1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Gong Z, Peng Y, Zhao S, Lin Z, Tang Z, Wang H. A signal peptide variant in SLURP1 with dominant-negative effect causes progressive symmetric erythrokeratodermia. J Dermatol Sci 2025; 118:38-44. [PMID: 40023748 DOI: 10.1016/j.jdermsci.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Progressive symmetric erythrokeratodermia (PSEK) is a group of hereditary cornification disorders characterized by symmetrical, progressive erythroderma and hyperkeratosis over the body. Loss-of-function variants in SLURP1, encoding secreted Ly-6/uPAR-related protein 1, is known to cause Mal de Meleda, an autosomal recessive palmoplantar keratoderma. OBJECTIVE To identify the genetic basis and the pathogenesis of a sporadic patient with PSEK. METHODS Whole-exome sequencing and Sanger sequencing were performed to identify the pathogenic variant(s). The expression of SLURP1 was assessed on the patient's skin tissue by immunofluorescence. Western blotting (WB) and immunofluorescence (IF) were performed on eukaryotic overexpression systems to evaluate the signal peptide (SP) cleavage, subcellular localization and secretion of the mutant SLURP1. Combined WB and IF analyses were conducted on cells co-transfected with FLAG-tagged wild-type SLURP1 and untagged SLURP1-Ala22Asp. RESULTS We identified a de novo heterozygous variant in SLURP1 (c.65A > C, p.Ala22Asp) affecting the first residue before SP cleavage site in a patient with PSEK. This variant abolished the cleavage site of SP, resulting in translocation deficiency to the Golgi apparatus and decreased secretion of the mutant SLURP1. We also found that the SLURP1-Ala22Asp exerted a dominant-negative effect by impeding the SP cleavage of the wild-type SLURP1 and affecting its subcellular localization and secretion in a dose-dependent manner. CONCLUSION We reported the first autosomal-dominant variant in SLURP1 associated with a new phenotype of PSEK in a patient, emphasizing the genetic and clinical heterogeneity of SLURP1-associated genodermatoses.
Collapse
Affiliation(s)
- Zhuoqing Gong
- Dermatology Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yunran Peng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Sisi Zhao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China.
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Miller SC, Tikhonova EB, Hernandez SM, Dufour JM, Karamyshev AL. Loss of Preproinsulin Interaction with Signal Recognition Particle Activates Protein Quality Control, Decreasing mRNA Stability. J Mol Biol 2024; 436:168492. [PMID: 38360088 PMCID: PMC11675392 DOI: 10.1016/j.jmb.2024.168492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/21/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Many insulin gene variants alter the protein sequence and result in monogenic diabetes due to insulin insufficiency. However, the molecular mechanisms of various disease-causing mutations are unknown. Insulin is synthesized as preproinsulin containing a signal peptide (SP). SPs of secreted proteins are recognized by the signal recognition particle (SRP) or by another factor in a SRP-independent pathway. If preproinsulin uses SRP-dependent or independent pathways is still debatable. We demonstrate by the use of site-specific photocrosslinking that the SRP subunit, SRP54, interacts with the preproinsulin SP. Moreover, SRP54 depletion leads to the decrease of insulin mRNA and protein expression, supporting the involvement of the RAPP protein quality control in insulin biogenesis. RAPP regulates the quality of secretory proteins through degradation of their mRNA. We tested five disease-causing mutations in the preproinsulin SP on recognition by SRP and on their effects on mRNA and protein levels. We demonstrate that the effects of mutations are associated with their position in the SP and their severity. The data support diverse molecular mechanisms involved in the pathogenesis of these mutations. We show for the first time the involvement of the RAPP protein quality control pathway in insulin biogenesis that is implicated in the development of neonatal diabetes caused by the Leu13Arg mutation.
