calcium-ATPase reuptake. Altogether, our investigations identify that lysosomal calcium handling directly influences RyR spontaneous release by regulating RyR open probability, suggesting antiarrhythmic strategies and identifying key modulators of lysosomal proarrhythmic action.
Collapse
Affiliation(s)
- Zhaozheng Meng
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca A Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samuel J Bose
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Erik Bosch
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sophia de Jong
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert Planque
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca A B Burton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
11
|
Terrar DA. Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca 2. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220170. [PMID: 37122228 PMCID: PMC10150226 DOI: 10.1098/rstb.2022.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Rhythms of electrical activity in all regions of the heart can be influenced by a variety of intracellular membrane bound organelles. This is true both for normal pacemaker activity and for abnormal rhythms including those caused by early and delayed afterdepolarizations under pathological conditions. The influence of the sarcoplasmic reticulum (SR) on cardiac electrical activity is widely recognized, but other intracellular organelles including lysosomes and mitochondria also contribute. Intracellular organelles can provide a timing mechanism (such as an SR clock driven by cyclic uptake and release of Ca2+, with an important influence of intraluminal Ca2+), and/or can act as a Ca2+ store involved in signalling mechanisms. Ca2+ plays many diverse roles including carrying electric current, driving electrogenic sodium-calcium exchange (NCX) particularly when Ca2+ is extruded across the surface membrane causing depolarization, and activation of enzymes which target organelles and surface membrane proteins. Heart function is also influenced by Ca2+ mobilizing agents (cADP-ribose, nicotinic acid adenine dinucleotide phosphate and inositol trisphosphate) acting on intracellular organelles. Lysosomal Ca2+ release exerts its effects via calcium/calmodulin-dependent protein kinase II to promote SR Ca2+ uptake, and contributes to arrhythmias resulting from excessive beta-adrenoceptor stimulation. A separate arrhythmogenic mechanism involves lysosomes, mitochondria and SR. Interacting intracellular organelles, therefore, have profound effects on heart rhythms and NCX plays a central role. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
12
|
Zheng S, Wang X, Zhao D, Liu H, Hu Y. Calcium homeostasis and cancer: insights from endoplasmic reticulum-centered organelle communications. Trends Cell Biol 2023; 33:312-323. [PMID: 35915027 DOI: 10.1016/j.tcb.2022.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022]
Abstract
Calcium ion (Ca2+) is a ubiquitous and versatile signaling molecule controlling a wide variety of cellular processes, such as proliferation, cell death, migration, and immune response, all fundamental processes essential for the establishment of cancer. In recent decades, the loss of Ca2+ homeostasis has been considered an important driving force in the initiation and progression of malignant diseases. The primary intracellular Ca2+ store, the endoplasmic reticulum (ER), plays an essential role in maintaining Ca2+ homeostasis by coordinating with other organelles and the plasma membrane. Here, we discuss the dysregulation of ER-centered Ca2+ homeostasis in cancer, summarize Ca2+-based anticancer therapeutics, and highlight the significance of furthering our understanding of Ca2+ homeostasis regulation in cancer.
Collapse
Affiliation(s)
- Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
13
|
Wahl-Schott C, Freichel M, Hennis K, Philippaert K, Ottenheijm R, Tsvilovskyy V, Varbanov H. Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handb Exp Pharmacol 2023; 278:277-304. [PMID: 36894791 DOI: 10.1007/164_2023_637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.
Collapse
Affiliation(s)
- Christian Wahl-Schott
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.
| | - Konstantin Hennis
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Hristo Varbanov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover(MHH), Hannover, Germany
| |
Collapse
|
14
|
Abstract
The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lora L Martucci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Rice KL, Chan CM, Kelu JJ, Miller AL, Webb SE. A Role for Two-Pore Channel Type 2 (TPC2)-Mediated Regulation of Membrane Contact Sites During Zebrafish Notochord Biogenesis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211409. [PMID: 38028019 PMCID: PMC10658360 DOI: 10.1177/25152564231211409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
