1
|
Hartung J, Müller C, Calkhoven CF. The dual role of the TSC complex in cancer. Trends Mol Med 2025; 31:452-465. [PMID: 39488444 DOI: 10.1016/j.molmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
The tuberous sclerosis complex (TSC1/TSC2/TBC1D7) primarily functions to inhibit the mechanistic target of rapamycin complex 1 (mTORC1), a crucial regulator of cell growth. Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), a rare autosomal dominant genetic disorder marked by benign tumors in multiple organs that rarely progress to malignancy. Traditionally, TSC proteins are considered tumor suppressive due to their inhibition of mTORC1 and other mechanisms. However, more recent studies have shown that TSC proteins can also promote tumorigenesis in certain cancer types. In this review, we explore the composition and function of the TSC protein complex, the roles of its individual components in cancer biology, and potential future therapeutic targeting strategies.
Collapse
Affiliation(s)
- Josephine Hartung
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
2
|
Abéza C, Busse P, Paiva ACF, Chagot ME, Schneider J, Robert MC, Vandermoere F, Schaeffer C, Charpentier B, Sousa PMF, Bandeiras TM, Manival X, Cianferani S, Bertrand E, Verheggen C. The HSP90/R2TP Quaternary Chaperone Scaffolds Assembly of the TSC Complex. J Mol Biol 2024; 436:168840. [PMID: 39490680 DOI: 10.1016/j.jmb.2024.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes. The TSC is a key regulator of mTORC1 and is composed of TSC1, TSC2 and TBC1D7. We show a direct interaction of TSC1 with the PIH phospho-binding domain of PIH1D1, which is, surprisingly, phosphorylation independent. Via the use of mutants and KO cell lines, we observe that TSC2 makes independent interactions with HSP90 and the TPR domains of RPAP3. Moreover, inactivation of PIH1D1 or the RUVBL1/2 ATPase activity inhibits the association of TSC1 with TSC2. Taken together, these data suggest a model in which the R2TP recruits TSC1 via PIH1D1 and TSC2 via RPAP3 and HSP90, and use the chaperone-like activities of RUVBL1/2 to stimulate their assembly.
Collapse
Affiliation(s)
- Claire Abéza
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Justine Schneider
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | | | | | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianferani
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Bayly-Jones C, Lupton CJ, D’Andrea L, Chang YG, Jones GD, Steele JR, Venugopal H, Schittenhelm RB, Halls ML, Ellisdon AM. Structure of the human TSC:WIPI3 lysosomal recruitment complex. SCIENCE ADVANCES 2024; 10:eadr5807. [PMID: 39565846 PMCID: PMC11578170 DOI: 10.1126/sciadv.adr5807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Tuberous sclerosis complex (TSC) is targeted to the lysosomal membrane, where it hydrolyzes RAS homolog-mTORC1 binding (RHEB) from its GTP-bound to GDP-bound state, inhibiting mechanistic target of rapamycin complex 1 (mTORC1). Loss-of-function mutations in TSC cause TSC disease, marked by excessive tumor growth. Here, we overcome a high degree of continuous conformational heterogeneity to determine the 2.8-Å cryo-electron microscopy (cryo-EM) structure of the complete human TSC in complex with the lysosomal recruitment factor WD repeat domain phosphoinositide-interacting protein 3 (WIPI3). We discover a previously undetected amino-terminal TSC1 HEAT repeat dimer that clamps onto a single TSC wing and forms a phosphatidylinositol phosphate (PIP)-binding pocket, which specifically binds monophosphorylated PIPs. These structural advances provide a model by which WIPI3 and PIP-signaling networks coordinate to recruit TSC to the lysosomal membrane to inhibit mTORC1. The high-resolution TSC structure reveals previously unrecognized mutational hotspots and uncovers crucial insights into the mechanisms of TSC dysregulation in disease.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christopher J. Lupton
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Laura D’Andrea
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yong-Gang Chang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Gareth D. Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joel R. Steele
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC 3800, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC 3800, Australia
| | - Michelle L. Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew M. Ellisdon
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Lupi M, Avanzato D, Confalonieri S, Martino F, Pennisi R, Pupo E, Audrito V, Freddi S, Bertalot G, Montani F, Matoskova B, Sigismund S, Di Fiore PP, Lanzetti L. TBC1 domain-containing proteins are frequently involved in triple-negative breast cancers in connection with the induction of a glycolytic phenotype. Cell Death Dis 2024; 15:647. [PMID: 39231952 PMCID: PMC11375060 DOI: 10.1038/s41419-024-07037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Metabolic plasticity is a hallmark of cancer, and metabolic alterations represent a promising therapeutic target. Since cellular metabolism is controlled by membrane traffic at multiple levels, we investigated the involvement of TBC1 domain-containing proteins (TBC1Ds) in the regulation of cancer metabolism. These proteins are characterized by the presence of a RAB-GAP domain, the TBC1 domain, and typically function as attenuators of RABs, the master switches of membrane traffic. However, a number of TBC1Ds harbor mutations in their catalytic residues, predicting biological functions different from direct regulation of RAB activities. Herein, we report that several genes encoding for TBC1Ds are expressed at higher levels in triple-negative breast cancers (TNBC) vs. other subtypes of breast cancers (BC), and predict prognosis. Orthogonal transcriptomics/metabolomics analysis revealed that the expression of prognostic TBC1Ds correlates with elevated glycolytic metabolism in BC cell lines. In-depth investigations of the three top hits from the previous analyses (TBC1D31, TBC1D22B and TBC1D7) revealed that their elevated expression is causal in determining a glycolytic phenotype in TNBC cell lines. We further showed that the impact of TBC1D7 on glycolytic metabolism of BC cells is independent of its known participation in the TSC1/TSC2 complex and consequent downregulation of mTORC1 activity. Since TBC1D7 behaves as an independent prognostic biomarker in TNBC, it could be used to distinguish good prognosis patients who could be spared aggressive therapy from those with a poor prognosis who might benefit from anti-glycolytic targeted therapies. Together, our results highlight how TBC1Ds connect disease aggressiveness with metabolic alterations in TNBC. Given the high level of heterogeneity among this BC subtype, TBC1Ds could represent important tools in predicting prognosis and guiding therapy decision-making.