Collapse
Affiliation(s)
- Sarah C Miller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sarah M Hernandez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
5
|
Gutierrez Guarnizo SA, Kellogg MK, Miller SC, Tikhonova E, Karamysheva ZN, Karamyshev AL. Pathogenic signal peptide variants in the human genome. NAR Genom Bioinform 2023; 5:lqad093. [PMID: 37859801 PMCID: PMC10583284 DOI: 10.1093/nargab/lqad093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal signal peptides that are required for protein targeting to endoplasmic reticulum (ER). Mutations in signal peptides affect protein targeting, translocation, processing, and stability, and are associated with human diseases. However, only a few of them have been identified or characterized. In this report, we identified pathogenic signal peptide variants across the human genome using bioinformatic analyses and predicted the molecular mechanisms of their pathology. We recovered more than 65 thousand signal peptide mutations, over 11 thousand we classified as pathogenic, and proposed framework for distinction of their molecular mechanisms. The pathogenic mutations affect over 3.3 thousand genes coding for secreted and membrane proteins. Most pathogenic mutations alter the signal peptide hydrophobic core, a critical recognition region for the signal recognition particle, potentially activating the Regulation of Aberrant Protein Production (RAPP) quality control and specific mRNA degradation. The remaining pathogenic variants (about 25%) alter either the N-terminal region or signal peptidase processing site that can result in translocation deficiencies at the ER membrane or inhibit protein processing. This work provides a conceptual framework for the identification of mutations across the genome and their connection with human disease.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sarah C Miller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Espinoza MF, Nguyen KK, Sycks MM, Lyu Z, Quanrud GM, Montoya MR, Genereux JC. Heat shock protein Hspa13 regulates endoplasmic reticulum and cytosolic proteostasis through modulation of protein translocation. J Biol Chem 2022; 298:102597. [PMID: 36244454 PMCID: PMC9691929 DOI: 10.1016/j.jbc.2022.102597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most eukaryotic secretory proteins are cotranslationally translocated through Sec61 into the endoplasmic reticulum (ER). Because these proteins have evolved to fold in the ER, their mistargeting is associated with toxicity. Genetic experiments have implicated the ER heat shock protein 70 (Hsp70) Hspa13/STCH as involved in processing of nascent secretory proteins. Herein, we evaluate the role of Hspa13 in protein import and the maintenance of cellular proteostasis in human cells, primarily using the human embryonic kidney 293T cell line. We find that Hspa13 interacts primarily with the Sec61 translocon and its associated factors. Hspa13 overexpression inhibits translocation of the secreted protein transthyretin, leading to accumulation and aggregation of immature transthyretin in the cytosol. ATPase-inactive mutants of Hspa13 further inhibit translocation and maturation of secretory proteins. While Hspa13 overexpression inhibits cell growth and ER quality control, we demonstrate that HSPA13 knockout destabilizes proteostasis and increases sensitivity to ER disruption. Thus, we propose that Hspa13 regulates import through the translocon to maintain both ER and cytosolic protein homeostasis. The raw mass spectrometry data associated with this article have been deposited in the PRIDE archive and can be accessed at PXD033498.
Collapse
Affiliation(s)
- Mateo F Espinoza
- Graduate Program in Microbiology, University of California, Riverside, California, USA
| | - Khanh K Nguyen
- Department of Chemistry, University of California, Riverside, California, USA
| | - Melody M Sycks
- Department of Chemistry, University of California, Riverside, California, USA
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California, USA
| | - Guy M Quanrud
- Department of Chemistry, University of California, Riverside, California, USA
| | - Maureen R Montoya
- Department of Chemistry, University of California, Riverside, California, USA
| | - Joseph C Genereux
- Graduate Program in Microbiology, University of California, Riverside, California, USA; Department of Chemistry, University of California, Riverside, California, USA.
| |
Collapse
|
7
|
Lyu Z, Sycks MM, Espinoza MF, Nguyen KK, Montoya MR, Galapate CM, Mei L, Genereux JC. Monitoring Protein Import into the Endoplasmic Reticulum in Living Cells with Proximity Labeling. ACS Chem Biol 2022; 17:1963-1977. [PMID: 35675579 DOI: 10.1021/acschembio.2c00405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proper trafficking of eukaryotic proteins is essential to cellular function. Genetic, environmental, and other stresses can induce protein mistargeting and, in turn, threaten cellular protein homeostasis. Current methods for measuring protein mistargeting are difficult to translate to living cells, and thus the role of cellular signaling networks in stress-dependent protein mistargeting processes, such as ER pre-emptive quality control (ER pQC), is difficult to parse. Herein, we use genetically encoded peroxidases to characterize protein import into the endoplasmic reticulum (ER). We show that the ERHRP/cytAPEX pair provides good selectivity and sensitivity for both multiplexed protein labeling and for identifying protein mistargeting, using the known ER pQC substrate transthyretin (TTR). Although ERHRP labeling induces formation of detergent-resistant TTR aggregates, this is minimized by using low ERHRP expression, without loss of labeling efficiency. cytAPEX labeling recovers TTR that is mistargeted as a consequence of Sec61 inhibition or ER stress-induced ER pQC. Furthermore, we discover that stress-free activation of the ER stress-associated transcription factor ATF6 recapitulates the TTR import deficiency of ER pQC. Hence, proximity labeling is an effective strategy for characterizing factors that influence ER protein import in living cells.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Melody M Sycks
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Mateo F Espinoza
- Graduate Program of Microbiology, University of California, Riverside, California 92521, United States
| | - Khanh K Nguyen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Maureen R Montoya
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Cheska M Galapate
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Liangyong Mei
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States.,Graduate Program of Microbiology, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Take Me Home, Protein Roads: Structural Insights into Signal Peptide Interactions during ER Translocation. Int J Mol Sci 2021; 22:ijms222111871. [PMID: 34769302 PMCID: PMC8584900 DOI: 10.3390/ijms222111871] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Cleavable endoplasmic reticulum (ER) signal peptides (SPs) and other non-cleavable signal sequences target roughly a quarter of the human proteome to the ER. These short peptides, mostly located at the N-termini of proteins, are highly diverse. For most proteins targeted to the ER, it is the interactions between the signal sequences and the various ER targeting and translocation machineries such as the signal recognition particle (SRP), the protein-conducting channel Sec61, and the signal peptidase complex (SPC) that determine the proteins’ target location and provide translocation fidelity. In this review, we follow the signal peptide into the ER and discuss the recent insights that structural biology has provided on the governing principles of those interactions.
