1
|
Hartmannsberger B, Ben-Kraiem A, Kramer S, Guidolin C, Kazerani I, Doppler K, Thomas D, Gurke R, Sisignano M, Kalelkar PP, García AJ, Monje PV, Sammeth M, Nusrat A, Brack A, Krug SM, Sommer C, Rittner HL. TAM receptors mediate the Fpr2-driven pain resolution and fibrinolysis after nerve injury. Acta Neuropathol 2024; 149:1. [PMID: 39680199 DOI: 10.1007/s00401-024-02840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Nerve injury causes neuropathic pain and multilevel nerve barrier disruption. Nerve barriers consist of perineurial, endothelial and myelin barriers. So far, it is unclear whether resealing nerve barriers fosters pain resolution and recovery. To this end, we analysed the nerve barrier property portfolio, pain behaviour battery and lipidomics for precursors of specialized pro-resolving meditators (SPMs) and their receptors in chronic constriction injury of the rat sciatic nerve to identify targets for pain resolution by resealing the selected nerve barriers. Of the three nerve barriers-perineurium, capillaries and myelin-only capillary tightness specifically against larger molecules, such as fibrinogen, recuperated with pain resolution. Fibrinogen immunoreactivity was elevated in rats not only at the time of neuropathic pain but also in nerve biopsies from patients with (but not without) painful polyneuropathy, indicating that sealing of the vascular barrier might be a novel approach in pain treatment. Hydroxyeicosatetraenoic acid (15R-HETE), a precursor of aspirin-triggered lipoxin A4, was specifically upregulated at the beginning of pain resolution. Repeated local application of resolvin D1-laden nanoparticles or Fpr2 agonists sex-independently resulted in accelerated pain resolution and fibrinogen removal. Clearing macrophages (Cd206) were boosted and fibrinolytic pathways (Plat) were induced, while inflammation (Tnfα) and inflammasomes (Nlrp3) were unaffected by this treatment. Blocking TAM receptors (Tyro3, Axl and Mer) and tyrosine kinase receptors linking haemostasis and inflammation completely inhibited all the effects. In summary, nanoparticles can be used as transporters for fleeting lipids, such as SPMs, and therefore expand the array of possible therapeutic agents. Thus, the Fpr2-Cd206-TAM receptor axis may be a suitable target for strengthening the capillary barrier, removing endoneurial fibrinogen and boosting pain resolution in patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- Beate Hartmannsberger
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Adel Ben-Kraiem
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Diet-Induced Metabolic Alterations Group, Leipzig, Germany
| | - Sofia Kramer
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Carolina Guidolin
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ida Kazerani
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Dominique Thomas
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Robert Gurke
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Marco Sisignano
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Pranav P Kalelkar
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, USA
| | - Paula V Monje
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Michael Sammeth
- Department of Applied Sciences and Health, Coburg University of Applied Sciences and Art, Coburg, Germany
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Brack
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Susanne M Krug
- Charité-Universitätsmedizin Berlin, Clinical Physiology/Nutritional Medicine, Berlin, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Prouse T, Majumder S, Majumder R. Functions of TAM Receptors and Ligands Protein S and Gas6 in Atherosclerosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:12736. [PMID: 39684449 DOI: 10.3390/ijms252312736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Atherosclerosis and cardiovascular disease are associated with high morbidity and mortality in industrialized nations. The Tyro3, Axl, and Mer (TAM) family of receptor tyrosine kinases is involved in the amplification or resolution of atherosclerosis pathology and other cardiovascular pathology. The ligands of these receptors, Protein S (PS) and growth arrest specific protein 6 (Gas6), are essential for TAM receptor functions in the amplification and resolution of atherosclerosis. The Axl-Gas6 interaction has various effects on cardiovascular disease. Mer and PS dampen inflammation, thereby protecting against atherosclerosis progression. Tyro3, the least studied TAM receptor in cardiovascular disease, appears to protect against fibrosis in post-myocardial infarction injury. Ultimately, PS, Gas6, and TAM receptors present an exciting avenue of potential therapeutic targets against inflammation associated with atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Teagan Prouse
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Beyond Blood Clotting: The Many Roles of Platelet-Derived Extracellular Vesicles. Biomedicines 2024; 12:1850. [PMID: 39200314 PMCID: PMC11351396 DOI: 10.3390/biomedicines12081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Platelet-derived extracellular vesicles (pEVs) are emerging as pivotal players in numerous physiological and pathological processes, extending beyond their traditional roles in hemostasis and thrombosis. As one of the most abundant vesicle types in human blood, pEVs transport a diverse array of bioactive molecules, including growth factors, cytokines, and clotting factors, facilitating crucial intercellular communication, immune regulation, and tissue healing. The unique ability of pEVs to traverse tissue barriers and their biocompatibility position them as promising candidates for targeted drug delivery and regenerative medicine applications. Recent studies have underscored their involvement in cancer progression, viral infections, wound healing, osteoarthritis, sepsis, cardiovascular diseases, rheumatoid arthritis, and atherothrombosis. For instance, pEVs promote tumor progression and metastasis, enhance tissue repair, and contribute to thrombo-inflammation in diseases such as COVID-19. Despite their potential, challenges remain, including the need for standardized isolation techniques and a comprehensive understanding of their mechanisms of action. Current research efforts are focused on leveraging pEVs for innovative anti-cancer treatments, advanced drug delivery systems, regenerative therapies, and as biomarkers for disease diagnosis and monitoring. This review highlights the necessity of overcoming technical hurdles, refining isolation methods, and establishing standardized protocols to fully unlock the therapeutic potential of pEVs. By understanding the diverse functions and applications of pEVs, we can advance their use in clinical settings, ultimately revolutionizing treatment strategies across various medical fields and improving patient outcomes.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
4
|
Happonen KE, Burrola PG, Lemke G. Regulation of brain endothelial cell physiology by the TAM receptor tyrosine kinase Mer. Commun Biol 2023; 6:916. [PMID: 37673933 PMCID: PMC10482977 DOI: 10.1038/s42003-023-05287-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
The receptor tyrosine kinase Mer (gene name Mertk) acts in vascular endothelial cells (ECs) to tighten the blood-brain barrier (BBB) subsequent to viral infection, but how this is achieved is poorly understood. We find that Mer controls the expression and activity of a large cohort of BBB regulators, along with endothelial nitric oxide synthase. It also controls, via an Akt-Foxo1 pathway, the expression of multiple angiogenic genes. Correspondingly, EC-specific Mertk gene inactivation resulted in perturbed vascular sprouting and a compromised BBB after induced photothrombotic stroke. Unexpectedly, stroke lesions in the brain were also reduced in the absence of EC Mer, which was linked to reduced plasma expression of fibrinogen, prothrombin, and other effectors of blood coagulation. Together, these results demonstrate that Mer is a central regulator of angiogenesis, BBB integrity, and blood coagulation in the mature vasculature. They may also account for disease severity following infection with the coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Kaisa E Happonen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Vago JP, Valdrighi N, Blaney-Davidson EN, Hornikx DLAH, Neefjes M, Barba-Sarasua ME, Thielen NGM, van den Bosch MHJ, van der Kraan PM, Koenders MI, Amaral FA, van de Loo FAJ. Gas6/Axl Axis Activation Dampens the Inflammatory Response in Osteoarthritic Fibroblast-like Synoviocytes and Synovial Explants. Pharmaceuticals (Basel) 2023; 16:ph16050703. [PMID: 37242486 DOI: 10.3390/ph16050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, and promoting tissue repair. Here, we investigated the anti-inflammatory effects of a TAM receptor ligand, i.e., growth arrest-specific gene 6 (Gas6), in synovial fibroblasts from OA patients. TAM receptor expression was determined in synovial tissue. Soluble Axl (sAxl), a decoy receptor for the ligand Gas6, showed concentrations 4.6 times higher than Gas6 in synovial fluid of OA patients. In OA fibroblast-like synoviocytes (OAFLS) exposed to inflammatory stimuli, the levels of sAxl in the supernatants were increased, while the expression of Gas6 was downregulated. In OAFLS under TLR4 stimulation by LPS (Escherichia coli lipopolysaccharide), the addition of exogenous Gas6 by Gas6-conditioned medium (Gas6-CM) reduced pro-inflammatory markers including IL-6, TNF-α, IL-1β, CCL2, and CXCL8. Moreover, Gas6-CM downregulated IL-6, CCL2, and IL-1β in LPS-stimulated OA synovial explants. Pharmacological inhibition of TAM receptors by a pan inhibitor (RU301) or by a selective Axl inhibitor (RU428) similarly abrogated Gas6-CM anti-inflammatory effects. Mechanistically, Gas6 effects were dependent on Axl activation, determined by Axl, STAT1, and STAT3 phosphorylation, and by the downstream induction of the suppressors of the cytokine signaling family (SOCS1 and SOCS3). Taken together, our results showed that Gas6 treatment dampens inflammatory markers of OAFLS and synovial explants derived from OA patients associated with SOCS1/3 production.
