1
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
2
|
Ouellette JM, Mallender MD, Hian-Cheong DJ, Scurto DL, Nicholas JE, Trumble SJ, Hawke TJ, Krause MP. Altered sphingolipid profile in response to skeletal muscle injury in a mouse model of type 1 diabetes mellitus. Am J Physiol Cell Physiol 2025; 328:C273-C287. [PMID: 39611411 DOI: 10.1152/ajpcell.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
A complication of type 1 diabetes mellitus (T1DM) is diabetic myopathy that includes reduced regenerative capacity of skeletal muscle. Sphingolipids are a diverse family of lipids with roles in skeletal muscle regeneration. Some studies have found changes in sphingolipid species levels in T1DM, however, the effect of T1DM on a sphingolipid panel in regenerating skeletal muscle has not been examined. Wild-type (WT) and diabetic Ins2Akita+/- (Akita) mice received cardiotoxin-induced muscle injury in their left quadriceps, gastrocnemius-plantaris-soleus, and tibialis anterior muscles with the contralateral muscles serving as uninjured controls. Muscles were collected at 1, 3, 5, or 7 days postinjury. In regenerating muscle from Akita mice, lipid staining with BODIPY 493/503 revealed increased intramyocellular and total lipids and perilipin-1-positive cell numbers as compared with WT. Liquid chromatography-mass spectrometry of quadriceps was used to identify sphingolipid levels in skeletal muscle. The C22:0 and C24:0 ceramides were significantly elevated in uninjured Akita, whereas ceramide C24:1 was decreased in injured Akita compared with WT. Ceramide-1-phosphate was increased in Akita compared with WT regardless of injury, whereas sphingosine-1-phosphate (S1P) was elevated with injury in WT but this response was muted in Akita mice. Western blotting of key enzymes involved in sphingolipid metabolism revealed S1P lyase, the enzyme that degrades S1P irreversibly, was significantly elevated in the injured muscle in Akita mice during regeneration, in accordance with lower S1P levels. This mouse model of T1DM demonstrates sphingolipidomic changes that may contribute to delayed muscle regeneration.NEW & NOTEWORTHY Muscle lipids become elevated, and the sphingolipid profile is altered by T1DM in skeletal muscle regeneration. A loss of S1P is accompanied by greater expression of sphingosine-1-phosphate lyase (SPL) in response to injury in Akita mice, suggesting a role for sphingolipids in the attenuated repair of skeletal muscle in T1DM rodent models. Although ceramide-1-phosphate (C1P) is increased with T1DM, there was no increase in ceramide kinase (CerK) suggesting an alternative route of ceramide phosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Jacob M Ouellette
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Michael D Mallender
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Dylan J Hian-Cheong
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Daniel L Scurto
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - James E Nicholas
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | | | - Thomas J Hawke
- Department of Pathology & Molecular Medicine, Faculty of Health Science, McMaster University, Hamilton, Ontario, Canada
| | - Matthew P Krause
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
3
|
Silva G, Silva SSD, Guimarães DSPSF, Cruz MVD, Silveira LR, Rocha-Vieira E, Amorim FT, de Castro Magalhaes F. The dose-effect response of combined red and infrared photobiomodulation on insulin resistance in skeletal muscle cells. Biochem Biophys Rep 2024; 40:101831. [PMID: 39398538 PMCID: PMC11470420 DOI: 10.1016/j.bbrep.2024.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Obesity is a major public health problem and is a major contributor to the development of insulin resistance. In previous studies we observed that single-wavelength red or infrared photobiomodulation (PBM) improved insulin signaling in adipocytes and skeletal muscle of mice fed a high-fat diet, but information about the combination of different wavelengths, as well as the effect of different light doses (J/cm2) is lacking. Therefore, the aim of this study was to investigate the effects of different doses of dual-wavelength PBM on insulin signaling in muscle cell, and explore potential mechanisms involved. Mouse myoblasts (C2C12) were differentiated into myotubes and cultured in palmitic acid, sodium oleate and l-carnitine (PAL) to induce insulin resistance high or in glucose medium (CTRL). Then, they received SHAM treatment (lights off, 0 J/cm2) or PBM (660 + 850 nm; 2, 4 or 8 J/cm2). PAL induced insulin resistance (assessed by Akt phosphorylation at ser473), attenuated maximal citrate synthase activity, and increased the phosphorylation of c-Jun NH(2) terminal kinase (JNK) (T183/Y185). PBM at doses of 4 or 8 J/cm2 reversed these PAL-induced responses. Furthermore, at doses of 2, 4 or 8 J/cm2, PBM reversed the increase in mitofusin-2 content induced by PAL. In conclusion, the combination of dual-wavelength red and infrared PBM at doses of 4 and 8 J/cm2 improved intracellular insulin signaling in musculoskeletal cells, and this effect appears to involve the modulation of mitochondrial function and the attenuation of the activation of stress kinases.
Collapse
Affiliation(s)
- Gabriela Silva
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Saulo Soares da Silva
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Marcos Vinicius da Cruz
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Leonardo Reis Silveira
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Etel Rocha-Vieira
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico – UNM. Johnson Center, B143 MSC04 2610, Albuquerque, New Mexico, 87131-0001, USA
| | - Flavio de Castro Magalhaes
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Department of Health, Exercise, and Sports Sciences, University of New Mexico – UNM. Johnson Center, B143 MSC04 2610, Albuquerque, New Mexico, 87131-0001, USA
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| |
Collapse
|
4
|
Sattari M, Amri J, Shahaboddin ME, Sattari M, Tabatabaei-Malazy O, Azmon M, Meshkani R, Panahi G. The protective effects of fisetin in metabolic disorders: a focus on oxidative stress and associated events. J Diabetes Metab Disord 2024; 23:1753-1771. [PMID: 39610486 PMCID: PMC11599505 DOI: 10.1007/s40200-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 11/30/2024]
Abstract
Abstract Metabolic syndrome is increasingly recognized as a significant precursor to various chronic diseases, contributing to a growing public health concern. Its complex pathogenesis involves multiple interrelated mechanisms, with oxidative stress identified as a cornerstone that exacerbates other pathogenic pathways. This study elucidates the molecular mechanisms by which oxidative stress intensifies metabolic disturbances, particularly insulin resistance. Some recent research has focused on fisetin, a natural product known for its potential benefits in diabetes and its associated microvascular and macrovascular complications. This paper compiles a comprehensive collection of findings by reviewing studies conducted over the past decade, detailing dosages, investigated markers, and their respective outcomes. Notably, a recurrent finding was fisetin's ability to enhance Nrf2, a principal regulator of antioxidant defense, in both metabolic and non-metabolic diseases. Furthermore, intriguing results suggest that the effects of Nrf2 extend beyond oxidative stress modulation, demonstrating favorable impacts on tissue-specific functions in metabolic regulation. This highlights fisetin not only as an antioxidant but also as a potential therapeutic agent for improving metabolic health and mitigating the effects of metabolic syndrome. In conclusion, fisetin can enhance the body's antioxidant defenses by modulating the Nrf2 pathway while also improving metabolic health through its effects on inflammation, cell survival, and energy metabolism, offering a comprehensive approach to managing metabolic disorders. Graphical Abstract
Collapse
Affiliation(s)
- Mahboobe Sattari
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Mohammad Esmaeil Shahaboddin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohadese Sattari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gonzalez Medina M, Liu Z, Wang J, Zhang C, Cash SB, Cummins CL, Giacca A. Cell-Specific Effects of Insulin in a Murine Model of Restenosis Under Insulin-Sensitive and Insulin-Resistant Conditions. Cells 2024; 13:1387. [PMID: 39195275 PMCID: PMC11352246 DOI: 10.3390/cells13161387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Restenosis following percutaneous revascularization is a major challenge in patients with insulin resistance and diabetes. Currently, the vascular effects of insulin are not fully understood. In vitro, insulin's effects on endothelial cells (ECs) are beneficial, whereas on vascular smooth muscle cells (SMCs), they are mitogenic. We previously demonstrated a suppressive effect of insulin on neointimal growth under insulin-sensitive conditions that was abolished in insulin-resistant conditions. Here, we aimed to determine the cell-specific effects of insulin on neointimal growth in a model of restenosis under insulin-sensitive and insulin-resistant conditions. Vascular cell-specific insulin receptor (IR)-deficient mice were fed a low-fat diet (LFD) or a high-fat, high-sucrose diet (HFSD) and implanted with an insulin pellet or vehicle prior to femoral artery wire injury. In insulin-sensitive conditions, insulin decreased neointimal growth only in controls. However, under insulin-resistant conditions, insulin had no effect in either control, EC-specific or SMC-specific IR-deficient mice. These data demonstrate that EC and SMC IRs are required for the anti-restenotic effect of insulin in insulin-sensitive conditions and that, in insulin resistance, insulin has no adverse effect on vascular SMCs in vivo.
Collapse
MESH Headings
- Animals
- Insulin Resistance
- Insulin/metabolism
- Insulin/pharmacology
- Mice
- Disease Models, Animal
- Receptor, Insulin/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Neointima/pathology
- Neointima/metabolism
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Marel Gonzalez Medina
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.G.M.); (Z.L.); (J.W.); (C.Z.)
| | - Zhiwei Liu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.G.M.); (Z.L.); (J.W.); (C.Z.)
| | - Johny Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.G.M.); (Z.L.); (J.W.); (C.Z.)
| | - Cindy Zhang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.G.M.); (Z.L.); (J.W.); (C.Z.)
| | - Sarah B. Cash
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.C.); (C.L.C.)
| | - Carolyn L. Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.C.); (C.L.C.)
| | - Adria Giacca
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.G.M.); (Z.L.); (J.W.); (C.Z.)