Collapse
|
9
|
Stifter K, Krieger J, Ruths L, Gout J, Mulaw M, Lechel A, Kleger A, Seufferlein T, Wagner M, Schirmbeck R. IFN-γ treatment protocol for MHC-I lo/PD-L1 + pancreatic tumor cells selectively restores their TAP-mediated presentation competence and CD8 T-cell priming potential. J Immunother Cancer 2021; 8:jitc-2020-000692. [PMID: 32868392 PMCID: PMC7462314 DOI: 10.1136/jitc-2020-000692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Many cancer cells express a major histocompatibility complex class I low/ programmed cell death 1 ligand 1 positive (MHC-Ilo/PD-L1+) cell surface profile. For immunotherapy, there is, thus, an urgent need to restore presentation competence of cancer cells with defects in MHC-I processing/presentation combined with immune interventions that tackle the tumor-initiated PD-L1/PD-1 signaling axis. Using pancreatic ductal adenocarcinoma cells (PDACCs) as a model, we here explored if (and how) expression/processing of tumor antigens via transporters associated with antigen processing (TAP) affects priming of CD8 T cells in PD-1/PD-L1-competent/-deficient mice. Methods We generated tumor antigen-expressing vectors, immunized TAP-competent/-deficient mice and determined de novo primed CD8 T-cell frequencies by flow cytometry. Similarly, we explored the antigenicity and PD-L1/PD-1 sensitivity of PDACCs versus interferon-γ (IFN-γ)-treated PDACCs in PD-1/PD-L1-competent/deficient mice. The IFN-γ-induced effects on gene and cell surface expression profiles were determined by microarrays and flow cytometry. Results We identified two antigens (cripto-1 and an endogenous leukemia virus-derived gp70) that were expressed in the Endoplasmic Reticulum (ER) of PDACCs and induced CD8 T-cell responses either independent (Cripto-1:Kb/Cr16-24) or dependent (gp70:Kb/p15E) on TAP by DNA immunization. IFN-γ-treatment of PDACCs in vitro upregulated MHC-I- and TAP- but also PD-L1-expression. Mechanistically, PD-L1/PD-1 signaling was superior to the reconstitution of MHC-I presentation competence, as subcutaneously transplanted IFN-γ-treated PDACCs developed tumors in C57BL/6J and PD-L1-/- but not in PD-1-/- mice. Using PDACCs, irradiated at day 3 post-IFN-γ-treatment or PD-L1 knockout PDACCs as vaccines, we could selectively bypass upregulation of PD-L1, preferentially induce TAP-dependent gp70:Kb/p15E-specific CD8 T cells associated with a weakened PD-1+ exhaustion phenotype and reject consecutively injected tumor transplants in C57BL/6J mice. Conclusions The IFN-γ-treatment protocol is attractive for cell-based immunotherapies, because it restores TAP-dependent antigen processing in cancer cells, facilitates priming of TAP-dependent effector CD8 T-cell responses without additional check point inhibitors and could be combined with genetic vaccines that complement priming of TAP-independent CD8 T cells.
Collapse
Affiliation(s)
- Katja Stifter
- Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Jana Krieger
- Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Leonie Ruths
- Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Johann Gout
- Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Andre Lechel
- Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | - Martin Wagner
- Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
10
|
Yim C, Chung Y, Kim J, Nilsson I, Kim JS, Kim H. Spc1 regulates the signal peptidase-mediated processing of membrane proteins. J Cell Sci 2021; 134:269144. [PMID: 34125229 PMCID: PMC8277137 DOI: 10.1242/jcs.258936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Signal peptidase (SPase) cleaves the signal sequences (SSs) of secretory precursors. It contains an evolutionarily conserved membrane protein subunit, Spc1, that is dispensable for the catalytic activity of SPase and whose role remains unknown. In this study, we investigated the function of yeast Spc1. First, we set up an in vivo SPase cleavage assay using variants of the secretory protein carboxypeptidase Y (CPY) with SSs modified in the N-terminal and hydrophobic core regions. When comparing the SS cleavage efficiencies of these variants in cells with or without Spc1, we found that signal-anchored sequences became more susceptible to cleavage by SPase without Spc1. Furthermore, SPase-mediated processing of model membrane proteins was enhanced in the absence of Spc1 and was reduced upon overexpression of Spc1. Spc1 co-immunoprecipitated with proteins carrying uncleaved signal-anchored or transmembrane (TM) segments. Taken together, these results suggest that Spc1 protects TM segments from SPase action, thereby sharpening SPase substrate selection and acting as a negative regulator of the SPase-mediated processing of membrane proteins.
