1
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
2
|
Gao C, Li J. Exploring the comorbidity mechanisms between psoriasis and obesity based on bioinformatics. Skin Res Technol 2024; 30:e13575. [PMID: 38279589 PMCID: PMC10818127 DOI: 10.1111/srt.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Psoriasis is a chronic, recurrent, immune-mediated inflammatory skin disease characterized by erythematous scaly lesions. Obesity is currently a major global health concern, increasing the risk of diseases such as cardiovascular diseases and diabetes. Since the correlation between psoriasis and obesity, as well as hypertension, diabetes, and cardiovascular diseases, has been clinically evidenced, it is of certain clinical significance to explore the mechanisms underlying the comorbidity of psoriasis with these conditions. MATERIALS AND METHODS Gene targets for both diseases were obtained from the Gene Expression Omnibus (GEO) comprehensive gene expression database. Differential gene analysis, intersection gene analysis, construction and visualization of protein-protein interaction networks (PPI) using R software, Cytoscape 3.8.2 software, online tools such as String, and enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed, with relevant graphics generated. RESULTS Analysis identified 29 intersecting genes between the two diseases, with 10 key targets such as S100A7 and SERPINB4. Enrichment analysis indicated their involvement in regulating biological processes such as leukocyte chemotaxis, migration, and chronic inflammatory responses through cellular structures such as intracellular vesicles and extracellular matrix. Molecular functions, including RAGE receptor binding, Toll-like receptor binding, and fatty acid binding, were found to simultaneously regulate psoriasis and obesity. CONCLUSION Psoriasis and obesity may mutually influence each other through multiple targets and pathways, emphasizing the importance of considering comorbidity treatment and daily care in clinical practice.
Collapse
Affiliation(s)
- Changyong Gao
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Jianhong Li
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
3
|
Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes. Nat Commun 2022; 13:4822. [PMID: 35973990 PMCID: PMC9381507 DOI: 10.1038/s41467-022-32401-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2022] [Indexed: 12/27/2022] Open
Abstract
Sensing of cytosolic DNA of microbial or cellular/mitochondrial origin by cGAS initiates innate immune responses via the adaptor protein STING. It remains unresolved how the activity of STING is balanced between a productive innate immune response and induction of autoimmunity. Here we show that interferon regulatory factor 8 (IRF8) is essential for efficient activation of STING-mediated innate immune responses in monocytes. This function of IRF8 is independent of its transcriptional role in monocyte differentiation. In uninfected cells, IRF8 remains inactive via sequestration of its IRF-associated domain by its N- and C-terminal tails, which reduces its association with STING. Upon triggering the DNA sensing pathway, IRF8 is phosphorylated at Serine 151 to allow its association with STING via the IRF-associated domain. This is essential for STING polymerization and TBK1-mediated STING and IRF3 phosphorylation. Consistently, IRF8-deficiency impairs host defense against the DNA virus HSV-1, and blocks DNA damage-induced cellular senescence. Bone marrow-derived mononuclear cells which have an autoimmune phenotype due to deficiency of Trex1, respond to IRF-8 deletion with reduced pro-inflammatory cytokine production. Peripheral blood mononuclear cells from systemic lupus erythematosus patients are characterized by elevated phosphorylation of IRF8 at the same Serine residue we find to be important in STING activation, and in these cells STING is hyper-active. Taken together, the transcription-independent function of IRF8 we describe here appears to mediate STING activation and represents an important regulatory step in the cGAS/STING innate immune pathway in monocytes. The transcription factor IRF8 has been shown to regulate monocyte differentiation via its DNA-binding activity. Here authors show that IRF8 is also involved in cytosolic DNA sensing via its phosphorylation-dependent association to the adaptor protein STING, thus representing an important checkpoint between immune response and autoimmunity in monocytes.