Collapse
Affiliation(s)
- Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Natália Valdrighi
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esmeralda N Blaney-Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Daniel L A H Hornikx
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Margot Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - María E Barba-Sarasua
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nathalie G M Thielen
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Flávio A Amaral
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Cheng C, Bison E, Pontara E, Cattini MG, Tonello M, Denas G, Pengo V. Platelet- and endothelial-derived microparticles in the context of different antiphospholipid antibody profiles. Lupus 2022; 31:1328-1334. [DOI: 10.1177/09612033221118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives Studies on microparticles (MPs) in patients with antiphospholipid antibodies (aPL) are sparse and inconclusive. The relation between MPs and different aPL antibody profiles has never been tested. We evaluated the presence of platelet and endothelial microparticles in patients positive for IgG anti-β2-glycoprotein I (aβ2GPI) antibodies according to triple, double and single positive aPL profiles. Methods Megamix (Biocytex) was used to set up the MPs gating according to the datasheet. Markers of Platelet Microparticles (PMPs) were CD41a-PE and annexin-V-FITC that was used to determine phosphatidylserine (PS) exposure. CD144-FITC was used as a marker of Endothelial Microparticles (EMPs). Results The number of total MPs and EMPs was significantly higher in triple positive groups with respect to single positive group and showed a significant correlation with IgG aβ2GPI titers. The number PMPs was the lowest in triple positive group and inversely correlated with IgG aβ2GPI titers. Conclusions Elevated levels of total MPs and EMPs suggest a state of vascular activation in IgG aβ2GPI positive individuals according to the number of positive tests. PMPs may be fast cleared from circulation in high risk triple positive patients.
Collapse
Affiliation(s)
- Chunyan Cheng
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisa Bison
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elena Pontara
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maria Grazia Cattini
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marta Tonello
- Department of Medicine, Rheumatology Section, University of Padua, Padova, Italy
| | - Gentian Denas
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Vittorio Pengo
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Arianna Foundation on Anticoagulation, Bologna, Italy
| |
Collapse
|
7
|
Li S, Xu H, Song M, Shaw BI, Li QJ, Kirk AD. IFI16-STING-NF-κB signaling controls exogenous mitochondrion-induced endothelial activation. Am J Transplant 2022; 22:1578-1592. [PMID: 35322536 PMCID: PMC9177674 DOI: 10.1111/ajt.17034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023]
Abstract
Mitochondria released from injured cells activate endothelial cells (ECs), fostering inflammatory processes, including allograft rejection. The stimulator of interferon genes (STING) senses endogenous mitochondrial DNA, triggering innate immune activation via NF-κB signaling. Here, we show that exogenous mitochondria exposure induces EC STING-NF-κB activation, promoting EC/effector memory T cell adhesion, which is abrogated by NF-κB and STING inhibitors. STING activation in mitochondrion-activated ECs is independent of canonical cGMP-AMP synthetase sensing/signaling, but rather is mediated by interferon gamma-inducible factor 16 (IFI16) and can be inhibited by IFI16 inhibition. Internalized mitochondria undergo mitofusion and STING-dependent mitophagy, leading to selective sequestration of internalized mitochondria. The exposure of donor hearts to exogenous mitochondria activates murine heart ECs in vivo. Collectively, our results suggest that IFI16-STING-NF-κB signaling regulates exogenous mitochondrion-induced EC activation and mitophagy, and exogenous mitochondria foster T cell-mediated CoBRR. These data suggest a novel, donor-directed, therapeutic approach toward mitigating perioperative allograft immunogenicity.
Collapse
Affiliation(s)
- Shu Li
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - He Xu
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Mingqing Song
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Brian I Shaw
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Allan D Kirk
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
8
|
Berkner KL, Runge KW. Vitamin K-Dependent Protein Activation: Normal Gamma-Glutamyl Carboxylation and Disruption in Disease. Int J Mol Sci 2022; 23:5759. [PMID: 35628569 PMCID: PMC9146348 DOI: 10.3390/ijms23105759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin K-dependent (VKD) proteins undergo an unusual post-translational modification, which is the conversion of specific Glu residues to carboxylated Glu (Gla). Gla generation is required for the activation of VKD proteins, and occurs in the endoplasmic reticulum during their secretion to either the cell surface or from the cell. The gamma-glutamyl carboxylase produces Gla using reduced vitamin K, which becomes oxygenated to vitamin K epoxide. Reduced vitamin K is then regenerated by a vitamin K oxidoreductase (VKORC1), and this interconversion of oxygenated and reduced vitamin K is referred to as the vitamin K cycle. Many of the VKD proteins support hemostasis, which is suppressed during therapy with warfarin that inhibits VKORC1 activity. VKD proteins also impact a broad range of physiologies beyond hemostasis, which includes regulation of calcification, apoptosis, complement, growth control, signal transduction and angiogenesis. The review covers the roles of VKD proteins, how they become activated, and how disruption of carboxylation can lead to disease. VKD proteins contain clusters of Gla residues that form a calcium-binding module important for activity, and carboxylase processivity allows the generation of multiple Glas. The review discusses how impaired carboxylase processivity results in the pseudoxanthoma elasticum-like disease.