Collapse
Affiliation(s)
- Chewon Yim
- School of Biological Sciences and Institute of Microbiology , Seoul National University, Seoul 08826, South Korea
| | - Yeonji Chung
- School of Biological Sciences and Institute of Microbiology , Seoul National University, Seoul 08826, South Korea
| | - Jeesoo Kim
- School of Biological Sciences and Institute of Microbiology , Seoul National University, Seoul 08826, South Korea.,Center for RNA Research , Institute for Basic Science, Seoul 08826, South Korea
| | - IngMarie Nilsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jong-Seo Kim
- School of Biological Sciences and Institute of Microbiology , Seoul National University, Seoul 08826, South Korea.,Center for RNA Research , Institute for Basic Science, Seoul 08826, South Korea
| | - Hyun Kim
- School of Biological Sciences and Institute of Microbiology , Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
11
|
Kumar A, Balbach J. Inactivation of parathyroid hormone: perspectives of drug discovery to combating hyperparathyroidism. Curr Mol Pharmacol 2021; 15:292-305. [PMID: 33573587 DOI: 10.2174/1874467214666210126112839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
Hormonal coordination is tightly regulated within the human body and thus regulates human physiology. The parathyroid hormone (PTH), a member of the endocrine system, regulates the calcium and phosphate level within the human body. Under non-physiological conditions, PTH levels get upregulated (hyperparathyroidism) or downregulated (hypoparathyroidism) due to external or internal factors. In the case of hyperparathyroidism, elevated PTH stimulates cellular receptors present in the bones, kidneys, and intestines to increase the blood calcium level, leading to calcium deposition. This eventually causes various symptoms including kidney stones. Currently, there is no known medication that directly targets PTH in order to suppress its function. Therefore, it is of great interest to find novel small molecules or any other means that can modulate PTH function. The molecular signaling of PTH starts by binding of its N-terminus to the G-protein coupled PTH1/2 receptor. Therefore, any intervention that affects the N-terminus of PTH could be a lead candidate for treating hyperparathyroidism. As a proof-of-concept, there are various possibilities to inhibit molecular PTH function by (i) a small molecule, (ii) N-terminal PTH phosphorylation, (iii) fibril formation and (iv) residue-specific mutations. These modifications put PTH into an inactive state, which will be discussed in detail in this review article. We anticipate that exploring small molecules or other means that affect the N-terminus of PTH could be lead candidates in combating hyperparathyroidism.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, South Kensington, London SW7 2BU. United Kingdom
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle- Wittenberg. Germany
| |
Collapse
|
12
|
Davies JP, Almasy KM, McDonald EF, Plate L. Comparative Multiplexed Interactomics of SARS-CoV-2 and Homologous Coronavirus Nonstructural Proteins Identifies Unique and Shared Host-Cell Dependencies. ACS Infect Dis 2020; 6:3174-3189. [PMID: 33263384 PMCID: PMC7724760 DOI: 10.1021/acsinfecdis.0c00500] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Human coronaviruses (hCoVs) have become a threat to global health and society, as evident from the SARS outbreak in 2002 caused by SARS-CoV-1 and the most recent COVID-19 pandemic caused by SARS-CoV-2. Despite a high sequence similarity between SARS-CoV-1 and -2, each strain has a distinctive virulence. A better understanding of the basic molecular mechanisms mediating changes in virulence is needed. Here, we profile the virus-host protein-protein interactions of two hCoV nonstructural proteins (nsps) that are critical for virus replication. We use tandem mass tag-multiplexed quantitative proteomics to sensitively compare and contrast the interactomes of nsp2 and nsp4 from three betacoronavirus strains: SARS-CoV-1, SARS-CoV-2, and hCoV-OC43-an endemic strain associated with the common cold. This approach enables the identification of both unique and shared host cell protein binding partners and the ability to further compare the enrichment of common interactions across homologues from related strains. We identify common nsp2 interactors involved in endoplasmic reticulum (ER) Ca2+ signaling and mitochondria biogenesis. We also identify nsp4 interactors unique to each strain, such as E3 ubiquitin ligase complexes for SARS-CoV-1 and ER homeostasis factors for SARS-CoV-2. Common nsp4 interactors include N-linked glycosylation machinery, unfolded protein response associated proteins, and antiviral innate immune signaling factors. Both nsp2 and nsp4 interactors are strongly enriched in proteins localized at mitochondria-associated ER membranes suggesting a new functional role for modulating host processes, such as calcium homeostasis, at these organelle contact sites. Our results shed light on the role these hCoV proteins play in the infection cycle, as well as host factors that may mediate the divergent pathogenesis of OC43 from SARS strains. Our mass spectrometry workflow enables rapid and robust comparisons of multiple bait proteins, which can be applied to additional viral proteins. Furthermore, the identified common interactions may present new targets for exploration by host-directed antiviral therapeutics.