We have previously shown that in the developing trunk of zebrafish embryos, two-pore channel type 2 (TPC2)-mediated Ca2+ release from endolysosomes plays a role in the formation of the skeletal slow muscle. In addition, TPC2-mediated Ca2+ signaling is required for axon extension and the establishment of synchronized activity in the primary motor neurons. Here, we report that TPC2 might also play a role in the development of the notochord of zebrafish embryos. For example, when tpcn2 was knocked down or out, increased numbers of small vacuoles were formed in the inner notochord cells, compared with the single large vacuole in the notochord of control embryos. This abnormal vacuolation was associated with embryos displaying attenuated body axis straightening. We also showed that TPC2 has a distinct pattern of localization in the notochord in embryos at ∼24 hpf. Finally, we conducted RNAseq to identify differentially expressed genes in tpcn2 mutants compared to wild-type controls, and found that those involved in actin filament severing, cellular component morphogenesis, Ca2+ binding, and structural constituent of cytoskeleton were downregulated in the mutants. Together, our data suggest that TPC2 activity plays a key role in notochord biogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Keira L. Rice
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Ching Man Chan
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Jeffrey J. Kelu
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Andrew L. Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Sarah E. Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| |
Collapse
|
16
|
Bose SJ, Read MJ, Akerman E, Capel RA, Ayagama T, Russell A, Terrar DA, Zaccolo M, Burton RAB. Inhibition of adenylyl cyclase 1 by ST034307 inhibits IP 3-evoked changes in sino-atrial node beat rate. Front Pharmacol 2022; 13:951897. [PMID: 36105228 PMCID: PMC9465815 DOI: 10.3389/fphar.2022.951897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP3 signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP3 signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307. The maximum rate change of spontaneously beating mouse right atrial tissue exposed to PE was reduced from 14.5% to 8.2% (p = 0.005) in the presence of 1 μM ST034307, whereas the increase in tension generated in paced left atrial tissue in the presence of PE was not inhibited by ST034307 (Control = 14.2%, ST034307 = 16.3%; p > 0.05). Experiments were performed using isolated guinea pig atrial and SAN cells loaded with Fluo-5F-AM to record changes in calcium transients (CaT) generated by 10 μM PE in the presence and absence of 1 μM ST034307. ST034307 significantly reduced the beating rate of SAN cells (0.34-fold decrease; p = 0.003) but did not inhibit changes in CaT amplitude in response to PE in atrial cells. The results presented here demonstrate pharmacologically the involvement of AC1 in the downstream response of atrial pacemaker activity to α-adrenoreceptor stimulation and IP3R calcium release.
Collapse
Affiliation(s)
- Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthew J. Read
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Emily Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Angela Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
17
|
Two-pore channels: going with the flows. Biochem Soc Trans 2022; 50:1143-1155. [PMID: 35959977 PMCID: PMC9444070 DOI: 10.1042/bst20220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
In recent years, our understanding of the structure, mechanisms and functions of the endo-lysosomal TPC (two-pore channel) family have grown apace. Gated by the second messengers, NAADP and PI(3,5)P2, TPCs are an integral part of fundamental signal-transduction pathways, but their array and plasticity of cation conductances (Na+, Ca2+, H+) allow them to variously signal electrically, osmotically or chemically. Their relative tissue- and organelle-selective distribution, together with agonist-selective ion permeabilities provides a rich palette from which extracellular stimuli can choose. TPCs are emerging as mediators of immunity, cancer, metabolism, viral infectivity and neurodegeneration as this short review attests.
Collapse
|
18
|
Unexpected Motherhood-Triggered Hearing Loss in the Two-Pore Channel (TPC) Mutant Mouse. Biomedicines 2022; 10:biomedicines10071708. [PMID: 35885013 PMCID: PMC9312904 DOI: 10.3390/biomedicines10071708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Calcium signaling is crucial for many physiological processes and can mobilize intracellular calcium stores in response to environmental sensory stimuli. The endolysosomal two-pore channel (TPC), regulated by the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), is one of the key components in calcium signaling. However, its role in neuronal physiology remains largely unknown. Here, we investigated to what extent the acoustic thresholds differed between the WT mice and the TPC KO mice. We determined the thresholds based on the auditory brainstem responses (ABRs) at five frequencies (between 4 and 32 kHz) and found no threshold difference between the WT and KO in virgin female mice. Surprisingly, in lactating mothers (at P9–P10), the thresholds were higher from 8 to 32 kHz in the TPC KO mice compared to the WT mice. This result indicates that in the TPC KO mice, physiological events occurring during parturition altered the detection of sounds already at the brainstem level, or even earlier.