Collapse
Grants
- IG #22811 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MFAG-2021 #26004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #24415 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2022 Prot. 2022W93FTW Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Finalizzata RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
Collapse
Affiliation(s)
- Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Department of Veterinary Sciences, Infectious Diseases Unit, University of Torino, Turin, Italy
| | | | - Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | | | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Alessandria, Italy
| | - Stefano Freddi
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Giovanni Bertalot
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy, and Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | | | | | - Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| |
Collapse
|
5
|
Linde-Garelli KY, Rogala KB. Structural mechanisms of the mTOR pathway. Curr Opin Struct Biol 2023; 82:102663. [PMID: 37572585 DOI: 10.1016/j.sbi.2023.102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
The mTOR signaling pathway is essential for regulating cell growth and mammalian metabolism. The mTOR kinase forms two complexes, mTORC1 and mTORC2, which respond to external stimuli and regulate differential downstream targets. Cellular membrane-associated translocation mediates function and assembly of the mTOR complexes, and recent structural studies have begun uncovering the molecular basis by which the mTOR pathway (1) regulates signaling inputs, (2) recruits substrates, (3) localizes to biological membranes, and (4) becomes activated. Moreover, indications of dysregulated mTOR signaling are implicated in a wide range of diseases and an increasingly comprehensive understanding of structural mechanisms is driving novel translational development.
Collapse
Affiliation(s)
- Karen Y Linde-Garelli
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Zhu QY, He ZM, Cao WM, Li B. The role of TSC2 in breast cancer: a literature review. Front Oncol 2023; 13:1188371. [PMID: 37251941 PMCID: PMC10213421 DOI: 10.3389/fonc.2023.1188371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
TSC2 is a tumor suppressor gene as well as a disease-causing gene for autosomal dominant disorder tuberous sclerosis complex (TSC). Research has found that some tumor tissues have lower TSC2 expression levels than normal tissues. Furthermore, low expression of TSC2 is associated with poor prognosis in breast cancer. TSC2 acts as a convergence point of a complex network of signaling pathways and receives signals from the PI3K, AMPK, MAPK, and WNT pathways. It also regulates cellular metabolism and autophagy through inhibition of a mechanistic target of rapamycin complex, which are processes relevant to the progression, treatment, and prognosis of breast cancer. In-depth study of TSC2 functions provides significant guidance for clinical applications in breast cancer, including improving the treatment efficacy, overcoming drug resistance, and predicting prognosis. In this review, protein structure and biological functions of TSC2 were described and recent advances in TSC2 research in different molecular subtypes of breast cancer were summarized.
Collapse
Affiliation(s)
- Qiao-Yan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Zhe-Min He
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Bychkova E, Dorofeeva M, Levov A, Kislyakov A, Karandasheva K, Strelnikov V, Anoshkin K. Specific Features of Focal Cortical Dysplasia in Tuberous Sclerosis Complex. Curr Issues Mol Biol 2023; 45:3977-3996. [PMID: 37232723 DOI: 10.3390/cimb45050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Patients with tuberous sclerosis complex present with cognitive, behavioral, and psychiatric impairments, such as intellectual disabilities, autism spectrum disorders, and drug-resistant epilepsy. It has been shown that these disorders are associated with the presence of cortical tubers. Tuberous sclerosis complex results from inactivating mutations in the TSC1 or TSC2 genes, resulting in hyperactivation of the mTOR signaling pathway, which regulates cell growth, proliferation, survival, and autophagy. TSC1 and TSC2 are classified as tumor suppressor genes and function according to Knudson's two-hit hypothesis, which requires both alleles to be damaged for tumor formation. However, a second-hit mutation is a rare event in cortical tubers. This suggests that the molecular mechanism of cortical tuber formation may be more complicated and requires further research. This review highlights the issues of molecular genetics and genotype-phenotype correlations, considers histopathological characteristics and the mechanism of morphogenesis of cortical tubers, and also presents data on the relationship between these formations and the development of neurological manifestations, as well as treatment options.