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
6
|
Spaggiari R, Angelini S, Di Vincenzo A, Scaglione G, Morrone S, Finello V, Fagioli S, Castaldo F, Sanz JM, Sergi D, Passaro A. Ceramides as Emerging Players in Cardiovascular Disease: Focus on Their Pathogenetic Effects and Regulation by Diet. Adv Nutr 2024; 15:100252. [PMID: 38876397 PMCID: PMC11263787 DOI: 10.1016/j.advnut.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
Collapse
Affiliation(s)
- Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sharon Angelini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Alessandra Di Vincenzo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Gerarda Scaglione
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sara Morrone
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Veronica Finello
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sofia Fagioli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Fabiola Castaldo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Juana M Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy.
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| |
Collapse
|
7
|
Małkowska P. Positive Effects of Physical Activity on Insulin Signaling. Curr Issues Mol Biol 2024; 46:5467-5487. [PMID: 38920999 PMCID: PMC11202552 DOI: 10.3390/cimb46060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Physical activity is integral to metabolic health, particularly in addressing insulin resistance and related disorders such as type 2 diabetes mellitus (T2DM). Studies consistently demonstrate a strong association between physical activity levels and insulin sensitivity. Regular exercise interventions were shown to significantly improve glycemic control, highlighting exercise as a recommended therapeutic strategy for reducing insulin resistance. Physical inactivity is closely linked to islet cell insufficiency, exacerbating insulin resistance through various pathways including ER stress, mitochondrial dysfunction, oxidative stress, and inflammation. Conversely, physical training and exercise preserve and restore islet function, enhancing peripheral insulin sensitivity. Exercise interventions stimulate β-cell proliferation through increased circulating levels of growth factors, further emphasizing its role in maintaining pancreatic health and glucose metabolism. Furthermore, sedentary lifestyles contribute to elevated oxidative stress levels and ceramide production, impairing insulin signaling and glucose metabolism. Regular exercise induces anti-inflammatory responses, enhances antioxidant defenses, and promotes mitochondrial function, thereby improving insulin sensitivity and metabolic efficiency. Encouraging individuals to adopt active lifestyles and engage in regular exercise is crucial for preventing and managing insulin resistance and related metabolic disorders, ultimately promoting overall health and well-being.
Collapse
Affiliation(s)
- Paulina Małkowska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland
| |
Collapse
|
8
|
Pan Y, Li J, Lin P, Wan L, Qu Y, Cao L, Wang L. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer's disease, and their co-morbidities. Front Pharmacol 2024; 15:1348410. [PMID: 38379904 PMCID: PMC10877008 DOI: 10.3389/fphar.2024.1348410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is rapidly increasing, revealing a strong association between these two diseases. Currently, there are no curative medication available for the comorbidity of T2DM and AD. Ceramides are structural components of cell membrane lipids and act as signal molecules regulating cell homeostasis. Their synthesis and degradation play crucial roles in maintaining metabolic balance in vivo, serving as important mediators in the development of neurodegenerative and metabolic disorders. Abnormal ceramide metabolism disrupts intracellular signaling, induces oxidative stress, activates inflammatory factors, and impacts glucose and lipid homeostasis in metabolism-related tissues like the liver, skeletal muscle, and adipose tissue, driving the occurrence and progression of T2DM. The connection between changes in ceramide levels in the brain, amyloid β accumulation, and tau hyper-phosphorylation is evident. Additionally, ceramide regulates cell survival and apoptosis through related signaling pathways, actively participating in the occurrence and progression of AD. Regulatory enzymes, their metabolites, and signaling pathways impact core pathological molecular mechanisms shared by T2DM and AD, such as insulin resistance and inflammatory response. Consequently, regulating ceramide metabolism may become a potential therapeutic target and intervention for the comorbidity of T2DM and AD. The paper comprehensively summarizes and discusses the role of ceramide and its metabolites in the pathogenesis of T2DM and AD, as well as the latest progress in the treatment of T2DM with AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Zhao Y, Zhao H, Li L, Yu S, Liu M, Jiang L. Ceramide on the road to insulin resistance and immunometabolic disorders in transition dairy cows: driver or passenger? Front Immunol 2024; 14:1321597. [PMID: 38274826 PMCID: PMC10808295 DOI: 10.3389/fimmu.2023.1321597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Dairy cows must undergo profound metabolic and endocrine adaptations during their transition period to meet the nutrient requirements of the developing fetus, parturition, and the onset of lactation. Insulin resistance in extrahepatic tissues is a critical component of homeorhetic adaptations in periparturient dairy cows. However, due to increased energy demands at calving that are not followed by a concomitant increase in dry matter intake, body stores are mobilized, and the risk of metabolic disorders dramatically increases. Sphingolipid ceramides involved in multiple vital biological processes, such as proliferation, differentiation, apoptosis, and inflammation. Three typical pathways generate ceramide, and many factors contribute to its production as part of the cell's stress response. Based on lipidomic profiling, there has generally been an association between increased ceramide content and various disease outcomes in rodents. Emerging evidence shows that ceramides might play crucial roles in the adaptive metabolic alterations accompanying the initiation of lactation in dairy cows. A series of studies also revealed a negative association between circulating ceramides and systemic insulin sensitivity in dairy cows experiencing severe negative energy balance. Whether ceramide acts as a driver or passenger in the metabolic stress of periparturient dairy cows is an unknown but exciting topic. In the present review, we discuss the potential roles of ceramides in various metabolic dysfunctions and the impacts of their perturbations. We also discuss how this novel class of bioactive sphingolipids has drawn interest in extrahepatic tissue insulin resistance and immunometabolic disorders in transition dairy cows. We also discuss the possible use of ceramide as a new biomarker for predicting metabolic diseases in cows and highlight the remaining problems.
Collapse
Affiliation(s)
| | | | | | | | | | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
11
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Epidemiological and mechanistic studies have reported relationships between blood lipids, mostly measured by traditional method in clinical settings, and gestational diabetes mellitus (GDM). Recent advances of high-throughput lipidomics techniques have made available more comprehensive lipid profiling in biological samples. This review aims to summarize evidence from prospective studies in assessing relations between blood lipids and GDM, and discuss potential underlying mechanisms. RECENT FINDINGS Mass spectrometry and nuclear magnetic resonance spectroscopy-based analytical platforms are extensively used in lipidomics research. Epidemiological studies have identified multiple novel lipidomic biomarkers that are associated with risk of GDM, such as certain types of fatty acids, glycerolipids, glycerophospholipids, sphingolipids, cholesterol, and lipoproteins. However, the findings are inconclusive mainly due to the heterogeneities in study populations, sample sizes, and analytical platforms. Mechanistic evidence indicates that abnormal lipid metabolism may be involved in the pathogenesis of GDM by impairing pancreatic β-cells and inducing insulin resistance through several etiologic pathways, such as inflammation and oxidative stress. SUMMARY Lipidomics is a powerful tool to study pathogenesis and biomarkers for GDM. Lipidomic biomarkers and pathways could help to identify women at high risk for GDM and could be potential targets for early prevention and intervention of GDM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
13
|
Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1149239. [PMID: 37056675 PMCID: PMC10086443 DOI: 10.3389/fendo.2023.1149239] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Insulin resistance (IR) plays a crucial role in the development and progression of metabolism-related diseases such as diabetes, hypertension, tumors, and nonalcoholic fatty liver disease, and provides the basis for a common understanding of these chronic diseases. In this study, we provide a systematic review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any factor leading to abnormalities in the insulin signaling pathway leads to the development of IR in the host, including insulin receptor abnormalities, disturbances in the internal environment (regarding inflammation, hypoxia, lipotoxicity, and immunity), metabolic function of the liver and organelles, and other abnormalities. The available therapeutic strategies for IR are mainly exercise and dietary habit improvement, and chemotherapy based on biguanides and glucagon-like peptide-1, and traditional Chinese medicine treatments (e.g., herbs and acupuncture) can also be helpful. Based on the current understanding of IR mechanisms, there are still some vacancies to follow up and consider, and there is also a need to define more precise biomarkers for different chronic diseases and lifestyle interventions, and to explore natural or synthetic drugs targeting IR treatment. This could enable the treatment of patients with multiple combined metabolic diseases, with the aim of treating the disease holistically to reduce healthcare expenditures and to improve the quality of life of patients to some extent.