Collapse
|
19
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
20
|
Hulsurkar MM, Lahiri SK, Karch J, Wang MC, Wehrens XHT. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets 2022; 26:303-317. [PMID: 35426759 PMCID: PMC9081256 DOI: 10.1080/14728222.2022.2067479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Abnormal calcium signaling between organelles such as the sarcoplasmic reticulum (SR), mitochondria and lysosomes is a key feature of heart diseases. Calcium serves as a secondary messenger mediating inter-organellar crosstalk, essential for maintaining the cardiomyocyte function. AREAS COVERED This article examines the available literature related to calcium channels and transporters involved in inter-organellar calcium signaling. The SR calcium-release channels ryanodine receptor type-2 (RyR2) and inositol 1,4,5-trisphosphate receptor (IP3R), and calcium-transporter SR/ER-ATPase 2a (SERCA2a) are illuminated. The roles of mitochondrial voltage-dependent anion channels (VDAC), the mitochondria Ca2+ uniporter complex (MCUC), and the lysosomal H+/Ca2+ exchanger, two pore channels (TPC), and transient receptor potential mucolipin (TRPML) are discussed. Furthermore, recent studies showing calcium-mediated crosstalk between the SR, mitochondria, and lysosomes as well as how this crosstalk is dysregulated in cardiac diseases are placed under the spotlight. EXPERT OPINION Enhanced SR calcium release via RyR2 and reduced SR reuptake via SERCA2a, increased VDAC and MCUC-mediated calcium uptake into mitochondria, and enhanced lysosomal calcium-release via lysosomal TPC and TRPML may all contribute to aberrant calcium homeostasis causing heart disease. While mechanisms of this crosstalk need to be studied further, interventions targeting these calcium channels or combinations thereof might represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mohit M Hulsurkar
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K Lahiri
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Baylor College of Medicine, Houston TX USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xander H T Wehrens
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
22
|
Faris P, Casali C, Negri S, Iengo L, Biggiogera M, Maione AS, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells. Front Cell Dev Biol 2022; 10:874043. [PMID: 35392169 PMCID: PMC8980055 DOI: 10.3389/fcell.2022.874043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced lysosomal Ca2+ release may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release (CICR) mechanism. NAADP-induced intracellular Ca2+ signals were shown to modulate a growing number of functions in the cardiovascular system, but their occurrence and role in cardiac mesenchymal stromal cells (C-MSCs) is still unknown. Herein, we found that exogenous delivery of NAADP-AM induced a robust Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store with Gly-Phe β-naphthylamide, nigericin, and bafilomycin A1, and blocking TPC1 and TPC2, that are both expressed at protein level in C-MSCs. Furthermore, NAADP-induced EL Ca2+ release resulted in the Ca2+-dependent recruitment of ER-embedded InsP3Rs and SOCE activation. Transmission electron microscopy revealed clearly visible membrane contact sites between lysosome and ER membranes, which are predicted to provide the sub-cellular framework for lysosomal Ca2+ to recruit ER-embedded InsP3Rs through CICR. NAADP-induced EL Ca2+ mobilization via EL TPC was found to trigger the intracellular Ca2+ signals whereby Fetal Bovine Serum (FBS) induces C-MSC proliferation. Furthermore, NAADP-evoked Ca2+ release was required to mediate FBS-induced extracellular signal-regulated kinase (ERK), but not Akt, phosphorylation in C-MSCs. These finding support the notion that NAADP-induced TPC activation could be targeted to boost proliferation in C-MSCs and pave the way for future studies assessing whether aberrant NAADP signaling in C-MSCs could be involved in cardiac disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lara Iengo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| |
Collapse
|
23
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Targeting the two-pore channel 2 in cancer progression and metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:62-89. [PMID: 36046356 PMCID: PMC9400767 DOI: 10.37349/etat.2022.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
The importance of Ca2+ signaling, and particularly Ca2+ channels, in key events of cancer cell function such as proliferation, metastasis, autophagy and angiogenesis, has recently begun to be appreciated. Of particular note are two-pore channels (TPCs), a group of recently identified Ca2+-channels, located within the endolysosomal system. TPC2 has recently emerged as an intracellular ion channel of significant pathophysiological relevance, specifically in cancer, and interest in its role as an anti-cancer drug target has begun to be explored. Herein, an overview of the cancer-related functions of TPC2 and a discussion of its potential as a target for therapeutic intervention, including a summary of clinical trials examining the TPC2 inhibitors, naringenin, tetrandrine, and verapamil for the treatment of various cancers is provided.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Lisa F. Lincz
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia;Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| |
Collapse
|
24
|
Terrar DA. Endolysosomal Calcium Release and Cardiac Physiology. Cell Calcium 2022; 104:102565. [DOI: 10.1016/j.ceca.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
|
25
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
26
|
Ayagama T, Bose SJ, Capel RA, Priestman DA, Berridge G, Fischer R, Galione A, Platt FM, Kramer H, Burton RA. A modified density gradient proteomic-based method to analyze endolysosomal proteins in cardiac tissue. iScience 2021; 24:102949. [PMID: 34466782 PMCID: PMC8384914 DOI: 10.1016/j.isci.2021.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
The importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.3 g/mL); and EL with negligible contamination from SR or Mito (1.04 g/mL) were analyzed using Western blot, enzyme activity assay, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis (adapted discontinuous Percoll and sucrose differential density gradient). Kyoto Encyclopedia of Genes and Genomes, Reactome, Panther, and Gene Ontology pathway analysis showed good coverage of RAB proteins and lysosomal cathepsins (including cardiac-specific cathepsin D) in the purified EL fraction. Significant EL proteins recovered included catalytic activity proteins. We thus present a comprehensive protocol and data set of guinea pig atrial EL organelle proteomics using techniques also applicable for non-cardiac tissue.