Collapse
Affiliation(s)
- Ekaterina Bychkova
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Marina Dorofeeva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University, Taldomskaya 2, 125412 Moscow, Russia
| | - Aleksandr Levov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | - Alexey Kislyakov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | | | - Vladimir Strelnikov
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| | - Kirill Anoshkin
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| |
Collapse
|
8
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
9
|
De Meulemeester AS, Heylen L, Siekierska A, Mills JD, Romagnolo A, Van Der Wel NN, Aronica E, de Witte PAM. Hyperactivation of mTORC1 in a double hit mutant zebrafish model of tuberous sclerosis complex causes increased seizure susceptibility and neurodevelopmental abnormalities. Front Cell Dev Biol 2022; 10:952832. [PMID: 36238691 PMCID: PMC9552079 DOI: 10.3389/fcell.2022.952832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by pathogenic variants in TSC1 and TSC2 genes. TSC patients present with seizures and brain abnormalities such as tubers and subependymal giant cells astrocytoma (SEGA). Despite common molecular and clinical features, the severity of the disease varies greatly, even intrafamilially. The second hit hypothesis suggests that an additional, inactivating mutation in the remaining functional allele causes a more severe phenotype and therefore explains the phenotypic variability. Recently, second hit mutations have been detected frequently in mTORopathies. To investigate the pathophysiological effects of second hit mutations, several mouse models have been developed. Here, we opted for a double mutant zebrafish model that carries a LOF mutation both in the tsc2 and the depdc5 gene. To the best of our knowledge, this is the first time a second-hit model has been studied in zebrafish. Significantly, the DEP domain-containing protein 5 (DEPDC5) gene has an important role in the regulation of mTORC1, and the combination of a germline TSC2 and somatic DEPDC5 mutation has been described in a TSC patient with intractable epilepsy. Our depdc5−/−x tsc2−/− double mutant zebrafish line displayed greatly increased levels of mammalian target of rapamycin (mTORC1) activity, augmented seizure susceptibility, and early lethality which could be rescued by rapamycin. Histological analysis of the brain revealed ventricular dilatation in the tsc2 and double homozygotes. RNA-sequencing showed a linear relation between the number of differentially expressed genes (DEGs) and the degree of mTORC1 hyperactivity. Enrichment analysis of their transcriptomes revealed that many genes associated with neurological developmental processes were downregulated and mitochondrial genes were upregulated. In particular, the transcriptome of human SEGA lesions overlapped strongly with the double homozygous zebrafish larvae. The data highlight the clinical relevance of the depdc5−/− x tsc2−/− double mutant zebrafish larvae that showed a more severe phenotype compared to the single mutants. Finally, analysis of gene-drug interactions identified interesting pharmacological targets for SEGA, underscoring the value of our small zebrafish vertebrate model for future drug discovery efforts.
Collapse
Affiliation(s)
| | - Lise Heylen
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | | | - James D. Mills
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Alessia Romagnolo
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Nicole N. Van Der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instelling Nederland (SEIN), Heemstede, Netherlands
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
- *Correspondence: Peter A. M. de Witte,
| |
Collapse
|
10
|
Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy Behav 2022; 131:107713. [PMID: 33431351 DOI: 10.1016/j.yebeh.2020.107713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic multisystem disease due to the mutation in one of the two genes TSC1 and TSC2, affecting several organs and systems and carrying a significant risk of early onset and refractory seizures. The pathogenesis of this complex disorder is now well known, with most of TSC-related manifestations being a consequence of the overactivation of the mammalian Target of Rapamycin (mTOR) complex. The discovery of this underlying mechanism paved the way for the use of a class of drugs called mTOR inhibitors including rapamycin and everolimus and specifically targeting this pathway. Rapamycin has been widely used in different animal models of TSC-related epilepsy and proved to be able not only to suppress seizures but also to prevent the development of epilepsy, thus demonstrating an antiepileptogenic potential. In some models, it also showed some benefit on neuropsychiatric manifestations associated with TSC. Everolimus has recently been approved by the US Food and Drug Administration and the European Medical Agency for the treatment of refractory seizures associated with TSC starting from the age of 2 years. It demonstrated a clear benefit when compared to placebo on reducing the frequency of different seizure types and exerting a higher effect in younger children. In conclusion, mTOR cascade can be a potentially major cause of TSC-associated epilepsy and neurodevelopmental disability, and additional research should investigate if early suppression of abnormal mTOR signal with mTOR inhibitors before seizure onset can be a more efficient approach and an effective antiepileptogenic and disease-modifying strategy in infants with TSC.
Collapse
|
11
|
Serra I, Stravs A, Osório C, Oyaga MR, Schonewille M, Tudorache C, Badura A. Tsc1 Haploinsufficiency Leads to Pax2 Dysregulation in the Developing Murine Cerebellum. Front Mol Neurosci 2022; 15:831687. [PMID: 35645731 PMCID: PMC9137405 DOI: 10.3389/fnmol.2022.831687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 12/03/2022] Open
Abstract
Tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that promotes the inhibition of mechanistic target of rapamycin (mTOR) pathway, and mutations in TSC1 lead to a rare complex disorder of the same name. Despite phenotype heterogeneity, up to 50% of TSC patients present with autism spectrum disorder (ASD). Consequently, TSC models are often used to probe molecular and behavioral mechanisms of ASD development. Amongst the different brain areas proposed to play a role in the development of ASD, the cerebellum is commonly reported to be altered, and cerebellar-specific deletion of Tsc1 in mice is sufficient to induce ASD-like phenotypes. However, despite these functional changes, whether Tsc1 haploinsufficiency affects cerebellar development is still largely unknown. Given that the mTOR pathway is a master regulator of cell replication and migration, we hypothesized that dysregulation of this pathway would also disrupt the development of cell populations during critical periods of cerebellar development. Here, we used a mouse model of TSC to investigate gene and protein expression during embryonic and early postnatal periods of cerebellar development. We found that, at E18 and P7, mRNA levels of the cerebellar inhibitory interneuron marker paired box gene 2 (Pax2) were dysregulated. This dysregulation was accompanied by changes in the expression of mTOR pathway-related genes and downstream phosphorylation of S6. Differential gene correlation analysis revealed dynamic changes in correlated gene pairs across development, with an overall loss of correlation between mTOR- and cerebellar-related genes in Tsc1 mutants compared to controls. We corroborated the genetic findings by characterizing the mTOR pathway and cerebellar development on protein and cellular levels with Western blot and immunohistochemistry. We found that Pax2-expressing cells were largely unchanged at E18 and P1, while at P7, their number was increased and maturation into parvalbumin-expressing cells delayed. Our findings indicate that, in mice, Tsc1 haploinsufficiency leads to altered cerebellar development and that cerebellar interneuron precursors are particularly susceptible to mTOR pathway dysregulation.