Collapse
Affiliation(s)
- Kathleen L. Berkner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at CWRU, Cleveland, OH 44195, USA
| | - Kurt W. Runge
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at CWRU, Cleveland, OH 44195, USA;
| |
Collapse
|
9
|
Ginini L, Billan S, Fridman E, Gil Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022; 11:1375. [PMID: 35563681 PMCID: PMC9101098 DOI: 10.3390/cells11091375] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogamous lipid bilayer-enclosed membranous structures secreted by cells. They are comprised of apoptotic bodies, microvesicles, and exosomes, and carry a range of nucleic acids and proteins that are necessary for cell-to-cell communication via interaction on the cells surface. They initiate intracellular signaling pathways or the transference of cargo molecules, which elicit pleiotropic responses in recipient cells in physiological processes, as well as pathological processes, such as cancer. It is therefore important to understand the molecular means by which EVs are taken up into cells. Accordingly, this review summarizes the underlying mechanisms involved in EV targeting and uptake. The primary method of entry by EVs appears to be endocytosis, where clathrin-mediated, caveolae-dependent, macropinocytotic, phagocytotic, and lipid raft-mediated uptake have been variously described as being prevalent. EV uptake mechanisms may depend on proteins and lipids found on the surfaces of both vesicles and target cells. As EVs have been shown to contribute to cancer growth and progression, further exploration and targeting of the gateways utilized by EVs to internalize into tumor cells may assist in the prevention or deceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Salem Billan
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
- Medical Oncology and Radiation Therapy Program, Oncology Section, Rambam Health Care Campus, HaAliya HaShniya Street 8, Haifa 3109601, Israel
| | - Eran Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
| |
Collapse
|
10
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
12
|
Bryl-Górecka P, James K, Torngren K, Haraldsson I, Gan LM, Svedlund S, Olde B, Laurell T, Omerovic E, Erlinge D. Microvesicles in plasma reflect coronary flow reserve in patients with cardiovascular disease. Am J Physiol Heart Circ Physiol 2021; 320:H2147-H2160. [PMID: 33797274 PMCID: PMC8285631 DOI: 10.1152/ajpheart.00869.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High levels of microvesicles (MVs), a type of extracellular vesicles, are detected in several pathological conditions. We investigated the connection between coronary flow reserve (CFR), a prognostic clinical parameter that reflects blood flow in the heart, with levels of MVs and their cargo, from plasma of patients with cardiovascular disease. The PROFLOW study consists of 220 patients with prior myocardial infarction and measured CFR with transthoracic echocardiography. The patients were divided into high and low CFR groups. Plasma MVs were captured with acoustic trapping. Platelet- and endothelial-derived MVs were measured with flow cytometry, and vesicle lysates were analyzed with proteomic panels against cardiovascular biomarkers. Flow cytometry was further applied to identify cellular origin of biomarkers. Our data show a negative correlation between MV concentration and CFR values. Platelet and endothelial MV levels were significantly increased in plasma from the low CFR group. CFR negatively correlates with the levels of several proteomic biomarkers, and the low CFR group exhibited higher concentrations of these proteins in MVs. Focused analysis of one of the MV proteins, B cell activating factor (BAFF), revealed platelet and not leukocyte origin and release upon proinflammatory stimulus. Higher levels of MVs carrying an elevated concentration of proatherogenic proteins circulate in plasma in patients with low CFR, a marker of vascular dysfunction, reduced blood flow, and poor prognosis. Our findings demonstrate a potential clinical value of MVs as biomarkers and possible therapeutic targets against endothelial deterioration. NEW & NOTEWORTHY We investigated how microvesicles (MVs) from patients with cardiovascular diseases are related to coronary flow reserve (CFR), a clinical parameter reflecting blood flow in the heart. Our results show a negative relationship between CFR and levels of platelet and endothelial MVs. The pattern of MV-enriched cardiovascular biomarkers differs between patients with high and low CFR. Our findings suggest a potential clinical value of MVs as biomarkers of reduced blood flow and proatherogenic status, additional to CFR.
Collapse
Affiliation(s)
| | - Kreema James
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Kristina Torngren
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Inger Haraldsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Early Clinical Development, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Sara Svedlund
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Olde
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Nazari M, Javandoost E, Talebi M, Movassaghpour A, Soleimani M. Platelet Microparticle Controversial Role in Cancer. Adv Pharm Bull 2021; 11:39-55. [PMID: 33747851 PMCID: PMC7961228 DOI: 10.34172/apb.2021.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Platelet-derived microparticles (PMPs) are a group of micrometer-scale extracellular vesicles released by platelets upon activation that are responsible for the majority of microvesicles found in plasma. PMPs' physiological properties and functions have long been investigated by researchers. In this regard, a noticeable area of studies has been devoted to evaluating the potential roles and effects of PMPs on cancer progression. Clinical and experimental evidence conflictingly implicates supportive and suppressive functions for PMPs regarding cancer. Many of these functions could be deemed as a cornerstone for future considerations of PMPs usage in cancer targeted therapy. This review discusses what is currently known about PMPs and provides insights for new and possible research directions for further grasping the intricate interplay between PMPs and cancer.
Collapse
Affiliation(s)
- Mahnaz Nazari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Javandoost
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. Introduction
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: new players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319:H1181-H1196. [PMID: 33035434 PMCID: PMC7792704 DOI: 10.1152/ajpheart.00579.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
15
|
The Multifaceted Roles of TAM Receptors during Viral Infection. Virol Sin 2020; 36:1-12. [PMID: 32720213 DOI: 10.1007/s12250-020-00264-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors play multiple roles in a myriad of physiological and pathological processes, varying from promoting the phagocytic clearance of apoptotic cells, sustaining the immune and inflammatory homeostasis, maintaining the blood-brain barrier (BBB) integrity and central nervous system (CNS) homeostasis, to mediating cancer malignancy and chemoresistance. Growth arrest-specific protein 6 (Gas6) and protein S (Pros1) are the two ligands that activate TAM receptors. Recently, TAM receptors have been reported to mediate cell entry and infection of multitudinous enveloped viruses in a manner called apoptotic mimicry. Moreover, TAM receptors are revitalized during viral entry and infection, which sequesters innate immune and inflammatory responses, facilitating viral replication and immune evasion. However, accumulating evidence have now proposed that TAM receptors are not required for the infection of these viruses in vivo. In addition, TAM receptors protect mice against the CNS infection of neuroinvasive viruses and relieve the brain lesions during encephalitis. These protective effects are achieved through maintaining BBB integrity, attenuating proinflammatory cytokine production, and promoting neural cell survival. TAM receptors also regulate the programmed cell death modes of virus-infected cells, which have profound impacts on the pathogenesis and outcome of infection. Here, we systematically review the functionalities and underlying mechanisms of TAM receptors and propose the potential application of TAM agonists to prevent severe viral encephalitis.
Collapse
|
16
|
Platelets Extracellular Vesicles as Regulators of Cancer Progression-An Updated Perspective. Int J Mol Sci 2020; 21:ijms21155195. [PMID: 32707975 PMCID: PMC7432409 DOI: 10.3390/ijms21155195] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are a diverse group of membrane-bound structures secreted in physiological and pathological conditions by prokaryotic and eukaryotic cells. Their role in cell-to-cell communications has been discussed for more than two decades. More attention is paid to assess the impact of EVs in cancer. Numerous papers showed EVs as tumorigenesis regulators, by transferring their cargo molecules (miRNA, DNA, protein, cytokines, receptors, etc.) among cancer cells and cells in the tumor microenvironment. During platelet activation or apoptosis, platelet extracellular vesicles (PEVs) are formed. PEVs present a highly heterogeneous EVs population and are the most abundant EVs group in the circulatory system. The reason for the PEVs heterogeneity are their maternal activators, which is reflected on PEVs size and cargo. As PLTs role in cancer development is well-known, and PEVs are the most numerous EVs in blood, their feasible impact on cancer growth is strongly discussed. PEVs crosstalk could promote proliferation, change tumor microenvironment, favor metastasis formation. In many cases these functions were linked to the transfer into recipient cells specific cargo molecules from PEVs. The article reviews the PEVs biogenesis, cargo molecules, and their impact on the cancer progression.