Collapse
|
4
|
Zhou T, Zhu X, Ye Z, Wang YF, Yao C, Xu N, Zhou M, Ma J, Qin Y, Shen Y, Tang Y, Yin Z, Xu H, Zhang Y, Zang X, Ding H, Yang W, Guo Y, Harley JB, Namjou B, Kaufman KM, Kottyan LC, Weirauch MT, Hou G, Shen N. Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery. Nat Commun 2022; 13:1855. [PMID: 35388006 PMCID: PMC8987079 DOI: 10.1038/s41467-022-29514-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite strong evidence that human genetic variants affect the expression of many key transcription factors involved in autoimmune diseases, establishing biological links between non-coding risk variants and the gene targets they regulate remains a considerable challenge. Here, we combine genetic, epigenomic, and CRISPR activation approaches to screen for functional variants that regulate IRF8 expression. We demonstrate that the locus containing rs2280381 is a cell-type-specific enhancer for IRF8 that spatially interacts with the IRF8 promoter. Further, rs2280381 mediates IRF8 expression through enhancer RNA AC092723.1, which recruits TET1 to the IRF8 promoter regulating IRF8 expression by affecting methylation levels. The alleles of rs2280381 modulate PU.1 binding and chromatin state to regulate AC092723.1 and IRF8 expression differentially. Our work illustrates an integrative strategy to define functional genetic variants that regulate the expression of critical genes in autoimmune diseases and decipher the mechanisms underlying the dysregulation of IRF8 expression mediated by lupus risk variants.
Collapse
Affiliation(s)
- Tian Zhou
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Xinyi Zhu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Yong-Fei Wang
- grid.194645.b0000000121742757Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, 999077 China
| | - Chao Yao
- grid.9227.e0000000119573309Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031 China
| | - Ning Xu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Mi Zhou
- grid.16821.3c0000 0004 0368 8293Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240 China
| | - Jianyang Ma
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yuting Qin
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yiwei Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yuanjia Tang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Hong Xu
- grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127 China
| | - Yutong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Xiaoli Zang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Huihua Ding
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Wanling Yang
- grid.194645.b0000000121742757Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, 999077 China
| | - Ya Guo
- grid.16821.3c0000 0004 0368 8293Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240 China
| | - John B. Harley
- grid.413848.20000 0004 0420 2128US Department of Veterans Affairs Medical Center, Cincinnati, OH 45229 USA
| | - Bahram Namjou
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Kenneth M. Kaufman
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Leah C. Kottyan
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Matthew T. Weirauch
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Guojun Hou
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Nan Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China ,grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| |
Collapse
|
5
|
Chai B, Tian D, Zhou M, Tian B, Yuan Y, Sui B, Wang K, Pei J, Huang F, Wu Q, Lv L, Yang Y, Wang C, Fu Z, Zhao L. Murine Ifit3 restricts the replication of Rabies virus both in vitro and in vivo. J Gen Virol 2021; 102. [PMID: 34269675 DOI: 10.1099/jgv.0.001619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rabies virus (RABV) infection can initiate the host immune defence response and induce an antiviral state characterized by the expression of interferon (IFN)-stimulated genes (ISGs), among which the family of genes of IFN-induced protein with tetratricopeptide repeats (Ifits) are prominent representatives. Herein, we demonstrated that the mRNA and protein levels of Ifit1, Ifit2 and Ifit3 were highly increased in cultured cells and mouse brains after RABV infection. Recombinant RABV expressing Ifit3, designated rRABV-Ifit3, displayed a lower pathogenicity than the parent RABV in C57BL/6 mice after intramuscular administration, and Ifit3-deficient mice exhibited higher susceptibility to RABV infection and higher mortality during RABV infection. Moreover, compared with their individual expressions, co-expression of Ifit2 and Ifit3 could more effectively inhibit RABV replication in vitro. These results indicate that murine Ifit3 plays an essential role in restricting the replication and reducing the pathogenicity of RABV. Ifit3 acts synergistically with Ifit2 to inhibit RABV replication, providing further insight into the function and complexity of the Ifit family.