Collapse
Affiliation(s)
- Ines Serra
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Ana Stravs
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Maria Roa Oyaga
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Aleksandra Badura,
| |
Collapse
|
12
|
The Genetics and Diagnosis of Pediatric Neurocutaneous Disorders: Neurofibromatosis and Tuberous Sclerosis Complex. Clin Dermatol 2022; 40:374-382. [PMID: 35248688 DOI: 10.1016/j.clindermatol.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurofibromatosis (NF) and tuberous sclerosis complex (TSC) are the two most common neurocutaneous disorders, both transmitted as autosomal dominant or, in the case of NF, also as a mosaic condition. The causative genetic mutations in these neurocutaneous disorders can lead to benign skin changes or uninhibited growth and proliferation in multiple organ systems due to the loss of tumor suppression in mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. Common clinical features in NF include pigmented lesions, known as café au lait patches, neurofibromas, intertriginous freckles (Crowe's sign), and benign fibrous growths, such as hamartomas in multiple organ systems. Common clinical features in TSC include hypopigmented macules, known as ash leaf spots, in addition to neurologic sequelae, such as autism, seizures, and developmental delays. Advances in genetic sequencing technologies have allowed an exponential expansion in the understanding of NF and TSC. Consensus criteria have been established for both diagnoses that can be confirmed in most cases through gene testing. Once diagnosed, the clinical and diagnostic value of disease-specific surveillance include early identification of benign and malignant tumors. Genetic counseling is important for informed reproductive decision-making for patients and at-risk family members. The improvement in understanding of pathways of pathogenic disease development and oncogenesis in both conditions have produced a new series of therapeutic options that can be used to control seizures and tumor growth. Tremendous advances in life expectancy and quality of life are now a reality due to early introduction of seizure control and novel medications. While we lack cures, early institution of interventions, such as seizure control in tuberous sclerosis, appears to be disease-modifying and holds immense promise to offer patients better lives.
Collapse
|
13
|
Wang F, Huang L, Liang Q, Liao M, Liu C, Dong W, Zhuang X, Yin X, Liu Y, Wang W. TBC domain family 7-like enhances the tolerance of Penaeus vannamei to ammonia nitrogen by the up-regulation of autophagy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:48-56. [PMID: 35077870 DOI: 10.1016/j.fsi.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
TBC domain family 7 (TBC1D7) is one of the subunits of tuberous sclerosis complex (TSC) and an important regulator of autophagosome biogenesis. However, the function of TBC1D7 is not fully understood in crustaceans. In the present study, TBC1D7 was identified from Penaeus vannamei. The complete coding sequence of PvTBC1D7 was of 960 bp encoding a predicted polypeptide of 319 amino acids with one conserved TBC domain, which shared high similarity with TBC1D7 of that other species. The mRNA of PvTBC1D7 was highly expressed in hemocyte and hepatopancreas, and the PvTBC1D7 protein was localized specifically in the cytoplasm of hemocyte of shrimp. Besides, PvTBC1D7 was co-localized with PvTSC1 in the cytoplasm of shrimp, indicating that there might existed a binding relationship between PvTBC1D7 and PvTSC1. During the ammonia nitrogen stress, the mRNA transcripts of PvTBC1D7 were significantly upregulated in hemocyte, hepatopancreas, and gill. Functionally, overexpression of PvTBC1D7 in vitro restored the inhibition to autophagy caused by chloroquine (CLQ) and increased the autophagy level, while the silencing of PvTBC1D7 could inhibit the autophagy. More importantly, after interfering with PvTBC1D7, the autophagy level decreased significantly both in hepatopancreas and hemocyte of P. vannamei, the mRNA expression of PvmTOR was increased remarkably with the significantly decrease of autophagy-related genes (PvATG12 and PvATG14). And the reduction of PvTBC1D7 remarkably exacerbated the damage of hepatopancreas, increased the accumulation of ROS, and reduced the survival proportion of shrimp under ammonia nitrogen stress. Altogether, these results indicated that PvTBC1D7 might positively regulate the autophagy by stabilizing the negative regulation of mTOR by TSC complex, reduce the oxidative stress damage and improve shrimp ammonia nitrogen tolerance.
Collapse
Affiliation(s)
- Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
14
|
Dai DL, Hasan SMN, Woollard G, Abbas YM, Bueler SA, Julien JP, Rubinstein JL, Mazhab-Jafari MT. Structural Characterization of Endogenous Tuberous Sclerosis Protein Complex Revealed Potential Polymeric Assembly. Biochemistry 2021; 60:1808-1821. [PMID: 34080844 DOI: 10.1021/acs.biochem.1c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuberous sclerosis protein complex (pTSC) nucleates a proteinaceous signaling hub that integrates information about the internal and external energy status of the cell in the regulation of growth and energy consumption. Biochemical and cryo-electron microscopy studies of recombinant pTSC have revealed its structure and stoichiometry and hinted at the possibility that the complex may form large oligomers. Here, we have partially purified endogenous pTSC from fasted mammalian brains of rat and pig by leveraging a recombinant antigen binding fragment (Fab) specific for the TSC2 subunit of pTSC. We demonstrate Fab-dependent purification of pTSC from membrane-solubilized fractions of the brain homogenates. Negative stain electron microscopy of the samples purified from pig brain demonstrates rod-shaped protein particles with a width of 10 nm, a variable length as small as 40 nm, and a high degree of conformational flexibility. Larger filaments are evident with a similar 10 nm width and a ≤1 μm length in linear and weblike organizations prepared from pig brain. Immunogold labeling experiments demonstrate linear aggregates of pTSC purified from mammalian brains. These observations suggest polymerization of endogenous pTSC into filamentous superstructures.