Collapse
|
17
|
Wang X, Liu Y, Zhang S, Ouyang X, Wang Y, Jiang Y, An N. Crosstalk between Akt and NF-κB pathway mediates inhibitory effect of gas6 on monocytes-endothelial cells interactions stimulated by P. gingivalis-LPS. J Cell Mol Med 2020; 24:7979-7990. [PMID: 32462812 PMCID: PMC7348146 DOI: 10.1111/jcmm.15430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Correlation between periodontitis and atherosclerosis is well established, and the inherent mechanisms responsible for this relationship remain unclear. The biological function of growth arrest‐specific 6 (gas6) has been discovered in both atherosclerosis and inflammation. Inhibitory effects of gas6 on the expression of inflammatory factors in human umbilical vein endothelial cells (HUVECs) stimulated by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis‐LPS) were reported in our previous research. Herein, the effects of gas6 on monocytes‐endothelial cells interactions in vitro and their probable mechanisms were further investigated. Gas6 protein in HUVECs was knocked down with siRNA or overexpressed with plasmids. Transwell inserts and co‐culturing system were introduced to observe chemotaxis and adhering affinity between monocytes and endothelial cells in vitro. Expression of gas6 was decreased in inflammatory periodontal tissues and HUVECs challenged with P. gingivalis‐LPS. The inhibitory effect of gas6 on chemotaxis and adhesion affinity between monocytes and endothelial cells was observed, and gas6 promoted Akt phosphorylation and inhibited NF‐κB phosphorylation. To our best knowledge, we are first to report that gas6 inhibit monocytes‐endothelial cells interactions in vitro induced by P. gingivalis‐LPS via Akt/NF‐κB pathway. Additionally, inflammation‐mediated inhibition of gas6 expression is through LncRNA GAS6‐AS2, rather than GAS6‐AS1, which is also newly reported.
Collapse
Affiliation(s)
- Xuekui Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yingjun Liu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shengnan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na An
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
18
|
Ji S, Dong W, Qi Y, Gao H, Zhao D, Xu M, Li T, Yu H, Sun Y, Ma R, Shi J, Gao C. Phagocytosis by endothelial cells inhibits procoagulant activity of platelets of essential thrombocythemia in vitro. J Thromb Haemost 2020; 18:222-233. [PMID: 31442368 PMCID: PMC6973277 DOI: 10.1111/jth.14617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Essential thrombocythemia (ET) is characterized by thrombocytosis with increased platelet number and persistent activation. The mechanisms of thrombosis and the fate of these platelets are not clear. The aim of the present study is to explore the phagocytosis of platelets of ET patients by endothelial cells (ECs) in vitro and its relevance to the procoagulant activity (PCA). METHODS Phosphatidylserine (PS) exposure on platelets was detected by flow cytometry. Phagocytosis of the platelets by ECs was performed using flow cytometry, confocal microscopy, and electron microscopy. The PCA of platelets was evaluated by coagulation time and purified coagulation complex assays. RESULTS The PS exposure on platelets in ET patients is higher than that in healthy controls. The PS-exposed platelets are highly procoagulant and lactadherin reduced 80% of the PCA by blockade of PS. When cocultured, the platelets of ET patients were sequestered by ECs in a time-dependent fashion. Lactadherin enhanced phagocytosis by bridging the PS on activated platelets and the integrin αvβ3 on ECs, and P-selectin played at least a partial role in this process. Furthermore, factor Xa and prothrombinase activity of PS-exposed platelets were decreased after incubation with ECs. CONCLUSION Our results suggest that phagocytic clearance of platelets by ECs occurs in ET patients, thus representing a novel mechanism to remove activated platelets from the circulation; lactadherin and phagocytosis could cooperatively limit the thrombophilia in ET patients.
Collapse
Affiliation(s)
- Shuting Ji
- Department of Medical Laboratory Science and TechnologyHarbin Medical University‐DaqingDaqingChina
| | - Weijun Dong
- Department of General SurgeryThe Fifth HospitalHarbin Medical UniversityDaqingChina
| | - Yushan Qi
- Department of Medical Laboratory Science and TechnologyHarbin Medical University‐DaqingDaqingChina
| | - Hong Gao
- Department of Hygienic MicrobiologyPublic Health CollegeHarbin Medical UniversityHarbinChina
| | - Danwei Zhao
- Department of EndocrinologyBeijing United Family HospitalBeijingChina
| | - Minghui Xu
- Department of Medical Laboratory Science and TechnologyHarbin Medical University‐DaqingDaqingChina
| | - Tingting Li
- Department of Medical Laboratory Science and TechnologyHarbin Medical University‐DaqingDaqingChina
| | - Hongyin Yu
- Department of Medical Laboratory Science and TechnologyHarbin Medical University‐DaqingDaqingChina
| | - Yuting Sun
- Department of Medical Laboratory Science and TechnologyHarbin Medical University‐DaqingDaqingChina
| | - Ruishuang Ma
- The Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin Medical UniversityHarbinChina
| | - Jialan Shi
- Department of HematologyThe First HospitalHarbin Medical UniversityHarbinChina
- Departments of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Chunyan Gao
- Department of Medical Laboratory Science and TechnologyHarbin Medical University‐DaqingDaqingChina
| |
Collapse
|
19
|
Röszer T. Signal Mechanisms of M2 Macrophage Activation. PROGRESS IN INFLAMMATION RESEARCH 2020:73-97. [DOI: 10.1007/978-3-030-50480-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Oggero S, Austin-Williams S, Norling LV. The Contrasting Role of Extracellular Vesicles in Vascular Inflammation and Tissue Repair. Front Pharmacol 2019; 10:1479. [PMID: 31920664 PMCID: PMC6928593 DOI: 10.3389/fphar.2019.01479] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are a heterogeneous family of vesicles, generated from different subcellular compartments and released into the extracellular space. Composed of a lipid bilayer encompassing both soluble cytosolic material and nuclear components, these organelles have been recently described as novel regulators of intercellular communication between adjacent and remote cells. Due to their diversified composition and biological content, they portray specific signatures of cellular activation and pathological processes, their potential as diagnostic and prognostic biomarkers has raised significant interest in cardiovascular diseases. Circulating vesicles, especially those released from platelets, leukocytes, and endothelial cells are found to play a critical role in activating several fundamental cells within the vasculature, including endothelial cells and vascular smooth muscle cells. Their intrinsic activity and immunomodulatory properties lends them to not only promote vascular inflammation, but also enhance tissue regeneration, vascular repair, and indeed resolution. In this review we aim to recapitulate the recent findings concerning the roles played by EVs that originate from different circulating cells, with particular reference to their action on the endothelium. We focus herein, on the interaction of platelet and leukocyte EVs with the endothelium. In addition, their potential biological function in promoting tissue resolution and vascular repair will also be discussed.
Collapse
Affiliation(s)
- Silvia Oggero
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Shani Austin-Williams
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Lucy Victoria Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
Burstyn-Cohen T, Maimon A. TAM receptors, Phosphatidylserine, inflammation, and Cancer. Cell Commun Signal 2019; 17:156. [PMID: 31775787 PMCID: PMC6881992 DOI: 10.1186/s12964-019-0461-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/11/2019] [Indexed: 01/26/2023] Open
Abstract
Abstract The numerous and diverse biological roles of Phosphatidylserine (PtdSer) are featured in this special issue. This review will focus on PtdSer as a cofactor required for stimulating TYRO3, AXL and MERTK – comprising the TAM family of receptor tyrosine kinases by their ligands Protein S (PROS1) and growth-arrest-specific 6 (GAS6) in inflammation and cancer. As PtdSer binding to TAMs is a requirement for their activation, the biological repertoire of PtdSer is now recognized to be broadened to include functions performed by TAMs. These include key homeostatic roles necessary for preserving a healthy steady state in different tissues, controlling inflammation and further additional roles in diseased states and cancer. The impact of PtdSer on inflammation and cancer through TAM signaling is a highly dynamic field of research. This review will focus on PtdSer as a necessary component of the TAM receptor-ligand complex, and for maximal TAM signaling. In particular, interactions between tumor cells and their immediate environment - the tumor microenvironment (TME) are highlighted, as both cancer cells and TME express TAMs and secrete their ligands, providing a nexus for a multifold of cross-signaling pathways which affects both immune cells and inflammation as well as tumor cell biology and growth. Here, we will highlight the current and emerging knowledge on the implications of PtdSer on TAM signaling, inflammation and cancer. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Tal Burstyn-Cohen
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel.
| | - Avi Maimon
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
22
|
Garikipati VNS, Shoja-Taheri F, Davis ME, Kishore R. Extracellular Vesicles and the Application of System Biology and Computational Modeling in Cardiac Repair. Circ Res 2019; 123:188-204. [PMID: 29976687 DOI: 10.1161/circresaha.117.311215] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent literature suggests that extracellular vesicles (EVs), secreted from most cells and containing cell-specific cargo of proteins, lipids, and nucleic acids, are major driver of intracellular communication in normal physiology and pathological conditions. The recent evidence on stem/progenitor cell EVs as potential therapeutic modality mimicking their parental cell function is exciting because EVs could possibly be used as a surrogate for the stem cell-based therapy, and this regimen may overcome certain roadblocks identified with the use of stem/progenitor cell themselves. This review provides a comprehensive update on our understanding on the role of EVs in cardiac repair and emphasizes the applications of stem/progenitor cell-derived EVs as therapeutics and discusses the current challenges associated with the EV therapy.