Collapse
Affiliation(s)
- Benjie Chai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dayong Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Pei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lei Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaping Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
6
|
Lei K, Zhang L, He Y, Sun H, Tong W, Xu Y, Jin L. Immune-associated biomarkers for early diagnosis of Parkinson's disease based on hematological lncRNA-mRNA co-expression. Biosci Rep 2020; 40:BSR20202921. [PMID: 33245101 PMCID: PMC7753636 DOI: 10.1042/bsr20202921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Early stage diagnosis of Parkinson's disease (PD) is challenging without significant motor symptoms. The identification of effective molecular biomarkers as a hematological indication of PD may help improve the diagnostic timeliness and accuracy. In this paper, we analyzed and compared the blood samples of PD and control (CTR) patients to identify the disease-related changes and determine the putative biomarkers for PD diagnosis. Based on the RNA sequencing analysis, differentially expressed genes (DEGs) were identified, and the co-expression network of DEGs was constructed using the weighted correlation network analysis (WGCNA). The analysis leads to the identification of 87 genes that were exclusively regulated in the PD group, whereas 66 genes were significantly increased and 21 genes were significantly decreased in contrast to the control group. The results indicate that the core lncRNA-mRNA co-expression network greatly changes the immune response in PD patients. Specifically, the results showed that PWAR6, LINC00861, AC83843.1, IRF family, IFIT family and CaMK4 may play important roles in the immune system of PD. Based on the findings from this the present study, future research aims at identify novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Kecheng Lei
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta 30322, GA, U.S.A
| | - Liwen Zhang
- National Engineering Research Center for Biochip, ShanghaiBiochip Limited Corporation, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Yijing He
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hui Sun
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Weifang Tong
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yichun Xu
- National Engineering Research Center for Biochip, ShanghaiBiochip Limited Corporation, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
7
|
Impact of Porcine Arterivirus, Influenza B, and Their Coinfection on Antiviral Response in the Porcine Lung. Pathogens 2020; 9:pathogens9110934. [PMID: 33187194 PMCID: PMC7697066 DOI: 10.3390/pathogens9110934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/13/2023] Open
Abstract
Interferon (IFN) cytokines induce an autonomous antiviral state in cells of the infected site to restrict virus spreading and critically regulate overall antiviral response. The antiviral state leads to host protection through expression of hundreds of IFN-stimulated genes that restrict viral infection through multiple mechanisms, for example, directly in viral genome degradation and indirectly through cellular metabolic inhibition. Young pigs were split into four treatment groups: control, porcine reproductive and respiratory syndrome virus (PRRSV, also known as porcine arterivirus) infected, influenza B virus (IBV) infected, and IBV/PRRSV coinfection. Lung tissue was collected at 3, 5, and 7 days post infection (dpi) for control, PRRSV and IBV/PRRSV coinfection, and at 3 and 5 dpi for IBV. Transcriptomic analysis, using usegalaxy.org tools, was performed against the S.scrofa 11.1 reference genome. Differentially expressed gene (DEG) analysis was carried out using DeSeq2 based on the model treatment + dpi + treatment:dpi + E. Downstream analysis examined the interaction of DEG at each dpi for over-enriched gene ontology (G.O.) terms and pathways. Comparisons of the infected groups vs. the controls yielded a total of (n = 1412) DEGs for the PRRSV group and (n = 1578) for the IBV/PRRSV group across all timepoints. The IBV group had (n = 64) total DEGs across 3 and 5 dpi. Expression data were considered statistically significant based on false discovery rate (FDR) ⫹ 0.1. Venn diagram comparisons of the DEGs across dpi showed that groups shared only 16 DEGs at 3 dpi, no DEGs were shared at 5 dpi, and for 7 dpi, only the PRRSV and IBV/PRRSV groups were compared and shared a total of 43 DEGs. Across the comparisons, differential expression was observed in antiviral genes such as IRF1, MX1, and OAS2. The IBV and IBV/PRRSV groups showed higher expression of antiviral genes at earlier dpi than the PRRSV group. Additionally, downregulated genes from the comparisons clustered around Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways effecting lung development and cellular integrity. Early expression of host IFN and antiviral genes may lead to viral RNA degradation, and assembly and transcription inhibition in the IBV infections. In comparison, expression of antiviral genes in the PRRSV group decreased across time. The decrease may explain why PRRSV infections persist, while IBV clears. Moreover, all infected groups showed prolonged upregulation in neutrophil degranulation pathway activity, possibly exacerbating symptomatic lung lesion pathology seen in these respiratory infections.