Collapse
Affiliation(s)
- Jonathan P. Davies
- Department of Biological Sciences, Immunology and Inflammation, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - Katherine M. Almasy
- Department of Chemistry, Vanderbilt University, Immunology and Inflammation, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - Eli F. McDonald
- Department of Chemistry, Vanderbilt University, Immunology and Inflammation, Nashville, TN, USA
| | - Lars Plate
- Department of Biological Sciences, Immunology and Inflammation, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Immunology and Inflammation, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| |
Collapse
|
13
|
Davies JP, Almasy KM, McDonald EF, Plate L. Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.13.201517. [PMID: 32699849 PMCID: PMC7373130 DOI: 10.1101/2020.07.13.201517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human coronaviruses (hCoV) have become a threat to global health and society, as evident from the SARS outbreak in 2002 caused by SARS-CoV-1 and the most recent COVID-19 pandemic caused by SARS-CoV-2. Despite high sequence similarity between SARS-CoV-1 and -2, each strain has distinctive virulence. A better understanding of the basic molecular mechanisms mediating changes in virulence is needed. Here, we profile the virus-host protein-protein interactions of two hCoV non-structural proteins (nsps) that are critical for virus replication. We use tandem mass tag-multiplexed quantitative proteomics to sensitively compare and contrast the interactomes of nsp2 and nsp4 from three betacoronavirus strains: SARS-CoV-1, SARS-CoV-2, and hCoV-OC43 - an endemic strain associated with the common cold. This approach enables the identification of both unique and shared host cell protein binding partners and the ability to further compare the enrichment of common interactions across homologs from related strains. We identify common nsp2 interactors involved in endoplasmic reticulum (ER) Ca 2+ signaling and mitochondria biogenesis. We also identifiy nsp4 interactors unique to each strain, such as E3 ubiquitin ligase complexes for SARS-CoV-1 and ER homeostasis factors for SARS-CoV-2. Common nsp4 interactors include N -linked glycosylation machinery, unfolded protein response (UPR) associated proteins, and anti-viral innate immune signaling factors. Both nsp2 and nsp4 interactors are strongly enriched in proteins localized at mitochondrial-associated ER membranes suggesting a new functional role for modulating host processes, such as calcium homeostasis, at these organelle contact sites. Our results shed light on the role these hCoV proteins play in the infection cycle, as well as host factors that may mediate the divergent pathogenesis of OC43 from SARS strains. Our mass spectrometry workflow enables rapid and robust comparisons of multiple bait proteins, which can be applied to additional viral proteins. Furthermore, the identified common interactions may present new targets for exploration by host-directed anti-viral therapeutics.
Collapse
Affiliation(s)
- Jonathan P. Davies
- Department of Biological Sciences, Immunology and Inflammation, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - Katherine M. Almasy
- Department of Chemistry, Vanderbilt University, Immunology and Inflammation, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - Eli F. McDonald
- Department of Chemistry, Vanderbilt University, Immunology and Inflammation, Nashville, TN, USA
| | - Lars Plate
- Department of Biological Sciences, Immunology and Inflammation, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Immunology and Inflammation, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| |
Collapse
|
14
|
Romero R, Sánchez-Rivera FJ, Westcott PMK, Mercer KL, Bhutkar A, Muir A, González Robles TJ, Lamboy Rodríguez S, Liao LZ, Ng SR, Li L, Colón CI, Naranjo S, Beytagh MC, Lewis CA, Hsu PP, Bronson RT, Vander Heiden MG, Jacks T. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. NATURE CANCER 2020; 1:589-602. [PMID: 34414377 PMCID: PMC8373048 DOI: 10.1038/s43018-020-0071-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Approximately 20-30% of human lung adenocarcinomas (LUAD) harbor loss-of-function (LOF) mutations in Kelch-like ECH Associated-Protein 1 (KEAP1), which lead to hyperactivation of the nuclear factor, erythroid 2-like 2 (NRF2) antioxidant pathway and correlate with poor prognosis1-3. We previously showed that Keap1 mutation accelerates KRAS-driven LUAD and produces a marked dependency on glutaminolysis4. To extend the investigation of genetic dependencies in the context of Keap1 mutation, we performed a druggable genome CRISPR-Cas9 screen in Keap1-mutant cells. This analysis uncovered a profound Keap1 mutant-specific dependency on solute carrier family 33 member 1 (Slc33a1), an endomembrane-associated protein with roles in autophagy regulation5, as well as a series of functionally-related genes implicated in the unfolded protein response. Targeted genetic and biochemical experiments using mouse and human Keap1-mutant tumor lines, as well as preclinical genetically-engineered mouse models (GEMMs) of LUAD, validate Slc33a1 as a robust Keap1-mutant-specific dependency. Furthermore, unbiased genome-wide CRISPR screening identified additional genes related to Slc33a1 dependency. Overall, our study provides a strong rationale for stratification of patients harboring KEAP1-mutant or NRF2-hyperactivated tumors as likely responders to targeted SLC33A1 inhibition and underscores the value of integrating functional genetic approaches with GEMMs to identify and validate genotype-specific therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Romero
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Francisco J Sánchez-Rivera
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kim L Mercer
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | | | | | - Laura Z Liao
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Sheng Rong Ng
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Leanne Li
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Caterina I Colón
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Santiago Naranjo
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Mary Clare Beytagh
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Caroline A Lewis
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roderick T Bronson