Collapse
Affiliation(s)
- Thamali Ayagama
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Samuel J. Bose
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Rebecca A. Capel
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | | | - Georgina Berridge
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Antony Galione
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Frances M. Platt
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN UK
| | | |
Collapse
|
27
|
Jin X, Zhang Y, Alharbi A, Hanbashi A, Alhoshani A, Parrington J. Targeting Two-Pore Channels: Current Progress and Future Challenges. Trends Pharmacol Sci 2021; 41:582-594. [PMID: 32679067 PMCID: PMC7365084 DOI: 10.1016/j.tips.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Two-pore channels (TPCs) are cation-permeable channels located on endolysosomal membranes and important mediators of intracellular Ca2+ signalling. TPCs are involved in various pathophysiological processes, including cell growth and development, metabolism, and cancer progression. Most studies of TPCs have used TPC–/– cell or whole-animal models, or Ned-19, an indirect inhibitor. The TPC activation mechanism remains controversial, which has made it difficult to develop selective modulators. Recent studies of TPC structure and their interactomes are aiding the development of direct pharmacological modulators. This process is still in its infancy, but will facilitate future research and TPC targeting for therapeutical purposes. Here, we review the progress of current research into TPCs, including recent insights into their structures, functional roles, mechanisms of activation, and pharmacological modulators. Two-pore channel (TPC)-mediated endolysosomal Ca2+ signalling regulates a variety of processes, including cell proliferation, differentiation, metabolism, viral infection, and cardiac function. Despite the well-established model that TPCs are Ca2+-selective channels indirectly activated by nicotinic acid adenine dinucleotide phosphate (NAADP), it has also been proposed that TPCs as Na+ channels are activated directly by phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. 3D structures of mouse TPC1 and human TPC2 were recently determined, which made it possible for structure-based virtual screening methods to identify pharmacological modulators of TPC. Recent identification by high-throughput screens of pharmacological modulators that target TPCs will help reveal the molecular mechanisms underlying the role of endolysosomal Ca2+ signalling in different pathophysiological processes, and to develop new therapeutics.
Collapse
Affiliation(s)
- Xuhui Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Abeer Alharbi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Hanbashi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11454, Kingdom of Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
28
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
29
|
Rosenberg P, Zhang H, Bryson VG, Wang C. SOCE in the cardiomyocyte: the secret is in the chambers. Pflugers Arch 2021; 473:417-434. [PMID: 33638008 PMCID: PMC7910201 DOI: 10.1007/s00424-021-02540-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway that is present in virtually every cell type. Over the last two decades, many studies have implicated this non-voltage dependent Ca2+ entry pathway in cardiac physiology. The relevance of the SOCE pathway in cardiomyocytes is often questioned given the well-established role for excitation contraction coupling. In this review, we consider the evidence that STIM1 and SOCE contribute to Ca2+ dynamics in cardiomyocytes. We discuss the relevance of this pathway to cardiac growth in response to developmental and pathologic cues. We also address whether STIM1 contributes to Ca2+ store refilling that likely impacts cardiac pacemaking and arrhythmogenesis in cardiomyocytes.
Collapse
Affiliation(s)
- Paul Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA.
| | - Hengtao Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA
| | | | - Chaojian Wang
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA
| |
Collapse
|
30
|
Simon JN, Vrellaku B, Monterisi S, Chu SM, Rawlings N, Lomas O, Marchal GA, Waithe D, Syeda F, Gajendragadkar PR, Jayaram R, Sayeed R, Channon KM, Fabritz L, Swietach P, Zaccolo M, Eaton P, Casadei B. Oxidation of Protein Kinase A Regulatory Subunit PKARIα Protects Against Myocardial Ischemia-Reperfusion Injury by Inhibiting Lysosomal-Triggered Calcium Release. Circulation 2021; 143:449-465. [PMID: 33185461 PMCID: PMC7846288 DOI: 10.1161/circulationaha.120.046761] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKARIα (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. METHODS Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the effect of disulfide formation on PKARIα catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from "redox dead" (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo. RESULTS In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, P=0.023; 2.4-fold in mice, P<0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in "redox dead" knock-in mouse hearts resulted in larger infarcts (2-fold, P<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, P<0.001), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion. CONCLUSIONS Disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel-mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.
Collapse
Affiliation(s)
- Jillian N. Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), University of Oxford, United Kingdom
| | - Sandy M. Chu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Nadiia Rawlings
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Oliver Lomas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Gerard A. Marchal
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine (D.W.), University of Oxford, United Kingdom
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (F.S., L.F.)
| | - Parag R. Gajendragadkar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Raja Jayaram
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Rana Sayeed
- Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals National Health Service Foundation Trust, United Kingdom (R.S.)
| | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (F.S., L.F.)
- Department of Cardiology, University Hospitals Birmingham, United Kingdom (L.F.)
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), University of Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), University of Oxford, United Kingdom
| | - Philip Eaton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, United Kingdom (P.E.)