Collapse
Affiliation(s)
- David L Dai
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Woollard
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Yazan M Abbas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Stephanie A Bueler
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
15
|
TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Mol Cell 2021; 81:2705-2721.e8. [PMID: 33974911 DOI: 10.1016/j.molcel.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/13/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.
Collapse
|
16
|
Ramlaul K, Fu W, Li H, de Martin Garrido N, He L, Trivedi M, Cui W, Aylett CHS, Wu G. Architecture of the Tuberous Sclerosis Protein Complex. J Mol Biol 2021; 433:166743. [PMID: 33307091 PMCID: PMC7840889 DOI: 10.1016/j.jmb.2020.166743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
The Tuberous Sclerosis Complex (TSC) protein complex (TSCC), comprising TSC1, TSC2, and TBC1D7, is widely recognised as a key integration hub for cell growth and intracellular stress signals upstream of the mammalian target of rapamycin complex 1 (mTORC1). The TSCC negatively regulates mTORC1 by acting as a GTPase-activating protein (GAP) towards the small GTPase Rheb. Both human TSC1 and TSC2 are important tumour suppressors, and mutations in them underlie the disease tuberous sclerosis. We used single-particle cryo-EM to reveal the organisation and architecture of the complete human TSCC. We show that TSCC forms an elongated scorpion-like structure, consisting of a central "body", with a "pincer" and a "tail" at the respective ends. The "body" is composed of a flexible TSC2 HEAT repeat dimer, along the surface of which runs the TSC1 coiled-coil backbone, breaking the symmetry of the dimer. Each end of the body is structurally distinct, representing the N- and C-termini of TSC1; a "pincer" is formed by the highly flexible N-terminal TSC1 core domains and a barbed "tail" makes up the TSC1 coiled-coil-TBC1D7 junction. The TSC2 GAP domain is found abutting the centre of the body on each side of the dimerisation interface, poised to bind a pair of Rheb molecules at a similar separation to the pair in activated mTORC1. Our architectural dissection reveals the mode of association and topology of the complex, casts light on the recruitment of Rheb to the TSCC, and also hints at functional higher order oligomerisation, which has previously been predicted to be important for Rheb-signalling suppression.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom
| | - Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China
| | - Natàlia de Martin Garrido
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom
| | - Lin He
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Manjari Trivedi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Christopher H S Aylett
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom.
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Yang H, Yu Z, Chen X, Li J, Li N, Cheng J, Gao N, Yuan HX, Ye D, Guan KL, Xu Y. Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun 2021; 12:339. [PMID: 33436626 PMCID: PMC7804450 DOI: 10.1038/s41467-020-20522-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) integrates upstream stimuli and regulates cell growth by controlling the activity of mTORC1. TSC complex functions as a GTPase-activating protein (GAP) towards small GTPase Rheb and inhibits Rheb-mediated activation of mTORC1. Mutations in TSC genes cause tuberous sclerosis. In this study, the near-atomic resolution structure of human TSC complex reveals an arch-shaped architecture, with a 2:2:1 stoichiometry of TSC1, TSC2, and TBC1D7. This asymmetric complex consists of two interweaved TSC1 coiled-coil and one TBC1D7 that spans over the tail-to-tail TSC2 dimer. The two TSC2 GAP domains are symmetrically cradled within the core module formed by TSC2 dimerization domain and central coiled-coil of TSC1. Structural and biochemical analyses reveal TSC2 GAP-Rheb complimentary interactions and suggest a catalytic mechanism, by which an asparagine thumb (N1643) stabilizes γ-phosphate of GTP and accelerate GTP hydrolysis of Rheb. Our study reveals mechanisms of TSC complex assembly and GAP activity.
Collapse
Affiliation(s)
- Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hai-Xin Yuan
- The Molecular and Cell Biology Research Lab, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Ye
- The Molecular and Cell Biology Research Lab, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
18
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
19
|
Natarajan N, Thiruvenkatam V. An Insight of Scientific Developments in TSC for Better Therapeutic Strategy. Curr Top Med Chem 2020; 20:2080-2093. [PMID: 32842942 DOI: 10.2174/1568026620666200825170355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disease, which is characterized by noncancerous tumors in multi-organ systems in the body. Mutations in the TSC1 or TSC2 genes are known to cause the disease. The resultant mutant proteins TSC1 (hamartin) and TSC2 (tuberin) complex evade its normal tumor suppressor function, which leads to abnormal cell growth and proliferation. Both TSC1 and TSC2 are involved in several protein-protein interactions, which play a significant role in maintaining cellular homeostasis. The recent biochemical, genetic, structural biology, clinical and drug discovery advancements on TSC give a useful insight into the disease as well as the molecular aspects of TSC1 and TSC2. The complex nature of TSC disease, a wide range of manifestations, mosaicism and several other factors limits the treatment choices. This review is a compilation of the course of TSC, starting from its discovery to the current findings that would take us a step ahead in finding a cure for TSC.