- Tufts University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Soni N, Swain SK, Kant R, Singh A, Ravichandran R, Verma SK, Panda PK, Suar M. Landscape of ROD9 Island: Functional annotations and biological network of hypothetical proteins in Salmonella enterica. Comput Biol Chem 2019; 83:107110. [PMID: 31445418 DOI: 10.1016/j.compbiolchem.2019.107110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
Salmonella, an Enterobacteria is a therapeutically important pathogen for the host. The advancement of genome sequencing of S. enterica serovar Enteritidis have identified a distinct ROD9 pathogenic island, imparting virulence. The occurrence of 17 ROD9 hypothetical proteins, necessitates subsequent bioinformatics approach for structural and functional aspects of protein-protein relations or networks in different pathogenic phenotypes express. A collective analysis using predictive bioinformatics tools that includes NCBI-BLASTp and BLAST2GO annotated the motif patterns and functional significance. The VFDB identified 10 virulence proteins at both genomic and metagenomic level. Phylogenetic analysis revealed a divergent and convergent relationship between 17 ROD9 and 41 SP-1 proteins. Here, combining a comprehensive approach from sequence based, motif recognitions, domain identification, virulence ability to structural modelling provides a precise function to ROD9 proteins biological network, for which no experimental information is available.
Collapse
Affiliation(s)
- Nikita Soni
- School of Biotechnology and Bioinformatics, D. Y. Patil (Deemed to be University), Navi Mumbai, India
| | | | - Ravi Kant
- University of Delhi, New Delhi, India
| | - Aditya Singh
- School of Biotechnology and Bioinformatics, D. Y. Patil (Deemed to be University), Navi Mumbai, India
| | - Rahul Ravichandran
- School of Chemical and Biotechnology, SASTRA University, Tamil Nadu, India
| | - Suresh K Verma
- Institute of Environmental Medicine (IMM), C6, Molecular Toxicology, Karolinska Institutet, Sweden
| | - Pritam Kumar Panda
- Division of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Germany.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
16
|
Zhu R, Li X, Xu J, Barrabi C, Kekulandara D, Woods J, Chen X, Liu M. Defective endoplasmic reticulum export causes proinsulin misfolding in pancreatic β cells. Mol Cell Endocrinol 2019; 493:110470. [PMID: 31158417 PMCID: PMC6613978 DOI: 10.1016/j.mce.2019.110470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for cell function. Increasing evidence indicates that, efficient protein ER export is important for ER homeostasis. However, the consequence of impaired ER export remains largely unknown. Herein, we found that defective ER protein transport caused by either Sar1 mutants or brefeldin A impaired proinsulin oxidative folding in the ER of β-cells. Misfolded proinsulin formed aberrant disulfide-linked dimers and high molecular weight proinsulin complexes, and induced ER stress. Limiting proinsulin load to the ER alleviated ER stress, indicating that misfolded proinsulin is a direct cause of ER stress. This study revealed significance of efficient ER export in maintaining ER protein homeostasis and native folding of proinsulin. Given the fact that proinsulin misfolding plays an important role in diabetes, this study suggests that enhancing ER export may be a potential therapeutic target to prevent/delay β-cell failure caused by proinsulin misfolding and ER stress.
Collapse
Affiliation(s)
- Ruimin Zhu
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jialu Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cesar Barrabi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Dilini Kekulandara
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Woods
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xuequn Chen
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
17
|
Splicing-Dependent Subcellular Targeting of Borna Disease Virus Nucleoprotein Isoforms. J Virol 2019; 93:JVI.01621-18. [PMID: 30541858 DOI: 10.1128/jvi.01621-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Targeting of viral proteins to specific subcellular compartments is a fundamental step for viruses to achieve successful replication in infected cells. Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, uniquely replicates and persists in the cell nucleus. Here, it is demonstrated that BoDV nucleoprotein (N) transcripts undergo mRNA splicing to generate truncated isoforms. In combination with alternative usage of translation initiation sites, the N gene potentially expresses at least six different isoforms, which exhibit diverse intracellular localizations, including the nucleoplasm, cytoplasm, and endoplasmic reticulum (ER), as well as intranuclear viral replication sites. Interestingly, the ER-targeting signal peptide in N is exposed by removing the intron by mRNA splicing. Furthermore, the spliced isoforms inhibit viral polymerase activity. Consistently, recombinant BoDVs lacking the N-splicing signals acquire the ability to replicate faster than wild-type virus in cultured cells, suggesting that N isoforms created by mRNA splicing negatively regulate BoDV replication. These results provided not only the mechanism of how mRNA splicing generates viral proteins that have distinct functions but also a novel strategy for replication control of RNA viruses using isoforms with different subcellular localizations.IMPORTANCE Borna disease virus (BoDV) is a highly neurotropic RNA virus that belongs to the orthobornavirus genus. A zoonotic orthobornavirus that is genetically related to BoDV has recently been identified in squirrels, thus increasing the importance of understanding the replication and pathogenesis of orthobornaviruses. BoDV replicates in the nucleus and uses alternative mRNA splicing to express viral proteins. However, it is unknown whether the virus uses splicing to create protein isoforms with different functions. The present study demonstrated that the nucleoprotein transcript undergoes splicing and produces four new isoforms in coordination with alternative usage of translation initiation codons. The spliced isoforms showed a distinct intracellular localization, including in the endoplasmic reticulum, and recombinant viruses lacking the splicing signals replicated more efficiently than the wild type. The results provided not only a new regulation of BoDV replication but also insights into how RNA viruses produce protein isoforms from small genomes.