Collapse
Affiliation(s)
| | | | | | | | - Hangyu Ji
- *Correspondence: Fengmei Lian, ; Hangyu Ji,
| | | |
Collapse
|
14
|
Glycosphingolipids in Diabetes, Oxidative Stress, and Cardiovascular Disease: Prevention in Experimental Animal Models. Int J Mol Sci 2022; 23:ijms232315442. [PMID: 36499769 PMCID: PMC9735750 DOI: 10.3390/ijms232315442] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes contributes to about 30% morbidity and mortality world-wide and has tidal wave increases in several countries in Asia. Diabetes is a multi-factorial disease compounded by inflammation, dyslipidemia, atherosclerosis, and is sometimes accompanied with gains in body weight. Sphingolipid pathways that interplay in the enhancement of the pathology of this disease may be potential therapeutic targets. Thus, the application of advanced sphingolipidomics may help predict the progression of this disease and therapeutic outcomes in man. Pre-clinical studies using various experimental animal models of diabetes provide valuable information on the role of sphingolipid signaling networks in diabetes and the efficacy of drugs to determine the translatability of innovative discoveries to man. In this review, we discuss three major concepts regarding sphingolipids and diabetes. First, we discuss a possible involvement of a monosialodihexosylceramide (GM3) in insulin-insulin receptor interactions. Second, a potential role for ceramide (Cer) and lactosylceramide (LacCer) in apoptosis and mitochondrial dysfunction is proposed. Third, a larger role of LacCer in antioxidant status and inflammation is discussed. We also discuss how inhibitors of glycosphingolipid synthesis can ameliorate diabetes in experimental animal models.
Collapse
|
15
|
Yu XD, Wang JW. Ceramide de novo synthesis in non-alcoholic fatty liver disease: Pathogenic mechanisms and therapeutic perspectives. Biochem Pharmacol 2022; 202:115157. [PMID: 35777449 DOI: 10.1016/j.bcp.2022.115157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and its advanced form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular carcinoma. Ceramides have been shown to exacerbate NAFLD development through enhancing insulin resistance, reactive oxygen species production, liver steatosis, lipotoxicity and hepatocyte apoptosis, and eventually causing hepatic inflammation and fibrosis. Emerging evidence indicates that ceramide production in NAFLD is predominantly attributed to activation of the de novo synthesis pathway of ceramides in hepatocytes. More importantly, pharmacological modulation of ceramide de novo synthesis in preclinical studies seems efficacious for the treatment of NAFLD. In this review, we provide an overview of the pathogenic mechanisms of ceramides in NAFLD, discuss recent advances and challenges in pharmacological interventions targeting ceramide de novo synthesis, and propose some research directions in the field.
Collapse
Affiliation(s)
- Xiao-Dong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Eo H, Valentine RJ. Saturated Fatty Acid-Induced Endoplasmic Reticulum Stress and Insulin Resistance Are Prevented by Imoxin in C2C12 Myotubes. Front Physiol 2022; 13:842819. [PMID: 35936891 PMCID: PMC9355746 DOI: 10.3389/fphys.2022.842819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In obesity, plasma free fatty acids (FFAs) levels are elevated due to enlarged adipose tissue mass. Saturated fatty acids can induce prolonged ER stress and insulin resistance. Double-stranded RNA-dependent Protein Kinase (PKR) is activated under stress conditions in skeletal muscle. The current study aimed to investigate the effect of imoxin (IMX), a selective PKR inhibitor, on palmitate-induced ER stress and insulin resistance in C2C12 myotubes. Cells were treated with 5 μM imoxin and exposed to 0.5 mM bovine serum albumin (BSA)-conjugated PA for 24 h. A subset of cells was stimulated with 50 nM insulin for the last 15 min. Glucose uptake was monitored and protein levels involved in ER stress and insulin signaling were measured by Western blotting. Palmitate stimulated PKR phosphorylation, which was prevented by imoxin. Moreover, imoxin reduced protein levels of ER stress-related markers including glucose-regulating protein 78 (GRP78), CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6) and spliced X-box binding protein 1 (XBP-1s) which were induced by palmitate. Furthermore, imoxin ameliorated palmitate-induced suppression of phospho-insulin receptor beta (p-IRβ) and Akt phosphorylation in myotubes. In addition, imoxin promoted glucose uptake in response to insulin under palmitate exposure. Furthermore, imoxin reduced phospho-c-Jun N-terminal kinase (p-JNK) induced by palmitate treatment. These findings suggest that imoxin may protect against saturated fatty acid-induced ER stress and insulin resistance in skeletal muscle, which are potentially mediated by PKR.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Rudy J Valentine,
| |
Collapse
|
17
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
18
|
Allais A, Albert O, Lefèvre PLC, Wade MG, Hales BF, Robaire B. In Utero and Lactational Exposure to Flame Retardants Disrupts Rat Ovarian Follicular Development and Advances Puberty. Toxicol Sci 2021; 175:197-209. [PMID: 32207525 DOI: 10.1093/toxsci/kfaa044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brominated flame retardants (BFRs), including polybrominated diphenyl ethers and hexabromocyclododecane, leach out from consumer products into the environment. Exposure to BFRs has been associated with effects on endocrine homeostasis. To test the hypothesis that in utero and lactational exposure to BFRs may affect the reproductive system of female offspring, adult female Sprague Dawley rats were fed diets formulated to deliver nominal doses (0, 0.06, 20, or 60 mg/kg/day) of a BFR dietary mixture mimicking the relative congener levels in house dust from prior to mating until weaning. Vaginal opening and the day of first estrus occurred at a significantly earlier age among offspring from the 20 mg/kg/day BFR group, indicating that the onset of puberty was advanced. Histological analysis of ovaries from postnatal day 46 offspring revealed an increase in the incidence of abnormal follicles. A toxicogenomic analysis of ovarian gene expression identified upstream regulators, including HIF1A, CREB1, EGF, the β-estradiol, and PPARA pathways, predicted to be downregulated in the 20 or 60 mg/kg/day group and to contribute to the gene expression patterns observed. Thus, perinatal exposure to BFRs dysregulated ovarian folliculogenesis and signaling pathways that are fundamental for ovarian function in the adult.
Collapse
Affiliation(s)
- Adélaïde Allais
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Océane Albert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Pavine L C Lefèvre
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Michael G Wade
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Sangweni NF, Mosa RA, Dludla PV, Kappo AP, Opoku AR, Muller CJF, Johnson R. The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153546. [PMID: 33799221 DOI: 10.1016/j.phymed.2021.153546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hyperglycemia-induced cardiovascular dysfunction has been linked to oxidative stress and accelerated apoptosis in the diabetic myocardium. While there is currently no treatment for diabetic cardiomyopathy (DCM), studies suggest that the combinational use of anti-hyperglycemic agents and triterpenes could be effective in alleviating DCM. HYPOTHESIS To investigate the therapeutic effect of methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), in the absence or presence of the anti-diabetic drug, metformin (MET), against hyperglycemia-induced cardiac injury using an in vitro H9c2 cell model. METHODS To mimic a hyperglycemic state, H9c2 cells were exposed to high glucose (HG, 33 mM) for 24 h. Thereafter, the cells were treated with RA3 (1 μM), MET (1 μM) and the combination of MET (1 μM) plus RA3 (1 μM) for 24 h, to assess the treatments therapeutic effect. RESULTS Biochemical analysis revealed that RA3, with or without MET, improves glucose uptake via insulin-dependent (IRS-1/PI3K/Akt signaling) and independent (AMPK) pathways whilst ameliorating the activity of antioxidant enzymes in the H9c2 cells. Mechanistically, RA3 was able to alleviate HG-stimulated oxidative stress through the inhibition of reactive oxygen species (ROS) and lipid peroxidation as well as the reduced expression of the PKC/NF-кB cascade through decreased intracellular lipid content. Subsequently, RA3 was able to mitigate HG-induced apoptosis by decreasing the activity of caspase 3/7 and DNA fragmentation in the cardiomyoblasts. CONCLUSION RA3, in the absence or presence of MET, demonstrated potent therapeutic properties against hyperglycemia-mediated cardiac damage and could be a suitable candidate in the prevention of DCM.
Collapse
Affiliation(s)
- Nonhlakanipho F Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Rebamang A Mosa
- Department of Biochemistry, Genetics and Microbiology (BGM), Division of Biochemistry, University of Pretoria, Hatfield 0028, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
20
|
Shabbir MA, Mehak F, Khan ZM, Ahmad W, Khan MR, Zia S, Rahaman A, Aadil RM. Interplay between ceramides and phytonutrients: New insights in metabolic syndrome. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Abstract
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, insulin resistance (IR) and dyslipidaemia. Consumption of a high-fat diet (HFD) enriched in SFA leads to the accumulation of ceramide (Cer), the central molecule in sphingolipid metabolism. Elevations in plasma and tissue Cer are found in obese individuals, and there is evidence to suggest that Cer lipotoxicity contributes to the MetS. EPA and DHA have shown to improve MetS parameters including IR, inflammation and hypertriacylglycerolaemia; however, whether these improvements are related to Cer is currently unknown. This review examines the potential of EPA and DHA to improve Cer lipotoxicity and MetS parameters including IR, inflammation and dyslipidaemia in vitro and in vivo. Current evidence from cell culture and animal studies indicates that EPA and DHA attenuate palmitate- or HFD-induced Cer lipotoxicity and IR, whereas evidence in humans is greatly lacking. Overall, there is intriguing potential for EPA and DHA to improve Cer lipotoxicity and related MetS parameters, but more research is warranted.
Collapse
|
22
|
Hajduch E, Lachkar F, Ferré P, Foufelle F. Roles of Ceramides in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10040792. [PMID: 33669443 PMCID: PMC7920467 DOI: 10.3390/jcm10040792] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is one of the most common chronic liver diseases, ranging from simple steatosis to steatohepatitis, fibrosis, and cirrhosis. Its prevalence is rapidly increasing and presently affects around 25% of the general population of Western countries, due to the obesity epidemic. Liver fat accumulation induces the synthesis of specific lipid species and particularly ceramides, a sphingolipid. In turn, ceramides have deleterious effects on hepatic metabolism, a phenomenon called lipotoxicity. We review here the evidence showing the role of ceramides in non-alcoholic fatty liver disease and the mechanisms underlying their effects.