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| |
Collapse
|
31
|
Moccia F, Negri S, Faris P, Perna A, De Luca A, Soda T, Berra-Romani R, Guerra G. Targeting Endolysosomal Two-Pore Channels to Treat Cardiovascular Disorders in the Novel COronaVIrus Disease 2019. Front Physiol 2021; 12:629119. [PMID: 33574769 PMCID: PMC7870486 DOI: 10.3389/fphys.2021.629119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence hints in favor of a life-threatening link between severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and the cardiovascular system. SARS-CoV-2 may result in dramatic cardiovascular complications, whereas the severity of COronaVIrus Disease 2019 (COVID-19) and the incidence of fatalities tend to increase in patients with pre-existing cardiovascular complications. SARS-CoV-2 is internalized into the host cells by endocytosis and may then escape the endolysosomal system via endosomes. Two-pore channels drive endolysosomal trafficking through the release of endolysosomal Ca2+. Recent evidence suggested that the pharmacological inhibition of TPCs prevents Ebola virus and Middle East Respiratory Syndrome COronaVirus (MERS-CoV) entry into host cells. In this perspective, we briefly summarize the biophysical and pharmacological features of TPCs, illustrate their emerging role in the cardiovascular system, and finally present them as a reliable target to treat cardiovascular complications in COVID-19 patients.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Section of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- School of Medicine, Department of Biomedicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| |
Collapse
|
32
|
Burton RAB, Terrar DA. Emerging Evidence for cAMP-calcium Cross Talk in Heart Atrial Nanodomains Where IP 3-Evoked Calcium Release Stimulates Adenylyl Cyclases. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211008341. [PMID: 37366374 PMCID: PMC10243587 DOI: 10.1177/25152564211008341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 06/28/2023]
Abstract
Calcium handling is vital to normal physiological function in the heart. Human atrial arrhythmias, eg. atrial fibrillation, are a major morbidity and mortality burden, yet major gaps remain in our understanding of how calcium signaling pathways function and interact. Inositol trisphosphate (IP3) is a calcium-mobilizing second messenger and its agonist-induced effects have been observed in many tissue types. In the atria IP3 receptors (IR3Rs) residing on junctional sarcoplasmic reticulum augment cellular calcium transients and, when over-stimulated, lead to arrhythmogenesis. Recent studies have demonstrated that the predominant pathway for IP3 actions in atrial myocytes depends on stimulation of calcium-dependent forms of adenylyl cyclase (AC8 and AC1) by IP3-evoked calcium release from the sarcoplasmic reticulum. AC8 shows co-localisation with IP3Rs and AC1 appears to be nearby. These observations support crosstalk between calcium and cAMP pathways in nanodomains in atria. Similar mechanisms also appear to operate in the pacemaker region of the sinoatrial node. Here we discuss these significant advances in our understanding of atrial physiology and pathology, together with implications for the identification of potential novel targets and modulators for the treatment of atrial arrhythmias.
Collapse
Affiliation(s)
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Guo C, Webb SE, Chan CM, Miller AL. TPC2-mediated Ca 2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. J Cell Sci 2020; 133:jcs244780. [PMID: 32546534 DOI: 10.1242/jcs.244780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.
Collapse
Affiliation(s)
- Chenxi Guo
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
34
|
Gerndt S, Krogsaeter E, Patel S, Bracher F, Grimm C. Discovery of lipophilic two‐pore channel agonists. FEBS J 2020; 287:5284-5293. [DOI: 10.1111/febs.15432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Susanne Gerndt
- Department of Pharmacy – Center for Drug Research Ludwig‐Maximilians‐Universität Munich Germany
| | - Einar Krogsaeter
- Walther Straub Institute of Pharmacology and Toxicology Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology University College London London UK
| | - Franz Bracher
- Department of Pharmacy – Center for Drug Research Ludwig‐Maximilians‐Universität Munich Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Germany
| |
Collapse
|
35
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
36
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
37
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
38
|
Abstract
Of the established Ca2+-mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations, and its receptors undergo dramatic desensitization. Recent studies have identified a new class of calcium-release channel, the two-pore channels (TPCs), as the likely targets for NAADP regulation, even though the effect may be indirect. These channels localized at endolysosomes, where they mediate local Ca2+ release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca2+ mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca2+ release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca2+-induced Ca2+-release (CICR) channels at lysosomal-endoplasmic reticulum (ER) junctions. The third is to regulate plasma membrane excitability by the targeting of Ca2+ release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca2+-activated channels. In this review, I discuss the role of nicotinic acid adenine nucleotide diphosphate (NAADP)-mediated Ca2+ release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca2+ signaling.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
39
|
Abstract
The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.
Collapse
|
40
|
Calcium Dyshomeostasis and Lysosomal Ca 2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101216. [PMID: 31597311 PMCID: PMC6829585 DOI: 10.3390/cells8101216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recent findings in the understanding of amyotrophic lateral sclerosis (ALS) revealed that alteration in calcium (Ca2+) homeostasis may largely contribute to motor neuron demise. A large part of these alterations is due to dysfunctional Ca2+-storing organelles, including the endoplasmic reticulum (ER) and mitochondria. Very recently, lysosomal Ca2+ dysfunction has emerged as an important pathological change leading to neuronal loss in ALS. Remarkably, the Ca2+-storing organelles are interacting with each other at specialized domains controlling mitochondrial dynamics, ER/lysosomal function, and autophagy. This occurs as a result of interaction between specific ionic channels and Ca2+-dependent proteins located in each structure. Therefore, the dysregulation of these ionic mechanisms could be considered as a key element in the neurodegenerative process. This review will focus on the possible role of lysosomal Ca2+ dysfunction in the pathogenesis of several neurodegenerative diseases, including ALS and shed light on the possibility that specific lysosomal Ca2+ channels might represent new promising targets for preventing or at least delaying neurodegeneration in ALS.