Collapse
Affiliation(s)
| | - Farnaz Shoja-Taheri
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Michael E Davis
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Raj Kishore
- From the Center for Translational Medicine (V.N.S.G., R.K.) .,Department of Pharmacology (R.K.)
| |
Collapse
|
23
|
Arienti S, Barth ND, Dorward DA, Rossi AG, Dransfield I. Regulation of Apoptotic Cell Clearance During Resolution of Inflammation. Front Pharmacol 2019; 10:891. [PMID: 31456686 PMCID: PMC6701246 DOI: 10.3389/fphar.2019.00891] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Programmed cell death (apoptosis) has an important role in the maintenance of tissue homeostasis as well as the progression and ultimate resolution of inflammation. During apoptosis, the cell undergoes morphological and biochemical changes [e.g., phosphatidylserine (PtdSer) exposure, caspase activation, changes in mitochondrial membrane potential and DNA cleavage] that act to shut down cellular function and mark the cell for phagocytic clearance. Tissue phagocytes bind and internalize apoptotic cells, bodies, and vesicles, providing a mechanism for the safe disposal of apoptotic material. Phagocytic removal of apoptotic cells before they undergo secondary necrosis reduces the potential for bystander damage to adjacent tissue and importantly initiates signaling pathways within the phagocytic cell that act to dampen inflammation. In a pathological context, excessive apoptosis or failure to clear apoptotic material results in secondary necrosis with the release of pro-inflammatory intracellular contents. In this review, we consider some of the mechanisms by which phagocytosis of apoptotic cells can be controlled. We suggest that matching apoptotic cell load with the capacity for apoptotic cell clearance within tissues may be important for therapeutic strategies that target the apoptotic process for treatment of inflammatory disease.
Collapse
Affiliation(s)
- Simone Arienti
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole D Barth
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Dorward
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Voices from the dead: The complex vocabulary and intricate grammar of dead cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:1-90. [PMID: 31036289 DOI: 10.1016/bs.apcsb.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the roughly one million cells per second dying throughout the body, the vast majority dies by apoptosis, the predominant form of regulated cell death in higher organisms. Long regarded as mere waste, apoptotic cells are now recognized as playing a prominent and active role in homeostatic maintenance, especially resolution of inflammation, and in the sculpting of tissues during development. The activities associated with apoptotic cells are continually expanding, with more recent studies demonstrating their ability to modulate such vital functions as proliferation, survival, differentiation, metabolism, migration, and angiogenesis. In each case, the role of apoptotic cells is active, exerting their effects via new activities acquired during the apoptotic program. Moreover, the capacity to recognize and respond to apoptotic cells is not limited to professional phagocytes. Most, if not all, cells receive and integrate an array of signals from cells dying in their vicinity. These signals comprise a form of biochemical communication. As reviewed in this chapter, this communication is remarkably sophisticated; each of its three critical steps-encoding, transmission, and decoding of the apoptotic cell's "message"-is endowed with exquisite robustness. Together, the abundance and intricacy of the variables at each step comprise the vocabulary and grammar of the language by which dead cells achieve their post-mortem voice. The combinatorial complexity of the resulting communication network permits dying cells, through the signals they emit and the responses those signals elicit, to partake of an expanded role in homeostasis, acting as both sentinels of environmental change and agents of adaptation.
Collapse
|
25
|
Marcoux G, Magron A, Sut C, Laroche A, Laradi S, Hamzeh-Cognasse H, Allaeys I, Cabon O, Julien AS, Garraud O, Cognasse F, Boilard E. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion 2019; 59:2403-2414. [PMID: 30973972 DOI: 10.1111/trf.15300] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system. Mitochondrial DNA (mtDNA) is a recognized DAMP detected in the extracellular milieu in numerous inflammatory conditions and in platelet concentrates. We hypothesized that platelet-derived mitochondria encapsulated in EVs may represent a reservoir of mtDNA. STUDY DESIGN AND METHODS Herein, we explored the implication of mito+EVs in the occurrence of mtDNA quantified in platelet concentrate supernatants that induced or did not induce transfusion adverse reactions. RESULTS We observed that EVs were abundant in platelet concentrates, and platelet-derived mito+EVs were more abundant in platelet concentrates that induced adverse reactions. A significant correlation (rs = 0.73; p < 0.0001) between platelet-derived mito+EV levels and mtDNA concentrations was found. However, there was a nonsignificant correlation between the levels of EVs without mitochondria and mtDNA concentrations (rs = -0.11; p = 0.5112). The majority of the mtDNA was encapsulated into EVs. CONCLUSION This study suggests that platelet-derived EVs, such as those that convey mitochondrial DAMPs, may be a useful biomarker for the prediction of potential risk of adverse transfusion reactions. Moreover, our work implies that investigations are necessary to determine whether there is a causal pathogenic role of mitochondrial DAMP encapsulated in EVs as opposed to mtDNA in solution.