Collapse
Affiliation(s)
- Nalini Natarajan
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| |
Collapse
|
20
|
Natarajan N, Shaik A, Thiruvenkatam V. Recombinant Tumor Suppressor TSC1 Differentially Interacts with Escherichia coli DnaK and Human HSP70. ACS OMEGA 2020; 5:19131-19139. [PMID: 32775915 PMCID: PMC7408181 DOI: 10.1021/acsomega.0c02480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Tuberous sclerosis complex (TSC) is a neurological syndrome manifested by non-cancerous tumors in several organs. Mutations in either TSC1 or TSC2 tumor suppressor gene cause the disease. In the cell, TSC1 is known to form a heterodimer with TSC2 because of which an active complex is formed that negatively regulates the mTORC1 activity during cellular stress. Hence, mutation in TSC1 or TSC2 is manifested by excess proliferation of the cells leading to the development of numerous benign tumors. The TSC1 and TSC2 complex is known to interact with several protein-binding partners. One such significant interaction of this complex is with the molecular chaperone HSP70. The role of TSC1 in that interaction is still elusive. Here, we have expressed and purified TSC1 (302-420 residues) in a bacterial expression system and have shown that this region directly interacts with HSP70. We have shown that TSC1 increases the ATPase activity of Escherichia coli DnaK, a HSP70 homologue. On the contrary, TSC1 was found to show inhibitory activity toward human HSP70. Our result suggests that TSC1 (302-420 aa) shows differential interaction between the HSP70 homologues. This points toward the evolutionary significance of chaperoning system and the importance of eukaryotic tetratricopeptide repeat domain interaction motif -EEVD. Our study shows the evidence that TSC1 interacts with HSP70 and has a role to play in the chaperoning activity to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Nalini Natarajan
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Althaf Shaik
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Vijay Thiruvenkatam
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Simkheda, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
21
|
Gawel K, Langlois M, Martins T, van der Ent W, Tiraboschi E, Jacmin M, Crawford AD, Esguerra CV. Seizing the moment: Zebrafish epilepsy models. Neurosci Biobehav Rev 2020; 116:1-20. [PMID: 32544542 DOI: 10.1016/j.neubiorev.2020.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom. With this review, we seek to summarize the current knowledge about existing epilepsy/seizures models in zebrafish (both pharmacological and genetic) and compare them with equivalent rodent and human studies. New findings obtained from the zebrafish models are highlighted. We believe that this comprehensive review will highlight the value of zebrafish as a model for investigating different aspects of epilepsy and will help researchers to use these models to their full extent.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland
| | | | - Teresa Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Ettore Tiraboschi
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Neurophysics Group, Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Building 14, 38068, Rovereto, TN, Italy
| | - Maxime Jacmin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
| |
Collapse
|
22
|
Phosphorylation of TSC2 by PKC-δ reveals a novel signaling pathway that couples protein synthesis to mTORC1 activity. Mol Cell Biochem 2019; 456:123-134. [PMID: 30684133 DOI: 10.1007/s11010-019-03498-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/12/2019] [Indexed: 01/14/2023]
Abstract
Downstream of insulin-like growth factor receptor, the TSC1/2/ TCB1D7 (tuberous sclerosis complex) and mTOR (mechanistic target of rapamycin) pathways are implicated in many human diseases, including cancer and diabetes. Targeting this pathway is currently an important approach for palliating or eradicating cancer. Downstream of mTOR, translational machinery targeting holds great promise for anticancer drug development. Therefore, we investigated whether the protein synthesis machinery that is regulated by mTORC1 (mTOR complex 1) signaling can in turn regulate mTORC1 activity. We found that inhibition of protein synthesis results in rapid activation of mTORC1 signaling, thereby uncovering a feedback loop between mTOR and the translation machinery. This mTORC1 activation requires tuberous sclerosis complex (TSC) but is independent of AKT. In addition, by using a PKC-δ (protein kinase c delta)-specific inhibitor and PKC-δ siRNA knockdown, we found that PKC-δ kinase activity is required for mTORC1 activation in response to translation inhibitors. Furthermore, translation inhibition activates PKC-δ. Subsequently, we investigated whether PKC-δ can phosphorylate and inactivate TSC1/2, leading to mTORC1 activation. In vitro kinase assays showed direct phosphorylation of TSC2 (S932 and S939) by PKC-δ, which was confirmed by mass spectrometry. In vivo kinase analysis further indicated that both S932 and S939 are phosphorylated in response to translation inhibitors. Finally, phosphorylation defective TSC2 mutants (S932A and S939A single mutants and a S932A/S939A double mutant) failed to upregulate mTORC1 activity in the presence of translation inhibitors, suggesting that activation of mTORC1 by translation inhibitors is mediated by PKC-δ phosphorylation of TSC2 at S932/S939, which inactivates TSC.
Collapse
|
23
|
Madigan JP, Hou F, Ye L, Hu J, Dong A, Tempel W, Yohe ME, Randazzo PA, Jenkins LMM, Gottesman MM, Tong Y. The tuberous sclerosis complex subunit TBC1D7 is stabilized by Akt phosphorylation-mediated 14-3-3 binding. J Biol Chem 2018; 293:16142-16159. [PMID: 30143532 DOI: 10.1074/jbc.ra118.003525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/13/2018] [Indexed: 01/19/2023] Open
Abstract
The tuberous sclerosis complex (TSC) is a negative regulator of mTOR complex 1, a signaling node promoting cellular growth in response to various nutrients and growth factors. However, several regulators in TSC signaling still await discovery and characterization. Using pulldown and MS approaches, here we identified the TSC complex member, TBC1 domain family member 7 (TBC1D7), as a binding partner for PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), a negative regulator of Akt kinase signaling. Most TBC domain-containing proteins function as Rab GTPase-activating proteins (RabGAPs), but the crystal structure of TBC1D7 revealed that it lacks residues critical for RabGAP activity. Sequence analysis identified a putative site for both Akt-mediated phosphorylation and 14-3-3 binding at Ser-124, and we found that Akt phosphorylates TBC1D7 at Ser-124. However, this phosphorylation had no effect on the binding of TBC1D7 to TSC1, but stabilized TBC1D7. Moreover, 14-3-3 protein both bound and stabilized TBC1D7 in a growth factor-dependent manner, and a phospho-deficient substitution, S124A, prevented this interaction. The crystal structure of 14-3-3ζ in complex with a phospho-Ser-124 TBC1D7 peptide confirmed the direct interaction between 14-3-3 and TBC1D7. The sequence immediately upstream of Ser-124 aligned with a canonical β-TrCP degron, and we found that the E3 ubiquitin ligase β-TrCP2 ubiquitinates TBC1D7 and decreases its stability. Our findings reveal that Akt activity determines the phosphorylation status of TBC1D7 at the phospho-switch Ser-124, which governs binding to either 14-3-3 or β-TrCP2, resulting in increased or decreased stability of TBC1D7, respectively.