Collapse
|
41
|
Ladd D, Tilūnaitė A, Roderick HL, Soeller C, Crampin EJ, Rajagopal V. Assessing Cardiomyocyte Excitation-Contraction Coupling Site Detection From Live Cell Imaging Using a Structurally-Realistic Computational Model of Calcium Release. Front Physiol 2019; 10:1263. [PMID: 31632297 PMCID: PMC6783691 DOI: 10.3389/fphys.2019.01263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 01/11/2023] Open
Abstract
Calcium signaling plays a pivotal role in cardiomyocytes, coupling electrical excitation to mechanical contraction of the heart. Determining locations of active calcium release sites, and how their recruitment changes in response to stimuli and in disease states is therefore of central interest in cardiac physiology. Current algorithms for detecting release sites from live cell imaging data are however not easily validated against a known “ground truth,” which makes interpretation of the output of such algorithms, in particular the degree of confidence in site detection, a challenging task. Computational models are capable of integrating findings from multiple sources into a consistent, predictive framework. In cellular physiology, such models have the potential to reveal structure and function beyond the temporal and spatial resolution limitations of individual experimental measurements. Here, we create a spatially detailed computational model of calcium release in an eight sarcomere section of a ventricular cardiomyocyte, using electron tomography reconstruction of cardiac ultrastructure and confocal imaging of protein localization. This provides a high-resolution model of calcium diffusion from intracellular stores, which can be used as a platform to simulate confocal fluorescence imaging in the context of known ground truth structures from the higher resolution model. We use this capability to evaluate the performance of a recently proposed method for detecting the functional response of calcium release sites in live cells. Model permutations reveal how calcium release site density and mitochondria acting as diffusion barriers impact the detection performance of the algorithm. We demonstrate that site density has the greatest impact on detection precision and recall, in particular affecting the effective detectable depth of sites in confocal data. Our findings provide guidance on how such detection algorithms may best be applied to experimental data and give insights into limitations when using two-dimensional microscopy images to analyse three-dimensional cellular structures.
Collapse
Affiliation(s)
- David Ladd
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Agnė Tilūnaitė
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Edmund J Crampin
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Rimessi A, Pedriali G, Vezzani B, Tarocco A, Marchi S, Wieckowski MR, Giorgi C, Pinton P. Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Semin Cell Dev Biol 2019; 98:167-180. [PMID: 31108186 DOI: 10.1016/j.semcdb.2019.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Organelles were originally considered to be individual cellular compartments with a defined organization and function. However, recent studies revealed that organelles deeply communicate within each other via Ca2+ exchange. This communication, mediated by specialized membrane regions in close apposition between two organelles, regulate cellular functions, including metabolism and cell fate decisions. Advances in microscopy techniques, molecular biology and biochemistry have increased our understanding of these interorganelle platforms. Research findings suggest that interorganellar Ca2+ signaling, which is altered in cancer, influences tumorigenesis and tumor progression by controlling cell death programs and metabolism. Here, we summarize the available data on the existence and composition of interorganelle platforms connecting the endoplasmic reticulum with mitochondria, the plasma membrane, or endolysosomes. Finally, we provide a timely overview of the potential function of interorganellar Ca2+ signaling in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Gaia Pedriali
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bianca Vezzani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Anna Tarocco
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Neonatal Intensive Care Unit, University Hospital S. Anna Ferrara, 44124 Ferrara, Italy
| | - Saverio Marchi
- Dept. of Clinical and Molecular Sciences, Polytechnical University of Marche, 60126 Ancona, Italy
| | | | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy.
| |
Collapse
|
43
|
5-Azido-8-ethynyl-NAADP: A bifunctional, clickable photoaffinity probe for the identification of NAADP receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1180-1188. [PMID: 30521871 DOI: 10.1016/j.bbamcr.2018.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate is an evolutionarily conserved second messenger, which mobilizes Ca2+ from acidic stores. The molecular identity of the NAADP receptor has yet to be defined. In pursuit of isolating and identifying NAADP-binding proteins, we synthesized and characterized a bifunctional probe that incorporates both a photoactivatable crosslinking azido moiety at the 5-position of the nicotinic ring and a 'clickable' ethynyl moiety to the 8-adenosyl position in NAADP. Microinjection of this 5N3-8-ethynyl-NAADP into cultured U2OS cells induced robust Ca2+ responses. Higher concentrations of 5N3-8-ethynyl were required to elicit Ca2+ release or displace 32P-NAADP in radioligand binding experiments in sea urchin egg homogenates. In human cell extracts, incubation of 32P-5N3-8-ethynyl-NAADP followed by UV irradiation resulted in selective labeling of 23 kDa and 35 kDa proteins and photolabeling of these proteins was prevented when incubated in the presence of unlabeled NAADP. Compared to the monofunctional 32P-5N3-NAADP, the clickable 32P-5N3-8-ethynyl-NAADP demonstrated less labeling of the 23 kDa and 35 kDa proteins (~3-fold) but provided an opportunity for further enrichment through the 'clickable' ethynyl moiety. No proteins were specifically labeled by 32P-5N3-8-ethynyl-NAADP in sea urchin egg homogenate. These experiments demonstrate that 5N3-8-ethynyl-NAADP is biologically active and selectively labels putative NAADP-binding proteins in mammalian systems, evidencing a 'bifunctional' probe with utility for isolating NAADP-binding proteins.