Collapse
Affiliation(s)
- Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
- Correspondence: ; Tel.: +33-1-44-27-24-25
| |
Collapse
|
23
|
Liu J, Li J, Yang K, Leng J, Li W, Yang W, Huo X, Yu Z, Cw Ma R, Hu G, Fang Z, Yang X. Ceramides and their interactive effects with trimethylamine-N-oxide metabolites on risk of gestational diabetes: A nested case-control study. Diabetes Res Clin Pract 2021; 171:108606. [PMID: 33310119 DOI: 10.1016/j.diabres.2020.108606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/28/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
AIMS To explore associations between ceramides in early pregnancy and gestational diabetes mellitus (GDM); and interactions between ceramides and trimethylamine N-oxide (TMAO) metabolites for GDM. METHODS We organized a 1:1 nested case-control study (n = 486) from a prospective cohort of pregnant women. Conditional logistic regression and additive interaction were performed to examine relationships between ceramides and TMAO metabolites for GDM. We defined trimethylamine (TMA) conversion ratio (TMAR) as TMA/its precursors and TMAO conversion ratio (TMAOR) as TMAO/TMA. Copresence of high TMAR and low TMAOR indicated TMA accumulation status. RESULTS High ceramides 18:0 (per SD), 18:1 (per SD) and low ceramide 24:0 (≤ 3.60 nmol/mL) were associated with increased GDM risk (OR: 1.69, 1.72 & 3.59, respectively). High TMA enhanced the OR of low ceramide 24:0 for GDM from 1.53 (95%CI: 0.88-2.66) to 10.3 (2.83-37.5), high TMAR enhanced it from 1.31 (0.67-2.56) to 24.3 (6.57-89.5) and TMA accumulation enhanced it from 1.42 (0.72-2.77) to 25.5 (6.80-95.7), with all additive interactions being significant. However, the interactions between high ceramide 18 and TMAO metabolites were not significant. CONCLUSIONS High ceramides 18:0, 18:1 and low ceramide 24:0 in early pregnancy were associated with increased GDM risk. Notably, TMA accumulation greatly amplified the risk-promoting effect of low ceramide 24:0 for GDM.
Collapse
Affiliation(s)
- Jinnan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children's Health Center, Tianjin 300070, China
| | - Wen Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax 15000, Canada
| | - Ronald Cw Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
24
|
He Q, Bo J, Shen R, Li Y, Zhang Y, Zhang J, Yang J, Liu Y. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J Diabetes Res 2021; 2021:1341750. [PMID: 34751249 PMCID: PMC8571914 DOI: 10.1155/2021/1341750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is very complicated. The currently well-accepted etiology is the "Ominous Octet" theory proposed by Professor Defronzo. Since presently used drugs for T2DM have limitations and harmful side effects, studies regarding alternative treatments are being conducted. Analyzing the pharmacological mechanism of biomolecules in view of pathogenesis is an effective way to assess new drugs. Sphingosine 1 phosphate (S1P), an endogenous lipid substance in the human body, has attracted increasing attention in the T2DM research field. This article reviews recent study updates of S1P, summarizing its effects on T2DM with respect to pathogenesis, promoting β cell proliferation and inhibiting apoptosis, reducing insulin resistance, protecting the liver and pancreas from lipotoxic damage, improving intestinal incretin effects, lowering basal glucagon levels, etc. With increasing research, S1P may help treat and prevent T2DM in the future.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaqi Bo
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ruihua Shen
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Li
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
25
|
The Influence of Physical Activity on the Bioactive Lipids Metabolism in Obesity-Induced Muscle Insulin Resistance. Biomolecules 2020; 10:biom10121665. [PMID: 33322719 PMCID: PMC7764345 DOI: 10.3390/biom10121665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
High-fat diet consumption and lack of physical activity are important risk factors for metabolic disorders such as insulin resistance and cardiovascular diseases. Insulin resistance is a state of a weakened response of tissues such as skeletal muscle, adipose tissue, and liver to insulin, which causes an increase in blood glucose levels. This condition is the result of inhibition of the intracellular insulin signaling pathway. Skeletal muscle is an important insulin-sensitive tissue that accounts for about 80% of insulin-dependent glucose uptake. Although the exact mechanism by which insulin resistance is induced has not been thoroughly understood, it is known that insulin resistance is most commonly associated with obesity. Therefore, it is believed that lipids may play an important role in inducing insulin resistance. Among lipids, researchers’ attention is mainly focused on biologically active lipids: diacylglycerols (DAG) and ceramides. These lipids are able to regulate the activity of intracellular enzymes, including those involved in insulin signaling. Available data indicate that physical activity affects lipid metabolism and has a positive effect on insulin sensitivity in skeletal muscles. In this review, we have presented the current state of knowledge about the impact of physical activity on insulin resistance and metabolism of biologically active lipids.
Collapse
|
26
|
Lair B, Laurens C, Van Den Bosch B, Moro C. Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. Int J Mol Sci 2020; 21:E6358. [PMID: 32887221 PMCID: PMC7504171 DOI: 10.3390/ijms21176358] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of studies reported an association between elevated circulating and tissue lipid content and metabolic disorders in obesity, type 2 diabetes (T2D) and aging. This state of uncontrolled tissue lipid accumulation has been called lipotoxicity. It was later shown that excess lipid flux is mainly neutralized within lipid droplets as triglycerides, while several bioactive lipid species such as diacylglycerols (DAGs), ceramides and their derivatives have been mechanistically linked to the pathogenesis of insulin resistance (IR) by antagonizing insulin signaling and action in metabolic organs such as the liver and skeletal muscle. Skeletal muscle and the liver are the main sites of glucose disposal in the body and IR in these tissues plays a pivotal role in the development of T2D. In this review, we critically examine recent literature supporting a causal role of DAGs and ceramides in the development of IR. A particular emphasis is placed on transgenic mouse models with modulation of total DAG and ceramide pools, as well as on modulation of specific subspecies, in relation to insulin sensitivity. Collectively, although a wide number of studies converge towards the conclusion that both DAGs and ceramides cause IR in metabolic organs, there are still some uncertainties on their mechanisms of action. Recent studies reveal that subcellular localization and acyl chain composition are determinants in the biological activity of these lipotoxic lipids and should be further examined.
Collapse
Affiliation(s)
- Benjamin Lair
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; (B.L.); (C.L.); (B.V.D.B.)
- University of Toulouse, Paul Sabatier University, 31330 Toulouse, France
| | - Claire Laurens
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; (B.L.); (C.L.); (B.V.D.B.)
- University of Toulouse, Paul Sabatier University, 31330 Toulouse, France
| | - Bram Van Den Bosch
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; (B.L.); (C.L.); (B.V.D.B.)
- University of Toulouse, Paul Sabatier University, 31330 Toulouse, France
| | - Cedric Moro
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; (B.L.); (C.L.); (B.V.D.B.)
- University of Toulouse, Paul Sabatier University, 31330 Toulouse, France
| |
Collapse
|
27
|
Tan-Chen S, Bourron O, Hajduch É. [Ceramides, crucial actors in the development of insulin resistance and type 2 diabetes]. Med Sci (Paris) 2020; 36:497-503. [PMID: 32452372 DOI: 10.1051/medsci/2020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In healthy subjects, the balance between glucose production and its usage is precisely controlled. When circulating glucose reaches a critical threshold, pancreatic β-cells secrete insulin, which has two major actions: lowering circulating glucose concentrations by facilitating its uptake mainly in skeletal muscles and the liver, and inhibiting glucose production. Triglycerides are the main source of fatty acids to meet the energy needs of oxidative tissues and any excess is stored in adipocytes. Thus, adipose tissue acts as a trap for excess fatty acids released from plasma triglycerides. When the buffering action of adipose tissue to store fatty acids is impaired, they accumulate in other tissues where they are metabolized in several lipid species, including sphingolipid derivatives such as ceramides. Numerous studies have shown that ceramides are among the most active lipid second messengers to inhibit insulin signalling. This review describes the major role played by ceramides in the development of insulin resistance in peripheral tissues.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, 18 rue de l'École de Médecine, F-75006 Paris, France - Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, 18 rue de l'École de Médecine, F-75006 Paris, France - Institut Hospitalo-Universitaire ICAN, Paris, France - Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Éric Hajduch
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, 18 rue de l'École de Médecine, F-75006 Paris, France - Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
28
|
Arad AD, Basile AJ, Albu J, DiMenna FJ. No Influence of Overweight/Obesity on Exercise Lipid Oxidation: A Systematic Review. Int J Mol Sci 2020; 21:ijms21051614. [PMID: 32120832 PMCID: PMC7084725 DOI: 10.3390/ijms21051614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Compared to lean counterparts, overweight/obese individuals rely less on lipid during fasting. This deficiency has been implicated in the association between overweight/obesity and blunted insulin signaling via elevated intramuscular triglycerides. However, the capacity for overweight/obese individuals to use lipid during exercise is unclear. This review was conducted to formulate a consensus regarding the influence of overweight/obesity on exercise lipid use. PubMed, ProQuest, ISI Web of Science, and Cochrane Library databases were searched. Articles were included if they presented original research on the influence of overweight/obesity on exercise fuel use in generally healthy sedentary adults. Articles were excluded if they assessed older adults, individuals with chronic disease, and/or exercise limitations or physically-active individuals. The search identified 1205 articles with 729 considered for inclusion after duplicate removal. Once titles, abstracts, and/or manuscripts were assessed, 24 articles were included. The preponderance of evidence from these articles indicates that overweight/obese individuals rely on lipid to a similar extent during exercise. However, conflicting findings were found in eight articles due to the outcome measure cited, participant characteristics other than overweight/obesity and characteristics of the exercise bout(s). We also identified factors other than body fatness which can influence exercise lipid oxidation that should be controlled in future research.