Collapse
Affiliation(s)
| | - Feng Hou
- the Structural Genomics Consortium and
| | - Linlei Ye
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada, and
| | | | | | | | | | - Paul A Randazzo
- Laboratory of Cell and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | - Yufeng Tong
- the Structural Genomics Consortium and .,the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
24
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
25
|
Glushkova M, Bojinova V, Koleva M, Dimova P, Bojidarova M, Litvinenko I, Todorov T, Iluca E, Calusaru C, Neagu E, Craiu D, Mitev V, Todorova A. Molecular genetic diagnostics of tuberous sclerosis complex in Bulgaria: six novel mutations in the TSC1 and TSC2 genes. J Genet 2018; 97:419-427. [PMID: 29932062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the development of hamartomas localized in various tissues which can occur in the skin, brain, kidney and other organs. TSC is caused by mutations in the TSC1 and TSC2 genes. Here we report the results from the first molecular testing of 16 Bulgarian patients and one Romanian patient in whom we found six novel mutations: four in the TSC22 gene, of which one is nonsense, two frame shift and one large deletion of 16 exons; and two in the TSC1 gene, one nonsense and other frame shift. In addition, we detected 10 previously reported mutations; some of which are described only once in the literature. Our data is similar to the previous studies with exception of the larger number of TSC1 mutations than that reported in the literature data. In total, 40% (4/10) of the mutation in the TSC2 gene are located in the GTPase-activating protein domain, while 50% (3/6) are in the TSC1 gene and clustered in exon 15. All the cases represent the typical clinical symptoms and meet the clinical criteria for TSC diagnosis. In 35% of our cases the family history was positive. Our results add novel findings in the genetic heterogeneity and pathogenesis of TSC. The genetic heterogeneity might correlate to the clinical variability among the TSC-affected families, which makes the genetic counselling a real challenge.
Collapse
Affiliation(s)
- M Glushkova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2'Zdrave' street, 1431 Sofia, Bulgaria. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Glushkova M, Bojinova V, Koleva M, Dimova P, Bojidarova M, Litvinenko I, Todorov T, Iluca E, Calusaru C, Neagu E, Craiu D, Mitev V, Todorova A. Molecular genetic diagnostics of tuberous sclerosis complex in Bulgaria: six novel mutations in the TSC1 and TSC2 genes. J Genet 2018. [DOI: 10.1007/s12041-018-0927-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
mTOR-related neuropathology in mutant tsc2 zebrafish: Phenotypic, transcriptomic and pharmacological analysis. Neurobiol Dis 2017; 108:225-237. [DOI: 10.1016/j.nbd.2017.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
|
28
|
Ren S, Huang Z, Jiang Y, Wang T. dTBC1D7 regulates systemic growth independently of TSC through insulin signaling. J Cell Biol 2017; 217:517-526. [PMID: 29187524 PMCID: PMC5800808 DOI: 10.1083/jcb.201706027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
The insulin signaling pathway plays key roles in systemic growth. TBC1D7 has recently been identified as the third subunit of the tuberous sclerosis complex (TSC), a negative regulator of cell growth. Here, we used Drosophila as a model system to dissect the physiological function of TBC1D7 in vivo. In mutants lacking TBC1D7, cell and organ growth were promoted, and TBC1D7 limited cell growth in a cell-nonautonomous and TSC-independent manner. TBC1D7 is specifically expressed in insulin-producing cells in the fly brain and regulated biosynthesis and release of insulin-like peptide 2, leading to systemic growth. Furthermore, animals carrying the dTBC1D7 mutation were hypoglycemic, short-lived, and sensitive to oxidative stress. Our findings provide new insights into the physiological function of TBC1D7 in the systemic control of growth, as well as insights into human disorders caused by TBC1D7 mutation.
Collapse
Affiliation(s)
- Suxia Ren
- College of Biological Sciences, China Agricultural University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Zengyi Huang
- National Institute of Biological Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
29
|
Rosset C, Vairo F, Bandeira IC, Correia RL, de Goes FV, da Silva RTB, Bueno LSM, de Miranda Gomes MCS, Galvão HDCR, Neri JICF, Achatz MI, Netto CBO, Ashton-Prolla P. Molecular analysis of TSC1 and TSC2 genes and phenotypic correlations in Brazilian families with tuberous sclerosis. PLoS One 2017; 12:e0185713. [PMID: 28968464 PMCID: PMC5624610 DOI: 10.1371/journal.pone.0185713] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder characterized by the development of multiple hamartomas in many organs and tissues. It occurs due to inactivating mutations in either of the two genes, TSC1 and TSC2, following a second hit in a tumor suppressor gene in most hamartomas. Comprehensive screening for mutations in both the TSC1 and TSC2 loci has been performed in several cohorts of patients and a broad spectrum of pathogenic mutations have been described. In Brazil, there is no data regarding incidence and prevalence of tuberous sclerosis and mutations in TSC1 and TSC2. We analyzed both genes in 53 patients with high suspicion of tuberous sclerosis using multiplex-ligation dependent probe amplification and a customized next generation sequencing panel. Confirmation of all variants was done by the Sanger method. We identified 50 distinct variants in 47 (89%) of the patients. Five were large rearrangements and 45 were point mutations. The symptoms presented by our series of patients were not different between male and female individuals, except for the more common occurrence of shagreen patch in women (p = 0.028). In our series, consistent with other studies, TSC2 mutations were associated with a more severe phenotypic spectrum than TSC1 mutations. This is the first study that sought to characterize the molecular spectrum of Brazilian individuals with tuberous sclerosis.