Collapse
Affiliation(s)
- Genevieve Marcoux
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Audrey Magron
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Caroline Sut
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France.,Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Audree Laroche
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Sandrine Laradi
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France.,Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - Isabelle Allaeys
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Ophelie Cabon
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Anne-Sophie Julien
- Department of Mathematics and Statistic, Université Laval, Quebec City, Québec, Canada
| | - Olivier Garraud
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
| | - Fabrice Cognasse
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France.,Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada.,Canadian National Transplantation Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Dahlbäck B, Guo LJ, Zöller B, Tran S. New functional test for the TFPIα cofactor activity of Protein S working in synergy with FV-Short. J Thromb Haemost 2019; 17:585-595. [PMID: 30740865 DOI: 10.1111/jth.14405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 08/31/2023]
Abstract
Essentials Protein S and FV-Short are synergistic cofactors to Tissue Factor Pathway Inhibitor α (TFPIα). An assay for the TFPIα synergistic cofactor activity of protein S with FV-Short was developed. The assay was specific for the synergistic TFPIα-cofactor activity of free protein S. Protein S deficient individuals with known mutations were correctly distinguished from controls. SUMMARY: Background Protein S is an anticoagulant cofactor to both activated protein C and tissue factor pathway inhibitor (TFPIα). The TFPIα-cofactor activity of protein S is stimulated by a short isoform of factor V (FV-Short), the two proteins functioning in synergy. Objective Using the synergistic TFPIα-cofactor activity between protein S and FV-Short to develop a functional test for plasma protein S. Patients/Methods TFPIα-mediated inhibition of FXa in the presence of FV-Short, protein S and negatively charged phospholipid vesicles was monitored in time by synthetic substrate S2765. TFPIα, FXa and FV-Short were purified proteins, whereas diluted plasma from protein S deficient patients or controls were used as source for protein S. Results The assay was specific for free protein S demonstrating good correlation to free protein S plasma levels (r = 0.92) with a Y-axis intercept of -5%. Correlation to concentrations of total protein S (free and C4BPβ+-bound) was lower (r = 0.88) and the Y-axis intercept was +46%, which is consistent with the specificity for free protein S. The test distinguished protein S-deficient individuals from 6 families with known ProS1 mutations from family members having no mutation. Protein S levels of warfarin-treated protein S deficient cases were lower than protein S in cases treated with warfarin for other causes. Conclusions We describe a new assay measuring the TFPIα-cofactor activity of plasma protein S. The test identifies type I/III protein S deficiencies and will be a useful tool to detect type II protein S deficiency having defective TFPIα-cofactor activity.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Li Jun Guo
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Bengt Zöller
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sinh Tran
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
27
|
Abstract
BACKGROUND Lower tidal volumes are increasingly used in acute respiratory distress syndrome, but mortality has changed little in the last 20 yr. Therefore, in addition to ventilator settings, it is important to target molecular mediators of injury. Sepsis and other inflammatory states increase circulating concentrations of Gas6, a ligand for the antiinflammatory receptor Axl, and of a soluble decoy form of Axl. We investigated the effects of lung stretch on Axl signaling. METHODS We used a mouse model of early injury from high tidal volume and assessed the effects of inhibiting Axl on in vivo lung injury (using an antagonist R428, n = 4/group). We further determined the effects of stretch on Axl activation using in vitro lung endothelial cells. RESULTS High tidal volume caused mild injury (compliance decreased 6%) as intended, and shedding of the Axl receptor (soluble Axl in bronchoalveolar fluid increased 77%). The Axl antagonist R428 blocked the principal downstream Axl target (suppressor of cytokine signaling 3 [SOCS3]) but did not worsen lung physiology or inflammation. Cyclic stretch in vitro caused Axl to become insensitive to activation by its agonist, Gas6. Finally, in vitro Axl responses were rescued by blocking stretch-activated calcium channels (using guanidinium chloride [GdCl3]), and the calcium ionophore ionomycin replicated the effect of stretch. CONCLUSIONS These data suggest that lung endothelial cell overdistention activates ion channels, and the resultant influx of Ca inactivates Axl. Downstream inactivation of Axl by stretch was not anticipated; preventing this would be required to exploit Axl receptors in reducing lung injury.
Collapse
|
28
|
Fendl B, Eichhorn T, Weiss R, Tripisciano C, Spittler A, Fischer MB, Weber V. Differential Interaction of Platelet-Derived Extracellular Vesicles With Circulating Immune Cells: Roles of TAM Receptors, CD11b, and Phosphatidylserine. Front Immunol 2018; 9:2797. [PMID: 30619243 PMCID: PMC6297748 DOI: 10.3389/fimmu.2018.02797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Secretion and exchange of biomolecules by extracellular vesicles (EVs) are crucial in intercellular communication and enable cells to adapt to alterations in their microenvironment. EVs are involved in a variety of cellular processes under physiological conditions as well as in pathological settings. In particular, they exert profound effects on the innate immune system, and thereby are also capable of modulating adaptive immunity. The mechanisms underlying their interaction with their recipient cells, particularly their preferential association with monocytes and granulocytes in the circulation, however, remain to be further clarified. Surface molecules exposed on EVs are likely to mediate immune recognition and EV uptake by their recipient cells. Here, we investigated the involvement of Tyro3, Axl, and Mer (TAM) tyrosine kinase receptors and of integrin CD11b in the binding of platelet-derived EVs, constituting the large majority of circulating EVs, to immune cells in the circulation. Flow cytometry and Western Blotting demonstrated a differential expression of TAM receptors and CD11b on monocytes, granulocytes, and lymphocytes, as well as on monocyte subsets. Of the TAM receptors, only Axl and Mer were detected at low levels on monocytes and granulocytes, but not on lymphocytes. Likewise, CD11b was present on circulating monocytes and granulocytes, but remained undetectable on lymphocytes. Differentiation of monocytes into classical, intermediate, and non-classical monocyte subsets revealed distinct expression patterns of Mer and activated CD11b. Co-incubation of isolated monocytes and granulocytes with platelet-derived EVs showed that the binding of EVs to immune cells was dependent on Ca++. Our data do not support a particular role for TAM receptors or for activated CD11b in the association of platelet-derived EVs with monocytes and granulocytes in the circulation, as anti-TAM antibodies did not interfere with EV binding to isolated immune cells, as binding was not dependent on the presence of TIM4 acting synergistically with TAM receptors, and as neither low levels of Gas6, required as a linker between phosphatidylserine (PS) on the EV surface and TAM receptors on immune cells, nor masking of PS on the EV surface did interfere with EV binding.
Collapse
Affiliation(s)
- Birgit Fendl
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Tanja Eichhorn
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| |
Collapse
|
29
|
Luhtala N, Hunter T. Failure to detect functional transfer of active K-Ras protein from extracellular vesicles into recipient cells in culture. PLoS One 2018; 13:e0203290. [PMID: 30192821 PMCID: PMC6128481 DOI: 10.1371/journal.pone.0203290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes, extracellular nanovesicles that carry nucleic acids, lipids, and proteins, have been the subject of several studies to assess their ability to transfer functional cargoes to cells. We recently characterized extracellular nanovesicles released from glioblastoma cells that carry active Ras in complex with proteins regulating exosome biogenesis. Here, we investigated whether a functional transfer of Ras from exosomes to other cells can initiate intercellular signaling. We observed that treatment of serum-starved, cultured glioblastoma cells with exogenous glioblastoma exosomes caused a significant increase in cellular viability over time. Moreover, we detected fluorescent signal transfer from lipophilic dye-labeled exogenous glioblastoma exosomes into cultured glioblastoma cells. To probe possible signaling from cell-to-cell, we utilized bimolecular luciferase complementation to examine the ability of K-Ras in exosomes to interact with the Raf-Ras Binding domain (Raf-RBD) expressed in a recipient cell line. Although the K-Ras/Raf-RBD interaction was readily detectable upon co-expression in a single cell line, or following lysis of co-cultured cell lines separately expressing K-Ras and RBD, bearing in mind the limitations of our assay, we were unable to detect the interaction in the intact, co-cultured cell lines or upon treatment of the Raf-RBD-expressing cells with exosomes containing K-Ras. Furthermore, HA-Tag-BFP fused to the K-Ras hypervariable region and CAAX sequence failed to be transferred at significant levels from extracellular vesicles into recipient cells, but remained detectable in the cell supernatants even after 96 hours of culture of naïve cells with extracellular vesicles. We conclude that if transfer of functional K-Ras from extracellular vesicles into the cytoplasm of recipient cells occurs, it must do so at an extremely low efficiency and therefore is unlikely to initiate Ras-ERK MAP kinase pathway signaling. These results suggest that studies claiming functional transfer of protein cargoes from exosomes should be interpreted with caution.