Collapse
Affiliation(s)
- Avigdor D. Arad
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
| | - Anthony J. Basile
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
| | - Jeanine Albu
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
| | - Fred J. DiMenna
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
- Department of Biobehavioral Sciences, Columbia University Teachers College, New York, NY 10027, USA
- Correspondence:
| |
Collapse
|
29
|
Yaribeygi H, Bo S, Ruscica M, Sahebkar A. Ceramides and diabetes mellitus: an update on the potential molecular relationships. Diabet Med 2020; 37:11-19. [PMID: 30803019 DOI: 10.1111/dme.13943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that ceramides can play an important pathophysiological role in the development of diabetes. Ceramides are primarily recognized as lipid bilayer building blocks, but recent work has shown that these endogenous molecules are important intracellular signalling mediators and may exert some diabetogenic effects via molecular pathways involved in insulin resistance, β-cell apoptosis and inflammation. In the present review, we consider the available evidence on the possible roles of ceramides in diabetes mellitus and introduce eight different molecular mechanisms mediating the diabetogenic action of ceramides, categorized into those predominantly related to insulin resistance vs those mainly implicated in β-cell dysfunction. Specifically, the mechanistic evidence involves β-cell apoptosis, pancreatic inflammation, mitochondrial stress, endoplasmic reticulum stress, adipokine release, insulin receptor substrate 1 phosphorylation, oxidative stress and insulin synthesis. Collectively, the evidence suggests that therapeutic agents aimed at reducing ceramide synthesis and lowering circulating levels may be beneficial in the prevention and/or treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- H Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A Sahebkar
- Neurogenic Inflammation Research Center, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Tan-Chen S, Guitton J, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front Endocrinol (Lausanne) 2020; 11:491. [PMID: 32849282 PMCID: PMC7426366 DOI: 10.3389/fendo.2020.00491] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids represent one of the major classes of eukaryotic lipids. They play an essential structural role, especially in cell membranes where they also possess signaling properties and are capable of modulating multiple cell functions, such as apoptosis, cell proliferation, differentiation, and inflammation. Many sphingolipid derivatives, such as ceramide, sphingosine-1-phosphate, and ganglioside, have been shown to play many crucial roles in muscle under physiological and pathological conditions. This review will summarize our knowledge of sphingolipids and their effects on muscle fate, highlighting the role of this class of lipids in modulating muscle cell differentiation, regeneration, aging, response to insulin, and contraction. We show that modulating sphingolipid metabolism may be a novel and interesting way for preventing and/or treating several muscle-related diseases.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Jeanne Guitton
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hervé Le Stunff
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- *Correspondence: Eric Hajduch
| |
Collapse
|
31
|
Razak Hady H, Błachnio-Zabielska AU, Szczerbiński Ł, Zabielski P, Imierska M, Dadan J, Krętowski AJ. Ceramide Content in Liver Increases Along with Insulin Resistance in Obese Patients. J Clin Med 2019; 8:E2197. [PMID: 31842461 PMCID: PMC6947381 DOI: 10.3390/jcm8122197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
The liver plays a central role in the glucose and lipid metabolism. Studies performed on animal models have shown an important role of lipid accumulation in the induction of insulin resistance. We sought to explain whether in obese humans, the insulin resistance is associated with hepatic ceramide accumulation. The experiments were conducted on obese men and women. Each gender was divided into three groups: Normal glucose tolerance group (NGT), Impaired glucose tolerance group (IGT), and Type 2 diabetic subjects (T2D). Ceramide (Cer) content was analyzed with the use of LC/MS/MS. An oral glucose tolerance test (OGTT), glycosylated hemoglobin (HbA1c), percentage body fat (FAT%), and body mass index (BMI) was also measured. Total hepatic ceramide was significantly higher in T2D females as compared to NGT females (p < 0.05), whereas in males, total ceramide was significantly higher in IGT and T2D as compared to NGT (p < 0.05). In both, men and women, the highest increase in T2D subjects, was observed in C16:0-Cer, C18:0:-Cer, C22:0-Cer, and C24:0-Cer (p < 0.05) as compared to NGT group. Interestingly, glucose (at 0' and at 120' in OGTT) and HbA1c positively correlated with the ceramide species that most increased in T2D patients (C16:0-Cer, C18:0-Cer, C22:0-Cer, and C24:0-Cer). In men glucose and HbA1c significantly correlated with only C22:0-Cer. This is one of the few studies comparing hepatic ceramide content in severely obese patients. We found that, ceramide content increased in diabetic patients, both in men and women, and the content of ceramide correlated with glycemic parameters. These data indicate ceramide contribution to the induction of hepatic insulin resistance.
Collapse
Affiliation(s)
- Hady Razak Hady
- 1st Department of General Surgery and Endocrinology, Medical University Bialystok, 15-276 Bialystok, Poland; (H.R.H.); (J.D.)
| | | | - Łukasz Szczerbiński
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (Ł.S.); (A.J.K.)
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Jacek Dadan
- 1st Department of General Surgery and Endocrinology, Medical University Bialystok, 15-276 Bialystok, Poland; (H.R.H.); (J.D.)
| | - Adam J. Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (Ł.S.); (A.J.K.)
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
32
|
Marucci A, Antonucci A, De Bonis C, Mangiacotti D, Scarale MG, Trischitta V, Di Paola R. GALNT2 as a novel modulator of adipogenesis and adipocyte insulin signaling. Int J Obes (Lond) 2019; 43:2448-2457. [PMID: 31040393 DOI: 10.1038/s41366-019-0367-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND/OBJECTIVES A better understanding of adipose tissue biology is crucial to tackle insulin resistance and eventually coronary heart disease and diabetes, leading causes of morbidity and mortality worldwide. GALNT2, a GalNAc-transferase, positively modulates insulin signaling in human liver cells by down-regulating ENPP1, an insulin signaling inhibitor. GALNT2 expression is increased in adipose tissue of obese as compared to that of non-obese individuals. Whether this association is secondary to a GALNT2-insulin sensitizing effect exerted also in adipocytes is unknown. We then investigated in mouse 3T3-L1 adipocytes the GALNT2 effect on adipogenesis, insulin signaling and expression levels of both Enpp1 and 72 adipogenesis-related genes. METHODS Stable over-expressing GALNT2 and GFP preadipocytes (T0) were generated. Adipogenesis was induced with (R+) or without (R-) rosiglitazone and investigated after 15 days (T15). Lipid accumulation (by Oil Red-O staining) and intracellular triglycerides (by fluorimetric assay) were measured. Lipid droplets (LD) measures were analyzed at confocal microscope. Gene expression was assessed by RT-PCR and insulin-induced insulin receptor (IR), IRS1, JNK and AKT phosphorylation by Western blot. RESULTS Lipid accumulation, triglycerides and LD measures progressively increased from T0 to T15R- and furthermore to T15R+. Such increases were significantly higher in GALNT2 than in GFP cells so that, as compared to T15R+GFP, T15R- GALNT2 cells showed similar (intracellular lipid and triglycerides accumulation) or even higher (LD measures, p < 0.01) values. In GALNT2 preadipocytes, insulin-induced IR, IRS1 and AKT activation was higher than that in GFP cells. GALNT2 effect was totally abolished during adipocyte maturation and completely reversed at late stage maturation. Such GALNT2 effect trajectory was paralleled by coordinated changes in the expression of Enpp1 and adipocyte-maturation key genes. CONCLUSIONS GALNT2 is a novel modulator of adipogenesis and related cellular phenotypes, thus becoming a potential target for tackling the obesity epidemics and its devastating sequelae.
Collapse
Affiliation(s)
- Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Concetta De Bonis
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Davide Mangiacotti
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Maria Giovanna Scarale
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy.