Collapse
Affiliation(s)
- Clévia Rosset
- Laboratório de Medicina Genômica – Centro de Pesquisa Experimental – Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de pós-graduação em genética e biologia molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Filippo Vairo
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isabel Cristina Bandeira
- Laboratório de Medicina Genômica – Centro de Pesquisa Experimental – Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudinei Luis Correia
- Laboratório de Medicina Genômica – Centro de Pesquisa Experimental – Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Veiga de Goes
- Instituto Fernandes Figueira, Fundação Osvaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - João I. C. F. Neri
- Centro Especializado em Reabilitação e Habilitação, Natal, Rio Grande do Norte, Brazil
| | - Maria Isabel Achatz
- A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Rockville, United States of America
| | | | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica – Centro de Pesquisa Experimental – Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de pós-graduação em genética e biologia molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Genética - Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Radiobiological Characterization of Tuberous Sclerosis: a Delay in the Nucleo-Shuttling of ATM May Be Responsible for Radiosensitivity. Mol Neurobiol 2017; 55:4973-4983. [PMID: 28786016 DOI: 10.1007/s12035-017-0648-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023]
Abstract
The tuberous sclerosis complex (TSC) syndrome is associated with numerous cutaneous pathologies (notably on the face), epilepsy, intellectual disability and developmental retardation and, overall, high occurrence of benign tumors in several organs, like angiofibromas, giant cell astrocytomas, renal angiomyolipomas, and pulmonary lymphangioleiomyomatosis. TSC is caused by mutations of either of the hamartin or tuberin proteins that are mainly cytoplasmic. Some studies published in the 1980s reported that TSC is associated with radiosensitivity. However, its molecular basis in TSC cells is not documented enough. Here, we examined the functionality of the repair and signaling of radiation-induced DNA double-strand breaks (DSB) in fibroblasts derived from TSC patients. Quiescent TSC fibroblast cells elicited abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated TSC cells also presented a delay in the nucleo-shuttling of the ATM kinase, potentially due to a specific binding of ATM to mutated TSC protein in cytoplasm. Lastly, TSC fibroblasts showed abnormally high MRE11 nuclease activity suggesting genomic instability. A combination of biphosphonates and statins complemented these impairments by facilitating the nucleoshuttling of ATM and increasing the yield of recognized DSB. Our results showed that TSC belongs to the group of syndromes associated with low but significant defect of DSB signaling and delay in the ATM nucleo-shuttling associated with radiosensitivity.
Collapse
|
31
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Tuberous sclerosis complex: From molecular biology to novel therapeutic approaches. IUBMB Life 2016; 68:955-962. [PMID: 27797139 DOI: 10.1002/iub.1579] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare multi-system disorder, primary manifestations of which are benign tumors and lesions in various organs of the body, including the brain. TSC patients often suffer from epilepsy, mental retardation, and autism spectrum disorder (ASD). Therefore, TSC serves as a model of epilepsy, ASD, and tumorigenesis. TSC is caused by the lack of functional Tsc1-Tsc2 complex, which serves as a major cellular inhibitor of mammalian Target of Rapamycin Complex 1 (mTORC1). mTORC1 is a kinase controlling most of anabolic processes in eukaryotic cells. Consequently, mTORC1 inhibitors, such as rapamycin, serve as experimental or already approved drugs for several TSC symptoms. However, rapalogs, although quite effective, need to be administered chronically and likely for a lifetime, since therapy discontinuation results in tumor regrowth and epilepsy recurrence. Recent studies revealed that metabolism and excitability (in the case of neurons) of cells lacking Tsc1-Tsc2 complex are changed, and these features may potentially be used to treat some of TSC symptoms. In this review, we first provide basic facts about TSC and its molecular background, to next discuss the newest findings in TSC cell biology that can be used to improve existing therapies of TSC and other diseases linked to mTORC1 hyperactivation. © 2016 IUBMB Life, 68(12):955-962, 2016.
Collapse
Affiliation(s)
- Katarzyna Switon
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Janusz-Kaminska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Justyna Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
32
|
Zech R, Kiontke S, Mueller U, Oeckinghaus A, Kümmel D. Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis. J Biol Chem 2016; 291:20008-20. [PMID: 27493206 DOI: 10.1074/jbc.m116.732446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the TSC1 and TSC2 tumor suppressor genes. The gene products hamartin and tuberin form the TSC complex that acts as GTPase-activating protein for Rheb and negatively regulates the mammalian target of rapamycin complex 1 (mTORC1). Tuberin contains a RapGAP homology domain responsible for inactivation of Rheb, but functions of other protein domains remain elusive. Here we show that the TSC2 N terminus interacts with the TSC1 C terminus to mediate complex formation. The structure of the TSC2 N-terminal domain from Chaetomium thermophilum and a homology model of the human tuberin N terminus are presented. We characterize the molecular requirements for TSC1-TSC2 interactions and analyze pathological point mutations in tuberin. Many mutations are structural and produce improperly folded protein, explaining their effect in pathology, but we identify one point mutant that abrogates complex formation without affecting protein structure. We provide the first structural information on TSC2/tuberin with novel insight into the molecular function.
Collapse
Affiliation(s)
- Reinhard Zech
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stephan Kiontke
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Uwe Mueller
- Macromolecular Crystallography (BESSY-MX), Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany, and
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Medical Faculty of the WWU Münster, 48149 Münster Germany
| | - Daniel Kümmel
- From the Structural Biology Section, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany,
| |
Collapse
|