Collapse
Affiliation(s)
- Natalie Luhtala
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States of America
| |
Collapse
|
30
|
Zhang Y, Zhang W, Zha C, Liu Y. Platelets activated by the anti-β2GPI/β2GPI complex release microRNAs to inhibit migration and tube formation of human umbilical vein endothelial cells. Cell Mol Biol Lett 2018; 23:24. [PMID: 29785186 PMCID: PMC5952642 DOI: 10.1186/s11658-018-0091-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
Background Patients with anti-β2GPI antibodies display significantly higher platelet activation/aggregation and vascular endothelial cell damage. The mechanism underlying the correlation between platelet activation, vascular endothelial cell dysfunctions and anti-β2GPI antibodies remains unknown. Methods In this study, we derived miR-96 and -26a from platelets activated by the anti-β2GPI/β2GPI complex and explored their role in modulating human umbilical vein endothelial cell (HUVEC) migration and tube formation. Results Anti-β2GPI/β2GPI complex induces the release of platelet-derived microparticles (p-MPs). The amounts of miR-96 and -26a in these p-MPs were also higher than for the control group. Co-incubation of HUVECs with p-MPs resulted in the transfer of miR-96 and -26a into HUVECs, where they inhibited migration and tube formation. The targeting role of these miRNAs was further validated by directly downregulating targeted selectin-P (SELP) and platelet-derived growth factor receptor alpha (PDGFRA) via luciferase activity assay. Conclusion Our study suggests that miR-96 and -26a in p-MPs can inhibit HUVEC behavior by targeting SELP and PDGFRA.
Collapse
Affiliation(s)
- Yanfen Zhang
- Department of Laboratory Diagnosis, The Second Affliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affliated Hospital of Harbin Medical University, Harbin, China
| | - Caijun Zha
- Department of Laboratory Diagnosis, The Second Affliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Differential Interaction of Platelet-Derived Extracellular Vesicles with Leukocyte Subsets in Human Whole Blood. Sci Rep 2018; 8:6598. [PMID: 29700367 PMCID: PMC5920058 DOI: 10.1038/s41598-018-25047-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14++CD16+) monocytes in whole blood.
Collapse
|
32
|
Boilard E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res 2018; 59:2037-2046. [PMID: 29678959 DOI: 10.1194/jlr.r084640] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are small membrane-bound vesicles released by cells under various conditions. In a multitude of physiological and pathological conditions, EVs contribute to intercellular communication by facilitating exchange of material between cells. Rapidly growing interest is aimed at better understanding EV function and their use as biomarkers. The vast EV cargo includes cytokines, growth factors, organelles, nucleic acids (messenger and micro RNA), and transcription factors. A large proportion of research dedicated to EVs is focused on their microRNA cargo; however, much less is known about other EV constituents, in particular, eicosanoids. These potent bioactive lipid mediators, derived from arachidonic acid, are shuttled in EVs along with the enzymes in charge of their synthesis. In the extracellular milieu, EVs also interact with secreted phospholipases to generate eicosanoids, which then regulate the transfer of cargo into a cellular recipient. Eicosanoids are useful as biomarkers and contribute to a variety of biological functions, including modulation of distal immune responses. Here, we review the reported roles of eicosanoids conveyed by EVs and describe their potential as biomarkers.
Collapse
Affiliation(s)
- Eric Boilard
- Centre de Recherche du CHU de Québec - Université Laval, Department of Infectious Diseases and Immunity, Quebec City, QC, Canada, and Canadian National Transplantation Research Program, Edmonton, AB, Canada
| |
Collapse
|
33
|
Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N. The Neutrophil's Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front Immunol 2018. [PMID: 29515586 PMCID: PMC5826238 DOI: 10.3389/fimmu.2018.00288] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophils recognize particulate substrates of microbial or endogenous origin and react by sequestering the cargo via phagocytosis or by releasing neutrophil extracellular traps (NETs) outside the cell, thus modifying and alerting the environment and bystander leukocytes. The signals that determine the choice between phagocytosis and the generation of NETs are still poorly characterized. Neutrophils that had phagocytosed bulky particulate substrates, such as apoptotic cells and activated platelets, appear to be “poised” in an unresponsive state. Environmental conditions, the metabolic, adhesive and activation state of the phagocyte, and the size of and signals associated with the tethered phagocytic cargo influence the choice of the neutrophils, prompting either phagocytic clearance or the generation of NETs. The choice is dichotomic and apparently irreversible. Defects in phagocytosis may foster the intravascular generation of NETs, thus promoting vascular inflammation and morbidities associated with diseases characterized by defective phagocytic clearance, such as systemic lupus erythematosus. There is a strong potential for novel treatments based on new knowledge of the events determining the inflammatory and pro-thrombotic function of inflammatory leukocytes.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia Rovere-Querini
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Norma Maugeri
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
34
|
Dahlbäck B, Guo LJ, Livaja‐Koshiar R, Tran S. Factor V-short and protein S as synergistic tissue factor pathway inhibitor (TFPIα) cofactors. Res Pract Thromb Haemost 2018; 2:114-124. [PMID: 30046712 PMCID: PMC6055574 DOI: 10.1002/rth2.12057] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND FV-Short is a normal splice variant of Factor V (FV) having a short B domain, which exposes a high affinity-binding site for tissue factor pathway inhibitor α (TFPIα). FV-Short and TFPIα circulate in complex in plasma. OBJECTIVES The aim was to elucidate whether FV-Short affects TFPIα as inhibitor of coagulation FXa and to test whether the TFPIα-cofactor activity of protein S is influenced by FV-Short. METHODS Recombinant FV, wild-type FV-Short and a FV-Short thrombin-cleavage resistant variant were expressed and purified. The influence of FV and FV-Short variants and/or protein S on the FXa inhibitory activity of TFPIα was monitored both in a purified system and in a plasma-based thrombin generation assay. RESULTS FV-Short had intrinsically weak TFPIα-cofactor activity but with protein S present, FV-Short yielded efficient inactivation of FXa. Protein S alone did not promote full TFPIα-activity. Intact FV was inefficient at low protein S concentrations and had 10-fold lower activity compared to FV-Short at physiological protein S levels. Activation of FV-Short by thrombin resulted in the loss of the TFPIα-cofactor activity. The synergistic TFPIα-cofactor activity of FV-Short and protein S was also demonstrated in plasma using a thrombin generation assay. CONCLUSIONS FV-Short and protein S are highly efficient, synergistic cofactors to TFPIα in the regulation of FXa activity, whereas full length FV has lower activity. Our results suggest the formation of an efficient FXa-inhibitory complex between FV-Short, TFPIα and protein S on the surface of negatively charged phospholipids.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Li Jun Guo
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Ruzica Livaja‐Koshiar
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Sinh Tran
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| |
Collapse
|
35
|
Schneider DJ, Speth JM, Penke LR, Wettlaufer SH, Swanson JA, Peters-Golden M. Mechanisms and modulation of microvesicle uptake in a model of alveolar cell communication. J Biol Chem 2017; 292:20897-20910. [PMID: 29101235 PMCID: PMC5743066 DOI: 10.1074/jbc.m117.792416] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles, including exosomes and shed microvesicles (MVs), can be internalized by recipient cells to modulate function. Although the mechanism by which extracellular vesicles are internalized is incompletely characterized, it is generally considered to involve endocytosis and an initial surface-binding event. Furthermore, modulation of uptake by microenvironmental factors is largely unstudied. Here, we used flow cytometry, confocal microscopy, and pharmacologic and molecular targeting to address these gaps in knowledge in a model of pulmonary alveolar cell-cell communication. Alveolar macrophage-derived MVs were fully internalized by alveolar epithelial cells in a time-, dose-, and temperature-dependent manner. Uptake was dependent on dynamin and actin polymerization. However, it was neither saturable nor dependent on clathrin or receptor binding. Internalization was enhanced by extracellular proteins but was inhibited by cigarette smoke extract via oxidative disruption of actin polymerization. We conclude that MV internalization occurs via a pathway more consistent with fluid-phase than receptor-dependent endocytosis and is subject to bidirectional modulation by relevant pathologic perturbations.