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy.
| |
Collapse
|
33
|
McFadden JW, Rico JE. Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. J Dairy Sci 2019; 102:7619-7639. [PMID: 31301829 DOI: 10.3168/jds.2018-16095] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023]
Abstract
The physiological control of lactation through coordinated adaptations is of fundamental importance for mammalian neonatal life. The putative actions of reduced insulin sensitivity and responsiveness and enhanced adipose tissue lipolysis spare glucose for the mammary synthesis of milk. However, severe insulin antagonism and body fat mobilization may jeopardize hepatic health and lactation in dairy cattle. Interestingly, lipolysis- and dietary-derived fatty acids may impair insulin sensitivity in cows. The mechanisms are undefined yet have major implications for the development of postpartum fatty liver disease. In nonruminants, the sphingolipid ceramide is a potent mediator of saturated fat-induced insulin resistance that defines in part the mechanisms of type 2 diabetes mellitus and nonalcoholic fatty liver disease. In ruminants including the lactating dairy cow, the functions of ceramide had remained virtually undescribed. Through a series of hypothesis-centered studies, ceramide has emerged as a potential antagonist of insulin-stimulated glucose utilization by adipose and skeletal muscle tissues in dairy cattle. Importantly, bovine data suggest that the ability of ceramide to inhibit insulin action likely depends on the lipolysis-dependent hepatic synthesis and secretion of ceramide during early lactation. Although these mechanisms appear to fade as lactation advances beyond peak milk production, early evidence suggests that palmitic acid feeding is a means to augment ceramide supply. Herein, we review a body of work that focuses on sphingolipid biology and the role of ceramide in the dairy cow within the framework of hepatic and fatty acid metabolism, insulin function, and lactation. The potential involvement of ceramide within the endocrine control of lactation is also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - J E Rico
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
34
|
Ramiah SK, Abdullah N, Akhmal M, Mookiah S, Soleimani Farjam A, Wei Li C, Juan Boo L, Idrus Z. Effect of feeding less shell, extruded and enzymatically treated palm kernel cake on expression of growth-related genes in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1589393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Suriya Kumari Ramiah
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Norhani Abdullah
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Muhammad Akhmal
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | | | | | - Chen Wei Li
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Liang Juan Boo
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| | - Zulkifli Idrus
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
35
|
Xu L, Wang W, Zhang X, Ke H, Qin Y, You L, Li W, Lu G, Chan WY, Leung PCK, Zhao S, Chen ZJ. Palmitic acid causes insulin resistance in granulosa cells via activation of JNK. J Mol Endocrinol 2019; 62:197-206. [PMID: 30913535 DOI: 10.1530/jme-18-0214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem with rising incidence and results in reproductive difficulties. Elevated saturated free fatty acids (FFAs) in obesity can cause insulin resistance (IR) in peripheral tissues. The high intra-follicular saturated FFAs may also account for IR in ovarian granulosa cells (GCs). In the present study, we investigated the relationship between saturated FFAs and IR in GCs by the use of palmitic acid (PA). We demonstrated that the glucose uptake in cultured GCs and lactate accumulation in the culture medium were stimulated by insulin, but the effects of insulin were attenuated by PA treatment. Besides, insulin-induced phosphorylation of Akt was reduced by PA in a dose- and time-dependent manner. Furthermore, PA increased phosphorylation of JNK and JNK blockage rescued the phosphorylation of Akt which was downregulated by PA. These findings highlighted the negative effect of PA on GCs metabolism and may partially account for the obesity-related reproductive disorders.
Collapse
Affiliation(s)
- Lan Xu
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Wenting Wang
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- The Second Hospital of Shandong University, Jinan, China
| | - Xinyue Zhang
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Li You
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Weiping Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Lu
- The CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Yee Chan
- The CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- The CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
36
|
Appriou Z, Nay K, Pierre N, Saligaut D, Lefeuvre-Orfila L, Martin B, Cavey T, Ropert M, Loréal O, Rannou-Bekono F, Derbré F. Skeletal muscle ceramides do not contribute to physical-inactivity-induced insulin resistance. Appl Physiol Nutr Metab 2019; 44:1180-1188. [PMID: 30889368 DOI: 10.1139/apnm-2018-0850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Physical inactivity increases the risk to develop type 2 diabetes, a disease characterized by a state of insulin resistance. By promoting inflammatory state, ceramides are especially recognized to alter insulin sensitivity in skeletal muscle. The present study was designed to analyze, in mice, whether muscle ceramides contribute to physical-inactivity-induced insulin resistance. For this purpose, we used the wheel lock model to induce a sudden reduction of physical activity, in combination with myriocin treatment, an inhibitor of de novo ceramide synthesis. Mice were assigned to 3 experimental groups: voluntary wheel access group (Active), a wheel lock group (Inactive), and wheel lock group treated with myriocin (Inactive-Myr). We observed that 10 days of physical inactivity induces hyperinsulinemia and increases basal insulin resistance (HOMA-IR). The muscle ceramide content was not modified by physical inactivity and myriocin. Thus, muscle ceramides do not play a role in physical-inactivity-induced insulin resistance. In skeletal muscle, insulin-stimulated protein kinase B phosphorylation and inflammatory pathway were not affected by physical inactivity, whereas a reduction of glucose transporter type 4 content was observed. Based on these results, physical-inactivity-induced insulin resistance seems related to a reduction in glucose transporter type 4 content rather than defects in insulin signaling. We observed in inactive mice that myriocin treatment improves glucose tolerance, insulin-stimulated protein kinase B, adenosine-monophosphate-activated protein kinase activation, and glucose transporter type 4 content in skeletal muscle. Such effects occur regardless of changes in muscle ceramide content. These findings open promising research perspectives to identify new mechanisms of action for myriocin on insulin sensitivity and glucose metabolism.
Collapse
Affiliation(s)
- Zéphyra Appriou
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Kévin Nay
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Nicolas Pierre
- GIGA-R - Translational Gastroenterology, Liège University, Belgium
| | - Dany Saligaut
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Luz Lefeuvre-Orfila
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Brice Martin
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Thibault Cavey
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France.,Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France.,Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Olivier Loréal
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France
| | - Françoise Rannou-Bekono
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| |
Collapse
|
37
|
Raichur S, Brunner B, Bielohuby M, Hansen G, Pfenninger A, Wang B, Bruning JC, Larsen PJ, Tennagels N. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab 2019; 21:36-50. [PMID: 30655217 PMCID: PMC6407366 DOI: 10.1016/j.molmet.2018.12.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Ectopic fat deposition is associated with increased tissue production of ceramides. Recent genetic mouse studies suggest that specific sphingolipid C16:0 ceramide produced by ceramide synthase 6 (CerS6) plays an important role in the development of insulin resistance. However, the therapeutic potential of CerS6 inhibition not been demonstrated. Therefore, we pharmacologically investigated the selective ablation of CerS6 using antisense oligonucleotides (ASO) in obese insulin resistance animal models. METHODS We utilized ASO as therapeutic modality, CerS6 ASO molecules designed and synthesized were initially screened for in-vitro knock-down (KD) potency and cytotoxicity. ASOs with >85% inhibition of CerS6 mRNA were selected for further investigations. Most promising ASOs verified for in-vivo KD efficacy in healthy mice. CerS6 ASO (AAGATGAGCCGCACC) was found most active with hepatic reduction of CerS6 mRNA expression. Prior to longitudinal metabolic studies, we performed a dose titration target engagement analysis with CerS6 ASO in healthy mice to select the optimal dose. Next, we utilized leptin deficiency ob/ob and high fat diet (HFD) induced obese mouse models for pharmacological efficacy study. RESULTS CerS6 expression were significantly elevated in the liver and brown adipose, this was correlated with significantly elevated C16:0 ceramide concentrations in plasma and liver. Treatment with CerS6 ASO selectively reduced CerS6 expression by ∼90% predominantly in the liver and this CerS6 KD resulted in a significant reduction of C16:0 ceramide by about 50% in both liver and plasma. CerS6 KD resulted in lower body weight gain and accompanied by a significant reduction in whole body fat and fed/fasted blood glucose levels (1% reduction in HbA1c). Moreover, ASO-mediated CerS6 KD significantly improved oral glucose tolerance (during oGTT) and mice displayed improved insulin sensitivity. Thus, CerS6 appear to play an important role in the development of obesity and insulin resistance. CONCLUSIONS Our investigations identified specific and selective therapeutic valid ASO for CerS6 ablation in in-vivo. CerS6 should specifically be targeted for the reduction of C16:0 ceramides, that results in amelioration of insulin resistance, hyperglycemia and obesity. CerS6 mediated C16:0 ceramide reduction could be a potentially attractive target for the treatment of insulin resistance, obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Bodo Brunner
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Maximilian Bielohuby
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Gitte Hansen
- Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | - Anja Pfenninger
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Bing Wang
- Analytical Research & Development US Predevelopment Sciences, Sanofi, 153 Second Avenue, Waltham, MA 02451, USA
| | - Jens C Bruning
- Max Planck Institute for Metabolic Research, Gleueler Str. 50, D-50931 Cologne, Germany
| | | | - Norbert Tennagels
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Industriepark Höchst, D-65926 Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 2019; 20:ijms20030479. [PMID: 30678043 PMCID: PMC6387241 DOI: 10.3390/ijms20030479] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin-resistance is a characteristic feature of type 2 diabetes (T2D) and plays a major role in the pathogenesis of this disease. Skeletal muscles are quantitatively the biggest glucose users in response to insulin and are considered as main targets in development of insulin-resistance. It is now clear that circulating fatty acids (FA), which are highly increased in T2D, play a major role in the development of muscle insulin-resistance. In healthy individuals, excess FA are stored as lipid droplets in adipocytes. In situations like obesity and T2D, FA from lipolysis and food are in excess and eventually accumulate in peripheral tissues. High plasma concentrations of FA are generally associated with increased risk of developing diabetes. Indeed, ectopic fat accumulation is associated with insulin-resistance; this is called lipotoxicity. However, FA themselves are not involved in insulin-resistance, but rather some of their metabolic derivatives, such as ceramides. Ceramides, which are synthetized de novo from saturated FA like palmitate, have been demonstrated to play a critical role in the deterioration of insulin sensitivity in muscle cells. This review describes the latest progress involving ceramides as major players in the development of muscle insulin-resistance through the targeting of selective actors of the insulin signaling pathway.