Collapse
|
18
|
Marapana DS, Dagley LF, Sandow JJ, Nebl T, Triglia T, Pasternak M, Dickerman BK, Crabb BS, Gilson PR, Webb AI, Boddey JA, Cowman AF. Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat Microbiol 2018; 3:1010-1022. [DOI: 10.1038/s41564-018-0219-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/13/2018] [Indexed: 01/10/2023]
|
19
|
Zhang Z, Feng J, Mao A, Le K, La Placa D, Wu X, Longmate J, Marek C, St. Amand RP, Neuhausen SL, Shively JE. SNPs in inflammatory genes CCL11, CCL4 and MEFV in a fibromyalgia family study. PLoS One 2018; 13:e0198625. [PMID: 29927949 PMCID: PMC6013222 DOI: 10.1371/journal.pone.0198625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Fibromyalgia (FM) is a chronic pain syndrome with a high incidence in females that may involve activation of the immune system. We performed exome sequencing on chemokine genes in a region of chromosome 17 identified in a genome-wide family association study. METHODS AND FINDINGS Exome sequence analysis of 100 FM probands was performed at 17p13.3-q25 followed by functional analysis of SNPs found in the chemokine gene locus. Missense SNPs (413) in 17p13.3-q25 were observed in at least 10 probands. SNPs rs1129844 in CCL11 and rs1719152 in CCL4 were associated with elevated plasma chemokine levels in FM. In a transmission disequilibrium test (TDT), rs1129844 was unequally transmitted from parents to their affected children (p< 0.0074), while the CCL4 SNP was not. The amino acid change (Ala23Thr), resulting from rs1129844 in CCL11, predicted to alter processing of the signal peptide, led to reduced expression of CCL11. The variant protein from CCL4 rs1719152 exhibited protein aggregation and a potent down-regulation of its cognate receptor CCR5, a receptor associated with hypotensive effects. Treatment of skeletal muscle cells with CCL11 produced high levels of CCL4 suggesting CCL11 regulates CCL4 in muscle. The immune association of FM with SNPs in MEFV, a chromosome 16 gene associated with recurrent fevers, had a p< 0.008 TDT for a combined 220 trios. CONCLUSIONS SNPs with significant TDTs were found in 36% of the cohort for CCL11 and 12% for MEFV, along with a protein variant in CCL4 (41%) that affects CCR5 down-regulation, supporting an immune involvement for FM.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Jinong Feng
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Allen Mao
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Keith Le
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Xiwei Wu
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Jeffrey Longmate
- Department of Biostatistics, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Claudia Marek
- R.P. St. Amand MD Inc, Marina Del Rey, CA, United States of America
| | | | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - John E. Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Guo H, Sun J, Li X, Xiong Y, Wang H, Shu H, Zhu R, Liu Q, Huang Y, Madley R, Wang Y, Cui J, Arvan P, Liu M. Positive charge in the n-region of the signal peptide contributes to efficient post-translational translocation of small secretory preproteins. J Biol Chem 2017; 293:1899-1907. [PMID: 29229776 DOI: 10.1074/jbc.ra117.000922] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence indicates that many small secretory preproteins can undergo post-translational translocation across the membrane of the endoplasmic reticulum. Although the cellular machinery involved in post-translational translocation of small secretory preproteins has begun to be elucidated, the intrinsic signals contained within these small secretory preproteins that contribute to their efficient post-translational translocation remain unknown. Here, we analyzed the eukaryotic secretory proteome and discovered the small secretory preproteins tend to have a higher probability to harbor the positive charge in the n-region of the signal peptide (SP). Eliminating the positive charge of the n-region blocked post-translational translocation of newly synthesized preproteins and selectively impaired translocation efficiency of small secretory preproteins. The pathophysiological significance of the positive charge in the n-region of SP was underscored by recently identified preproinsulin SP mutations that impair translocation of preproinsulin and cause maturity onset diabetes of youth (MODY). Remarkably, we have found that slowing the polypeptide elongation rate of small secretory preproteins could alleviate the translocation defect caused by loss of the n-region positive charge of the signal peptide. Together, these data reveal not only a previously unrecognized role of the n-region's positive charge in ensuring efficient post-translational translocation of small secretory preproteins, but they also highlight the molecular contribution of defects in this process to the pathogenesis of genetic disorders such as MODY.