Collapse
|
44
|
Rosenberg P, Katz D, Bryson V. SOCE and STIM1 signaling in the heart: Timing and location matter. Cell Calcium 2018; 77:20-28. [PMID: 30508734 DOI: 10.1016/j.ceca.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
Abstract
Store operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway discovered decades ago, but the function of SOCE in human physiology is only now being revealed. The relevance of this pathway to striated muscle was solidified with the description of skeletal myopathies that result from mutations in STIM1 and Orai1, the two SOCE components. Here, we consider the evidence for STIM1 and SOCE in cardiac muscle and the sinoatrial node. We highlight recent studies revealing a role for STIM1 in cardiac growth in response to developmental and pathologic cues. We also review the role of STIM1 in the regulation of SOCE and Ca2+ store refilling in a non-Orai dependent manner. Finally, we discuss the importance of this pathway in ventricular cardiomyocytes where SOCE contribute to developmental growth and in pacemaker cells where SOCE likely has a fundamental to generating the cardiac rhythm.
Collapse
Affiliation(s)
- Paul Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States.
| | - Danielle Katz
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Victoria Bryson
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
45
|
Gunaratne GS, Johns ME, Hintz HM, Walseth TF, Marchant JS. A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca 2+ signaling in human cells. Cell Calcium 2018; 75:42-52. [PMID: 30145428 PMCID: PMC6286156 DOI: 10.1016/j.ceca.2018.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
The Ca2+ mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) regulates intracellular trafficking events, including translocation of certain enveloped viruses through the endolysosomal system. Targeting NAADP-evoked Ca2+ signaling may therefore be an effective strategy for discovering novel antivirals as well as therapeutics for other disorders. To aid discovery of novel scaffolds that modulate NAADP-evoked Ca2+ signaling in human cells, we have investigated the potential of using the sea urchin egg homogenate system for a screening campaign. Known pharmacological inhibitors of NAADP-evoked Ca2+ release (but not cADPR- or IP3-evoked Ca2+ release) in this invertebrate system strongly correlated with inhibition of MERS-pseudovirus infectivity in a human cell line. A primary screen of 1534 compounds yielded eighteen 'hits' exhibiting >80% inhibition of NAADP-evoked Ca2+ release. A validation pipeline for these candidates yielded seven drugs that inhibited NAADP-evoked Ca2+ release without depleting acidic Ca2+ stores in a human cell line. These candidates displayed a similar penetrance of inhibition in both the sea urchin system and the human cell line, and the extent of inhibition of NAADP-evoked Ca2+ signals correlated well with observed inhibition of infectivity of a Middle East Respiratory syndrome coronavirus (MERS-CoV) pseudovirus. These experiments support the potential of this simple, homogenate system for screening campaigns to discover modulators of NAADP, cADPR and IP3-dependent Ca2+ signaling with potential therapeutic value.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Malcolm E Johns
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Hallie M Hintz
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA.
| |
Collapse
|
46
|
Hamilton A, Zhang Q, Salehi A, Willems M, Knudsen JG, Ringgaard AK, Chapman CE, Gonzalez-Alvarez A, Surdo NC, Zaccolo M, Basco D, Johnson PRV, Ramracheya R, Rutter GA, Galione A, Rorsman P, Tarasov AI. Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca 2+ Mobilization From Acidic Stores in Pancreatic α-Cells. Diabetes 2018; 67:1128-1139. [PMID: 29563152 PMCID: PMC6258900 DOI: 10.2337/db17-1102] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Adrenaline is a powerful stimulus of glucagon secretion. It acts by activation of β-adrenergic receptors, but the downstream mechanisms have only been partially elucidated. Here, we have examined the effects of adrenaline in mouse and human α-cells by a combination of electrophysiology, imaging of Ca2+ and PKA activity, and hormone release measurements. We found that stimulation of glucagon secretion correlated with a PKA- and EPAC2-dependent (inhibited by PKI and ESI-05, respectively) elevation of [Ca2+]i in α-cells, which occurred without stimulation of electrical activity and persisted in the absence of extracellular Ca2+ but was sensitive to ryanodine, bafilomycin, and thapsigargin. Adrenaline also increased [Ca2+]i in α-cells in human islets. Genetic or pharmacological inhibition of the Tpc2 channel (that mediates Ca2+ release from acidic intracellular stores) abolished the stimulatory effect of adrenaline on glucagon secretion and reduced the elevation of [Ca2+]i Furthermore, in Tpc2-deficient islets, ryanodine exerted no additive inhibitory effect. These data suggest that β-adrenergic stimulation of glucagon secretion is controlled by a hierarchy of [Ca2+]i signaling in the α-cell that is initiated by cAMP-induced Tpc2-dependent Ca2+ release from the acidic stores and further amplified by Ca2+-induced Ca2+ release from the sarco/endoplasmic reticulum.