Collapse
|
39
|
Albeituni S, Stiban J. Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:169-191. [PMID: 31562630 DOI: 10.1007/978-3-030-21735-8_15] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ceramides are bioactive sphingolipids that support the structure of the plasma membrane and mediate numerous cell-signaling events in eukaryotic cells. The finding that ceramides act as second messengers transducing cellular signals has attracted substantial attention in several fields of Biology. Since all cells contain lipid plasma membranes, the impact of various ceramides, ceramide synthases, ceramide metabolites, and other sphingolipids has been implicated in a vast range of cellular functions including, migration, proliferation, response to external stimuli, and death. The roles of lipids in these functions widely differ among the diverse cell types. Herein, we discuss the roles of ceramides and other sphingolipids in mediating the function of various immune cells; particularly dendritic cells, neutrophils, and macrophages. In addition, we highlight the main studies describing effects of ceramides in inflammation, specifically in various inflammatory settings including insulin resistance, graft-versus-host disease, immune suppression in cancer, multiple sclerosis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
40
|
Zabielski P, Daniluk J, Hady HR, Markowski AR, Imierska M, Górski J, Blachnio-Zabielska AU. The effect of high-fat diet and inhibition of ceramide production on insulin action in liver. J Cell Physiol 2018; 234:1851-1861. [PMID: 30067865 DOI: 10.1002/jcp.27058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Liver, as one of the most important organs involved in lipids and glucose metabolism, is perceived as a key tissue for pharmacotherapy of insulin resistance (IRes) and type 2 diabetes. Ceramides (Cer) are biologically active lipids, which accumulation is associated with the induction of muscle IRes. We sought to determine the role of intrahepatic bioactive lipids production on insulin action in liver of insulin-resistant rats and after myriocin administration. The experiments were conducted on male Wistar rats divided into three groups: Control, fed high-fat diet (HFD), and fed HFD and treated with myriocin (HFD/Myr). Before sacrifice, the animals were infused with a [U-13 C]palmitate to calculate lipid synthesis rate by means of tracer incorporation technique in particular lipid groups. Liver Cer, diacylglycerols (DAG), acyl-carnitine concentration, and isotopic enrichment were analyzed by LC/MS/MS. Proteins involved in lipid metabolism and insulin pathway were analyzed by western blot analysis. An OGTT and ITT was also performed. HFD-induced IRes and increased both the synthesis rate and the content of DAG and Cer, which was accompanied by inhibition of an insulin pathway. Interestingly, myriocin treatment reduced synthesis rate not only of Cer but also DAG and improved insulin sensitivity. We conclude that the insulin-sensitizing action of myriocin in the liver is a result of the lack of inhibitory effect of lipids on the insulin pathway, due to the reduction of their synthesis rate. This is the first study showing how the synthesis rate of individual lipid groups in liver changes after myriocin administration.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland.,Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Jarosław Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Hady Razak Hady
- 1st Department of General Surgery and Endocrinology, Medical University Bialystok, Bialystok, Poland
| | - Adam R Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Jan Górski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.,Department of Basic Sciences, Faculty of Health Sciences, Lomza State University of Applied Sciences, Lomza, Poland
| | - Agnieszka U Blachnio-Zabielska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.,Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
41
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
42
|
Régnier M, Polizzi A, Guillou H, Loiseau N. Sphingolipid metabolism in non-alcoholic fatty liver diseases. Biochimie 2018; 159:9-22. [PMID: 30071259 DOI: 10.1016/j.biochi.2018.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) involves a panel of pathologies starting with hepatic steatosis and continuing to irreversible and serious conditions like steatohepatitis (NASH) and hepatocarcinoma. NAFLD is multifactorial in origin and corresponds to abnormal fat deposition in liver. Even if triglycerides are mostly associated with these pathologies, other lipid moieties seem to be involved in the development and severity of NAFLD. That is the case with sphingolipids and more particularly ceramides. In this review, we explore the relationship between NAFLD and sphingolipid metabolism. After providing an analysis of complex sphingolipid metabolism, we focus on the potential involvement of sphingolipids in the different pathologies associated with NAFLD. An unbalanced ratio between ceramides and terminal metabolic products in the liver and plasma promotes weight gain, inflammation, and insulin resistance. In the etiology of NAFLD, some sphingolipid species such as ceramides may be potential biomarkers for NAFLD. We review the clinical relevance of sphingolipids in liver diseases.
Collapse
Affiliation(s)
- Marion Régnier
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Arnaud Polizzi
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Nicolas Loiseau
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France.
| |
Collapse
|
43
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
44
|
Bandet CL, Mahfouz R, Véret J, Sotiropoulos A, Poirier M, Giussani P, Campana M, Philippe E, Blachnio-Zabielska A, Ballaire R, Le Liepvre X, Bourron O, Berkeš D, Górski J, Ferré P, Le Stunff H, Foufelle F, Hajduch E. Ceramide Transporter CERT Is Involved in Muscle Insulin Signaling Defects Under Lipotoxic Conditions. Diabetes 2018; 67:1258-1271. [PMID: 29759974 DOI: 10.2337/db17-0901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/29/2018] [Indexed: 11/13/2022]
Abstract
One main mechanism of insulin resistance (IR), a key feature of type 2 diabetes, is the accumulation of saturated fatty acids (FAs) in the muscles of obese patients with type 2 diabetes. Understanding the mechanism that underlies lipid-induced IR is an important challenge. Saturated FAs are metabolized into lipid derivatives called ceramides, and their accumulation plays a central role in the development of muscle IR. Ceramides are produced in the endoplasmic reticulum (ER) and transported to the Golgi apparatus through a transporter called CERT, where they are converted into various sphingolipid species. We show that CERT protein expression is reduced in all IR models studied because of a caspase-dependent cleavage. Inhibiting CERT activity in vitro potentiates the deleterious action of lipotoxicity on insulin signaling, whereas overexpression of CERT in vitro or in vivo decreases muscle ceramide content and improves insulin signaling. In addition, inhibition of caspase activity prevents ceramide-induced insulin signaling defects in C2C12 muscle cells. Altogether, these results demonstrate the importance of physiological ER-to-Golgi ceramide traffic to preserve muscle cell insulin signaling and identify CERT as a major actor in this process.
Collapse
Affiliation(s)
- Cécile L Bandet
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Rana Mahfouz
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Julien Véret
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
| | | | - Maxime Poirier
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Milan, Italy
| | - Mélanie Campana
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
| | - Erwann Philippe
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
| | - Agnieszka Blachnio-Zabielska
- Departments of Physiology and Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Raphaëlle Ballaire
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Xavier Le Liepvre
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Dušan Berkeš
- Department of Organic Chemistry, Slovak University of Technology, Bratislava, Slovakia
| | - Jan Górski
- Departments of Physiology and Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Pascal Ferré
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
- UMR 9197 Institut des Neurosciences Paris Saclay (Neuro-PSI), Université Paris-Saclay, Saclay, France
| | - Fabienne Foufelle
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Eric Hajduch
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
45
|
Szpigel A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, Bernard C, Ktorza A, Gautier JF, Ferré P, Bourron O, Foufelle F. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 2018; 61:399-412. [PMID: 28988346 DOI: 10.1007/s00125-017-4462-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 02/04/2023]
Abstract
AIMS/HYPOTHESIS Obesity and type 2 diabetes are concomitant with low-grade inflammation affecting insulin sensitivity and insulin secretion. Recently, the thioredoxin interacting protein (TXNIP) has been implicated in the activation process of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we aim to determine whether the expression of TXNIP is altered in the circulating immune cells of individuals with type 2 vs type 1 diabetes and whether this can be related to specific causes and consequences of inflammation. METHODS The expression of TXNIP, inflammatory markers, markers of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress and enzymes involved in sphingolipid metabolism was quantified by quantitative reverse transcription real-time PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) of 13 non-diabetic individuals, 23 individuals with type 1 diabetes and 81 with type 2 diabetes. A lipidomic analysis on the plasma of 13 non-diabetic individuals, 35 individuals with type 1 diabetes and 94 with type 2 diabetes was performed. The effects of ER stress or of specific lipids on TXNIP and inflammatory marker expression were analysed in human monocyte-derived macrophages (HMDMs) and THP-1 cells. RESULTS The expression of TXNIP and inflammatory and UPR markers was increased in the PBMCs of individuals with type 2 diabetes when compared with non-diabetic individuals or individuals with type 1 diabetes. TXNIP expression was significantly correlated with plasma fasting glucose, plasma triacylglycerol concentrations and specific UPR markers. Induction of ER stress in THP-1 cells or cultured HMDMs led to increased expression of UPR markers, TXNIP, NLRP3 and IL-1β. Conversely, a chemical chaperone reduced the expression of UPR markers and TXNIP in PBMCs of individuals with type 2 diabetes. The lipidomic plasma analysis revealed an increased concentration of saturated dihydroceramide and sphingomyelin in individuals with type 2 diabetes when compared with non-diabetic individuals and individuals with type 1 diabetes. In addition, the expression of specific enzymes of sphingolipid metabolism, dihydroceramide desaturase 1 and sphingomyelin synthase 1, was increased in the PBMCs of individuals with type 2 diabetes. Palmitate or C2 ceramide induced ER stress in macrophages as well as increased expression of TXNIP, NLRP3 and IL-1β. CONCLUSIONS/INTERPRETATION In individuals with type 2 diabetes, circulating immune cells display an inflammatory phenotype that can be linked to ER stress and TXNIP expression. Immune cell ER stress can in turn be linked to the specific exogenous and endogenous lipid environment found in type 2 diabetes.