Collapse
Affiliation(s)
| | | | - Loka R Penke
- From the Division of Pulmonary and Critical Care Medicine
| | | | - Joel A Swanson
- Department of Microbiology and Immunology, and
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Marc Peters-Golden
- From the Division of Pulmonary and Critical Care Medicine,
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
36
|
Nilsson BG, Bungard TJ. A Case of Migraine With Aura Resolving on Warfarin But Not on Apixaban. Headache 2017; 57:1614-1617. [PMID: 28960288 DOI: 10.1111/head.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 01/03/2023]
Abstract
Several case reports have associated anticoagulants such as heparin and vitamin K antagonists with reduced symptoms in migraine, but no data exist for direct acting oral factor Xa inhibitors. We report the case of a 55-year-old female who experienced complete remission of migraine with aura for 12 years while on warfarin, with return of symptoms within 3 weeks of switching to apixaban, and resolution of symptoms once again within days of warfarin resumption. Our case suggests that anticoagulation alone is not sufficient to improve migraine symptoms. Further study of vitamin K-dependent proteins not involved in anticoagulation, such as the relatively novel growth arrest-specific gene 6, may clarify the link between warfarin and migraine symptoms.
Collapse
Affiliation(s)
- Benjamin G Nilsson
- Alberta Health Services, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Tammy J Bungard
- Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Mohning MP, Thomas SM, Barthel L, Mould KJ, McCubbrey AL, Frasch SC, Bratton DL, Henson PM, Janssen WJ. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK. Am J Physiol Lung Cell Mol Physiol 2017; 314:L69-L82. [PMID: 28935638 DOI: 10.1152/ajplung.00058.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.
Collapse
Affiliation(s)
- Michael P Mohning
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| | - Stacey M Thomas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Lea Barthel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Kara J Mould
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| | - Alexandria L McCubbrey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| | | | - Donna L Bratton
- Department of Pediatrics, National Jewish Health , Denver, Colorado
| | - Peter M Henson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, National Jewish Health , Denver, Colorado
| | - William J Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
38
|
Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost 2017; 117:1296-1316. [PMID: 28569921 DOI: 10.1160/th16-12-0943] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research.
Collapse
Affiliation(s)
| | - Chantal M Boulanger
- Victoria Ridger, PhD, Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK, E-mail: , or, Chantal M. Boulanger, PhD, INSERM UMR-S 970, Paris Cardiovascular Research Center - PARCC, 56 rue Leblanc, 75015 Paris, France, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gustafsson A, Fritz HK, Dahlbäck B. Gas6-Axl signaling in presence of Sunitinib is enhanced, diversified and sustained in renal tumor cells, resulting in tumor-progressive advantages. Exp Cell Res 2017; 355:47-56. [DOI: 10.1016/j.yexcr.2017.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/26/2017] [Accepted: 03/18/2017] [Indexed: 12/01/2022]
|
40
|
Abstract
Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.
Collapse
|
41
|
Affiliation(s)
- Leonard C. Edelstein
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Röszer T. Transcriptional control of apoptotic cell clearance by macrophage nuclear receptors. Apoptosis 2016; 22:284-294. [DOI: 10.1007/s10495-016-1310-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
The Role of TAM Family Receptors in Immune Cell Function: Implications for Cancer Therapy. Cancers (Basel) 2016; 8:cancers8100097. [PMID: 27775650 PMCID: PMC5082387 DOI: 10.3390/cancers8100097] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/30/2023] Open
Abstract
The TAM receptor protein tyrosine kinases-Tyro3, Axl, and Mer-are essential regulators of immune homeostasis. Guided by their cognate ligands Growth arrest-specific gene 6 (Gas6) and Protein S (Pros1), these receptors ensure the resolution of inflammation by dampening the activation of innate cells as well as by restoring tissue function through promotion of tissue repair and clearance of apoptotic cells. Their central role as negative immune regulators is highlighted by the fact that deregulation of TAM signaling has been linked to the pathogenesis of autoimmune, inflammatory, and infectious diseases. Importantly, TAM receptors have also been associated with cancer development and progression. In a cancer setting, TAM receptors have a dual regulatory role, controlling the initiation and progression of tumor development and, at the same time, the associated anti-tumor responses of diverse immune cells. Thus, modulation of TAM receptors has emerged as a potential novel strategy for cancer treatment. In this review, we discuss our current understanding of how TAM receptors control immunity, with a particular focus on the regulation of anti-tumor responses and its implications for cancer immunotherapy.
Collapse
|
44
|
Fortin PR, Cloutier N, Bissonnette V, Aghdassi E, Eder L, Simonyan D, Laflamme N, Boilard E. Distinct Subtypes of Microparticle-containing Immune Complexes Are Associated with Disease Activity, Damage, and Carotid Intima-media Thickness in Systemic Lupus Erythematosus. J Rheumatol 2016; 43:2019-2025. [PMID: 27585687 DOI: 10.3899/jrheum.160050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Microparticles (MP) are small extracellular vesicles present in body fluids. MP originate from different cellular lineages, principally from platelets in blood, and may expose phosphatidylserine (PS). In systemic lupus erythematosus (SLE), MP harbor immunoglobulin G (IgG), thereby forming MP-containing immune complexes (mpIC). We aimed to verify an association between SLE disease activity, damage, and surrogate markers of atherosclerosis and MP harboring IgG, taking into account the platelet origin and PS exposure of MP. METHODS MP expressing surface IgG, platelet antigen (CD41+), and PS were quantified using flow cytometry in plasma of 191 women with SLE. Carotid ultrasounds (US) were available in 113 patients. Spearman correlation analysis was used to analyze whether levels of MP were associated with the following outcomes: SLE Disease Activity Index 2000 (SLEDAI-2K), Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI), and carotid US plaques and intima-media thickness (CIMT) as surrogates for vascular damage. RESULTS We found CD41+ MP harboring IgG present in SLE. A positive correlation was found between SLEDAI-2K and levels of CD41+ MP harboring IgG and exposing (p = 0.027) and non-exposing PS (p = 0.001). Conversely, SDI (p = 0.024) and CIMT (p = 0.016) correlated with concentrations of CD41- MP harboring IgG and exposing PS. Associations were independent of low-density lipoprotein cholesterol level, body mass index, and antimalarial drug use. CONCLUSION Different subtypes of mpIC are produced in SLE and are associated with distinct clinical characteristics such as disease activity and vascular damage. The assessment of MP subtypes might serve for the design of predictive markers of disease activity and vascular damage in patients.
Collapse
Affiliation(s)
- Paul R Fortin
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada. .,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval.
| | - Nathalie Cloutier
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval
| | - Vincent Bissonnette
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval
| | - Ellie Aghdassi
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval
| | - Lihi Eder
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval
| | - David Simonyan
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval
| | - Nathalie Laflamme
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval
| | - Eric Boilard
- From the Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec- Université Laval and Faculté de Médecine, Université Laval; Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, Université Laval, Québec City, Québec; Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; Women's College Research Institute, Women's College Hospital and Department of Medicine, University of Toronto, Toronto, Ontario, Canada. .,P.R. Fortin, MD, MPH, FRCPC, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval; N. Cloutier, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, and Faculté de Médecine, Université Laval; V. Bissonnette, BSc, Centre de recherche du CHU de Québec - Université Laval, Axe Maladies Infectieuses et Immunitaires and Division of Rheumatology, Department of Medicine, Université Laval, and Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval; E. Aghdassi, PhD, RD, Dalla Lana School of Public Health, University of Toronto, Division of Neurology, University Health Network, Toronto Western Hospital; L. Eder, MD, PhD, Women's College Research Institute, Women's College Hospital, Department of Medicine, University of Toronto; D. Simonyan, MSc, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; N. Laflamme, PhD, Centre de recherche du CHU de Québec - Université Laval, Plateforme de recherche clinique et évaluative, and Faculté de Médecine, Université Laval; E. Boilard, PhD, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec - Université Laval, Faculté de Médecine, Université Laval.
| |
Collapse
|