Collapse
Affiliation(s)
- Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Albert Salehi
- Institute of Neuroscience of Physiology, Department of Physiology, Metabolic Research Unit, University of Göteborg, Göteborg, Sweden
| | - Mara Willems
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Anna K Ringgaard
- Diabetes Research, Department of Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline E Chapman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Alejandro Gonzalez-Alvarez
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Nicoletta C Surdo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Davide Basco
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Paul R V Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
- Oxford National Institute for Health Research, Biomedical Research Centre, Oxford, U.K
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, U.K
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K.
- Institute of Neuroscience of Physiology, Department of Physiology, Metabolic Research Unit, University of Göteborg, Göteborg, Sweden
- Oxford National Institute for Health Research, Biomedical Research Centre, Oxford, U.K
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K.
- Oxford National Institute for Health Research, Biomedical Research Centre, Oxford, U.K
| |
Collapse
|
47
|
Two-pore channels and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1678-1686. [PMID: 29746898 PMCID: PMC6162333 DOI: 10.1016/j.bbamcr.2018.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 01/25/2023]
Abstract
Two-pore channels (TPCs) are Ca2+-permeable endo-lysosomal ion channels subject to multi-modal regulation. They mediate their physiological effects through releasing Ca2+ from acidic organelles in response to cues such as the second messenger, NAADP. Here, we review emerging evidence linking TPCs to disease. We discuss how perturbing both local and global Ca2+ changes mediated by TPCs through chemical and/or molecular manipulations can induce or reverse disease phenotypes. We cover evidence from models of Parkinson's disease, non-alcoholic fatty liver disease, Ebola infection, cancer, cardiac dysfunction and diabetes. A need for more drugs targeting TPCs is identified.
Collapse
|
48
|
Kelu JJ, Webb SE, Galione A, Miller AL. TPC2-mediated Ca 2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Dev Biol 2018; 438:57-68. [PMID: 29577882 DOI: 10.1016/j.ydbio.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
During the development of the early spinal circuitry in zebrafish, spontaneous Ca2+ transients in the primary motor neurons (PMNs) are reported to transform from being slow and uncorrelated, to being rapid, synchronized and patterned. In this study, we demonstrated that in intact zebrafish, Ca2+ release via two-pore channel type 2 (TPC2) from acidic stores/endolysosomes is required for the establishment of synchronized activity in the PMNs. Using the SAIGFF213A;UAS:GCaMP7a double-transgenic zebrafish line, Ca2+ transients were visualized in the caudal PMNs (CaPs). TPC2 inhibition via molecular, genetic or pharmacological means attenuated the CaP Ca2+ transients, and decreased the normal ipsilateral correlation and contralateral anti-correlation, indicating a disruption in normal spinal circuitry maturation. Furthermore, treatment with MS-222 resulted in a complete (but reversible) inhibition of the CaP Ca2+ transients, as well as a significant decrease in the concentration of the Ca2+ mobilizing messenger, nicotinic acid adenine diphosphate (NAADP) in whole embryo extract. Together, our new data suggest a novel function for NAADP/TPC2-mediated Ca2+ signaling in the development, coordination, and maturation of the spinal network in zebrafish embryos.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
49
|
Hesketh GG, Wartosch L, Davis LJ, Bright NA, Luzio JP. The Lysosome and Intracellular Signalling. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:151-180. [PMID: 30097775 DOI: 10.1007/978-3-319-96704-2_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed.
Collapse
Affiliation(s)
- Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Lena Wartosch
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luther J Davis
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nicholas A Bright
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
50
|
Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD + metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol 2017; 314:H839-H852. [PMID: 29351465 DOI: 10.1152/ajpheart.00409.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) and related metabolites are central mediators of fuel oxidation and bioenergetics within cardiomyocytes. Additionally, NAD+ is required for the activity of multifunctional enzymes, including sirtuins and poly(ADP-ribose) polymerases that regulate posttranslational modifications, DNA damage responses, and Ca2+ signaling. Recent research has indicated that NAD+ participates in a multitude of processes dysregulated in cardiovascular diseases. Therefore, supplementation of NAD+ precursors, including nicotinamide riboside that boosts or repletes the NAD+ metabolome, may be cardioprotective. This review examines the molecular physiology and preclinical data with respect to NAD+ precursors in heart failure-related cardiac remodeling, ischemic-reperfusion injury, and arrhythmias. In addition, alternative NAD+-boosting strategies and potential systemic effects of NAD+ supplementation with implications on cardiovascular health and disease are surveyed.
Collapse
Affiliation(s)
- Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Charles Brenner
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.,Department of Biochemistry, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Barry London
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|