Collapse
Affiliation(s)
- Anaïs Szpigel
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Institut de Recherches Servier, Suresnes, France
| | - Isabelle Hainault
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | - Aurélie Carlier
- Department of Endocrinology, Nutrition, and Diabetes, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Venteclef
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | - Anne-Françoise Batto
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | - Eric Hajduch
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | | | - Alain Ktorza
- Institut de Recherches Servier, Suresnes, France
| | - Jean-François Gautier
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Department of Diabetes and Endocrinology, Lariboisière Hospital, DHU FIRE, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pascal Ferré
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Department of Oncology and Endocrine Biochemistry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Bourron
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Department of Endocrinology, Nutrition, and Diabetes, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fabienne Foufelle
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France.
| |
Collapse
|
46
|
Bozic J, Markotic A, Cikes-Culic V, Novak A, Borovac JA, Vucemilovic H, Trgo G, Ticinovic Kurir T. Ganglioside GM3 content in skeletal muscles is increased in type 2 but decreased in type 1 diabetes rat models: Implications of glycosphingolipid metabolism in pathophysiology of diabetes. J Diabetes 2018; 10:130-139. [PMID: 28544772 DOI: 10.1111/1753-0407.12569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/10/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ganglioside GM3 is found in the plasma membrane, where its accumulation attenuates insulin receptor signaling. Considering the role of skeletal muscles in insulin-stimulated glucose uptake, the aim of the present study was to determine the expression of GM3 and its precursors in skeletal muscles of rat models of type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively). METHODS Diabetes was induced in male Sprague-Dawley rats by streptozotocin injection (55 mg/kg, i.p., for T1DM induction; 35 mg/kg, i.p., for T2DM induction), followed by feeding of rats with either a normal pellet diet (T1DM) or a high-fat diet (T2DM). Rats were killed 2 weeks after diabetes induction and samples of skeletal muscle were collected. Frozen quadriceps muscle sections were stained with a primary antibody against GM3 (Neu5Ac) and visualized using a secondary antibody coupled with Texas Red. The muscle content of ganglioside GM3 and its precursors was analyzed by high-performance thin-layer chromatography (HPTLC) followed by GM3 immunostaining. RESULTS Muscle GM3 content was significantly higher in T2DM compared with control rats (P < 0.001). Furthermore, levels of the GM3 precursors ceramide, glucosylceramide, and lactosylceramide were significantly higher in T2DM compared with control rats (P < 0.05), whereas ceramide content was significantly lower in T1DM rats (P < 0.05). The intensity of the GM3 band on HPTLC was significantly higher in T2DM rats (P < 0.001) and significantly lower in T1DM rats (P < 0.05) compared with control. CONCLUSIONS The expression patterns of GM3 ganglioside and its precursors in diabetic rats suggest that the role of glycosphingolipid metabolism may differ between T2DM and T1DM.
Collapse
Affiliation(s)
- Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Anita Markotic
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Vedrana Cikes-Culic
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Anela Novak
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Hrvoje Vucemilovic
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Split, Split, Croatia
| | - Gorana Trgo
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| |
Collapse
|
47
|
Yang Z, Wu F, He Y, Zhang Q, Zhang Y, Zhou G, Yang H, Zhou P. A novel PTP1B inhibitor extracted fromGanoderma lucidumameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway. Food Funct 2018; 9:397-406. [PMID: 29215104 DOI: 10.1039/c7fo01489a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A schematic diagram showing the IRS1-GLUT4 insulin signaling pathway influenced by PTP1B and FYGL in L6 cells.
Collapse
Affiliation(s)
- Zhou Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Fan Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200437
- P. R. China
| | - Qiang Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200437
- P. R. China
| | - Yuan Zhang
- Department of Medicine
- St Vincent's Hospital
- University of Melbourne
- Fitzroy
- Australia
| | - Guangrong Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200437
- P. R. China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
48
|
Silva G, Ferraresi C, de Almeida RT, Motta ML, Paixão T, Ottone VO, Fonseca IA, Oliveira MX, Rocha-Vieira E, Dias-Peixoto MF, Esteves EA, Coimbra CC, Amorim FT, de Castro Magalhães F. Infrared photobiomodulation (PBM) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice. Lasers Med Sci 2017; 33:559-571. [PMID: 29247431 DOI: 10.1007/s10103-017-2408-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
Obesity represents a continuously growing global epidemic and is associated with the development of type 2 diabetes mellitus. The etiology of type 2 diabetes is related to the resistance of insulin-sensitive tissues to its action leading to impaired blood glucose regulation. Photobiomodulation (PBM) therapy might be a non-pharmacological, non-invasive strategy to improve insulin resistance. It has been reported that PBM therapy in combination with physical exercise reduces insulin resistance. Therefore, the aim of this study was to investigate the effects of PBM therapy on insulin resistance in obese mice. Male Swiss albino mice received low-fat control diet (n = 16, LFC) or high-fat diet (n = 18, HFD) for 12 weeks. From 9th to 12th week, the mice received PBM therapy (LASER) or Sham (light off) treatment and were allocated into four groups: LFC Sham (n = 8), LFC PBM (n = 8), HFD Sham (n = 9), and HFD PBM (n = 9). The PBM therapy was applied in five locations: to the left and right quadriceps muscle, upper limbs and center of the abdomen, during 40 s at each point, once a day, 5 days a week, for 4 weeks (780 nm, 250 mW/cm2, 10 J/cm2, 0.4 J per site; 2 J total dose per day). Insulin signaling pathway was evaluated in the epididymal adipose tissue. PBM therapy improved glucose tolerance and phosphorylation of Akt (Ser473) and reversed the HFD-induced reduction of GLUT4 content and phosphorylation of AS160 (Ser588). Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes. The results showed that chronic PBM therapy improved parameters related to obesity and insulin resistance in HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Gabriela Silva
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Cleber Ferraresi
- Post-graduation Program in Physical Therapy in Functional Health, Physical Therapy Department, Universidade do Sagrado Coração, São Paulo, Brazil
- Post-Graduation Program in Biomedical Engineering, Universidade Brasil, São Paulo, Brazil
| | - Rodrigo Teixeira de Almeida
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariana Lopes Motta
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Thiago Paixão
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vinicius Oliveira Ottone
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ivana Alice Fonseca
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Physiotherapy Department, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Marco Fabrício Dias-Peixoto
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Elizabethe Adriana Esteves
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Cândido Celso Coimbra
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Endocrinology Laboratory, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabiano Trigueiro Amorim
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- University of New Mexico, Albuquerque, NM, USA
| | - Flávio de Castro Magalhães
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.
| |
Collapse
|
49
|
Montgomery MK, Brown SHJ, Mitchell TW, Coster ACF, Cooney GJ, Turner N. Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains. Sci Rep 2017; 7:13914. [PMID: 29066734 PMCID: PMC5654831 DOI: 10.1038/s41598-017-14214-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Different mouse strains exhibit variation in their inherent propensities to develop metabolic disease. We recently showed that C57BL6, 129X1, DBA/2 and FVB/N mice are all susceptible to high-fat diet-induced glucose intolerance, while BALB/c mice are relatively protected, despite changes in many factors linked with insulin resistance. One parameter strongly linked with insulin resistance is ectopic lipid accumulation, especially metabolically active ceramides and diacylglycerols (DAG). This study examined diet-induced changes in the skeletal muscle lipidome across these five mouse strains. High-fat feeding increased total muscle triacylglycerol (TAG) content, with elevations in similar triacylglycerol species observed for all strains. There were also generally consistent changes across strains in the abundance of different phospholipid (PL) classes and the fatty acid profile of phospholipid molecular species, with the exception being a strain-specific difference in phospholipid species containing two polyunsaturated fatty acyl chains in BALB/c mice (i.e. a diet-induced decrease in the other four strains, but no change in BALB/c mice). In contrast to TAG and PL, the high-fat diet had a minor influence on DAG and ceramide species across all strains. These results suggest that widespread alterations in muscle lipids are unlikely a major contributors to the favourable metabolic profile of BALB/c mice and rather there is a relatively conserved high-fat diet response in muscle of most mouse strains.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Simon H J Brown
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- llawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Todd W Mitchell
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- llawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Gregory J Cooney
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| |
Collapse
|
50
|
Clinical and therapeutic potential of protein kinase PKR in cancer and metabolism. Expert Rev Mol Med 2017; 19:e9. [PMID: 28724458 DOI: 10.1017/erm.2017.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase R (PKR, also called EIF2AK2) is an interferon-inducible double-stranded RNA protein kinase with multiple effects on cells that plays an active part in the cellular response to numerous types of stress. PKR has been extensively studied and documented for its relevance as an antiviral agent and a cell growth regulator. Recently, the role of PKR related to metabolism, inflammatory processes, cancer and neurodegenerative diseases has gained interest. In this review, we summarise and discuss the involvement of PKR in several cancer signalling pathways and the dual role that this kinase plays in cancer disease. We emphasise the importance of PKR as a molecular target for both conventional chemotherapeutics and emerging treatments based on novel drugs, and its potential as a biomarker and therapeutic target for several pathologies. Finally, we discuss the impact that the recent knowledge regarding PKR involvement in metabolism has in our understanding of the complex processes of cancer and metabolism pathologies, highlighting the translational research establishing the clinical and therapeutic potential of this pleiotropic kinase.
Collapse
|