Collapse
Affiliation(s)
- Huan Guo
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Jinhong Sun
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Xin Li
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Xiong
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Heting Wang
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hua Shu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruimin Zhu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qi Liu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yumeng Huang
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rachel Madley
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Yulun Wang
- the Division of Endocrinology, Tianjin People's Hospital, Tianjin 300120, China
| | - Jingqiu Cui
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peter Arvan
- the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Ming Liu
- From the Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China, .,the Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| |
Collapse
|
21
|
The complex co-translational processing of glycoprotein GP5 of type 1 porcine reproductive and respiratory syndrome virus. Virus Res 2017; 240:112-120. [PMID: 28807563 DOI: 10.1016/j.virusres.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
GP5 and M, the major membrane proteins of porcine reproductive and respiratory syndrome virus (PRRSV), are the driving force for virus budding and a target for antibodies. We studied co-translational processing of GP5 from an European PRRSV-1 strain. Using mass spectrometry, we show that in virus particles of a Lelystad variant, the signal peptide of GP5 was absent due to cleavage between glycine-34 and asparagine-35. This cleavage site removes an epitope for a neutralizing monoclonal antibody, but leaves intact another epitope recognized by neutralizing pig sera. Upon ectopic expression of this GP5 in cells, signal peptide cleavage was however inefficient. Complete cleavage occurred when cysteine-24 was changed to proline or an unused glycosylation site involving asparagine-35 was mutated. Insertion of proline at position 24 also caused carbohydrate attachment to asparagine-35. Glycosylation sites introduced downstream of residue 35 were used, but did not inhibit signal peptide processing. Co-expression of the M protein rescued this processing defect in GP5, suggesting a novel function of M towards GP5. We speculate that a complex interplay of the co-translational modifications of GP5 affect the N-terminal structure of the mature proteins and hence its antigenicity.
Collapse
|
22
|
Estoppey D, Lee CM, Janoschke M, Lee BH, Wan KF, Dong H, Mathys P, Filipuzzi I, Schuhmann T, Riedl R, Aust T, Galuba O, McAllister G, Russ C, Spiess M, Bouwmeester T, Bonamy GM, Hoepfner D. The Natural Product Cavinafungin Selectively Interferes with Zika and Dengue Virus Replication by Inhibition of the Host Signal Peptidase. Cell Rep 2017; 19:451-460. [DOI: 10.1016/j.celrep.2017.03.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
|
23
|
Wei JW, Cui JQ, Zhou X, Fang C, Tan YL, Chen LY, Yang C, Liu M, Kang CS. F25P preproinsulin abrogates the secretion of pro-growth factors from EGFRvIII cells and suppresses tumor growth in an EGFRvIII/wt heterogenic model. Cancer Lett 2016; 380:1-9. [PMID: 27317648 DOI: 10.1016/j.canlet.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/11/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023]
Abstract
Extensive heterogeneity is a defining hallmark of glioblastoma multiforme (GBM) at the cellular and molecular levels. EGFRvIII, the most common EGFR mutant, is expressed in 24-67% of cases and strongly indicates a poor survival prognosis. By co-expressing EGFRvIII and EGFRwt, we established an EGFRvIII/wt heterogenic model. Using this approach, we confirmed that a mixture of EGFRvIII and EGFRwt at a certain ratio could clearly enhance tumor growth in vitro and in vivo compared with EGFRwt cells, thereby indicating that EGFRvIII cells promote tumor growth. Furthermore, we demonstrated that the EGFRvIII cells could support the growth of EGFRwt cells by secreting growth factors, thus acting as the principal source for maintaining tumor survival. F25P preproinsulin effectively reduced the concentrations of EGF, VEGF, and MMP-9 in the blood of tumor-bearing mice by competitively inhibiting the endoplasmic reticulum signal peptidase and increased the overall survival in orthotopic models. Taken together, our results provided an effective therapy of F25P preproinsulin in the EGFRvIII/wt heterogenic model.
Collapse
Affiliation(s)
- Jian-Wei Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jing-Qiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuan Zhou
- Department of Head & Neck, Tianjin Cancer Institute and Hospital, Tianjin 300060, China
| | - Chuan Fang
- Department of Neurosurgery, The Hospital affiliated to Hebei University, Baoding 071000, China
| | - Yan-Li Tan
- College of Fundamental Medicine, Hebei University, Baoding 071000, China
| | - Lu-Yue Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chun-Sheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
24
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|