Collapse
|
8
|
Kim KI, Lee UH, Cho M, Jung SH, Min EY, Park JW. Transcriptome analysis based on RNA-seq of common innate immune responses of flounder cells to IHNV, VHSV, and HIRRV. PLoS One 2020; 15:e0239925. [PMID: 32986779 PMCID: PMC7521715 DOI: 10.1371/journal.pone.0239925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) and hirame rhabdovirus (HIRRV) belong to the genus Novirhabdovirus and are the causative agents of a serious disease in cultured flounder. However, infectious hematopoietic necrosis virus (IHNV), a prototype of the genus Novirhabdovirus, does not cause disease in flounder. To determine whether IHNV growth is restricted in flounder cells, we compared the growth of IHNV with that of VHSV and HIRRV in hirame natural embryo (HINAE) cells infected with novirhabdoviruses at 1 multiplicity of infection. Unexpectedly, we found that IHNV grew as well as VHSV and HIRRV. For successful growth in host cells, viruses modulate innate immune responses exerted by virus-infected cells. Our results suggest that IHNV, like VHSV and HIRRV, has evolved the ability to overcome the innate immune response of flounder cells. To determine the innate immune response genes of virus-infected HINAE cells which are commonly modulated by the three novirhabdoviruses, we infected HINAE cells with novirhabdoviruses at multiplicity of infection (MOI) 1 and performed an RNA sequencing-based transcriptome analysis at 24 h post-infection. We discovered ~12,500 unigenes altered by novirhabdovirus infection and found that many of these were involved in multiple cellular pathways. After novirhabdovirus infection, 170 genes involved in the innate immune response were differentially expressed compared to uninfected cells. Among them, 9 genes changed expression by more than 2-fold and were commonly modulated by all three novirhabdoviruses. Interferon regulatory factor 8 (IRF8), C-X-C motif chemokine receptor 1 (CXCR1), Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), cholesterol 25-hydroxylase (CH25H), C-X-C motif chemokine ligand 11, duplicate 5 (CXCL11.5), and Toll-like receptor 2 (TLR2) were up-regulated, whereas C-C motif chemokine receptor 6a (CCR6a), interleukin-12a (IL12a), and Toll-like receptor 1 (TLR1) were down-regulated. These genes have been reported to be involved in antiviral responses and, thus, their modulation may be critical for the growth of novirhabdovirus in flounder cells. This is the first report to identify innate immune response genes in flounder that are commonly modulated by IHNV, VHSV, and HIRRV. These data will provide new insights into how novirhabdoviruses survive the innate immune response of flounder cells.
Collapse
Affiliation(s)
- Kwang Il Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Sung-Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- * E-mail:
| |
Collapse
|
9
|
Belur Nagaraj A, Joseph P, Ponting E, Fedorov Y, Singh S, Cole A, Lee W, Yoon E, Baccarini A, Scacheri P, Buckanovich R, Adams DJ, Drapkin R, Brown BD, DiFeo A. A miRNA-Mediated Approach to Dissect the Complexity of Tumor-Initiating Cell Function and Identify miRNA-Targeting Drugs. Stem Cell Reports 2020; 12:122-134. [PMID: 30629937 PMCID: PMC6335585 DOI: 10.1016/j.stemcr.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023] Open
Abstract
Tumor-initiating cells (TICs) contribute to drug resistance and tumor recurrence in cancers, thus experimental approaches to dissect the complexity of TICs are required to design successful TIC therapeutic strategies. Here, we show that miRNA-3' UTR sensor vectors can be used as a pathway-based method to identify, enrich, and analyze TICs from primary solid tumor patient samples. We have found that an miR-181ahigh subpopulation of cells sorted from primary ovarian tumor cells exhibited TIC properties in vivo, were enriched in response to continuous cisplatin treatment, and showed activation of numerous major stem cell regulatory pathways. This miRNA-sensor-based platform enabled high-throughput drug screening leading to identification of BET inhibitors as transcriptional inhibitors of miR-181a. Taken together, we provide a valuable miRNA-sensor-based approach to broaden the understanding of complex TIC regulatory mechanisms in cancers and to identify miRNA-targeting drugs.
Collapse
Affiliation(s)
- Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Peronne Joseph
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Erin Ponting
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yuriy Fedorov
- Small Molecules Drug Development Core Facility, Office of Research Administration, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Cole
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), The University of Michigan, Ann Arbor, MI, USA
| | - Woncheol Lee
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), The University of Michigan, Ann Arbor, MI, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), The University of Michigan, Ann Arbor, MI, USA
| | - Alessia Baccarini
- Department of Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Peter Scacheri
- Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ronald Buckanovich
- Department of Medicine, Magee Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Drew J Adams
- Small Molecules Drug Development Core Facility, Office of Research Administration, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Brian D Brown
- Department of Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Analisa DiFeo
- Rogel Cancer Center, The University of Michigan, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, The University of Michigan, Michigan Medicine, Ann Arbor, MI, USA; Department of Pathology, The University of Michigan, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868. [PMID: 29357389 PMCID: PMC5794192 DOI: 10.1371/journal.ppat.1006868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation. Infection with Epstein-Barr virus (EBV) is closely associated with human cancers of both B cell and epithelial cell origin. The EBV life cycle is tightly regulated by both viral and cellular factors. Here, we demonstrate that interferon regulatory factor 8 (IRF8) is required for EBV lytic replication. Mechanistically, IRF8 directly regulates caspase-1 expression and hence caspase activation upon B cell receptor (BCR) stimulation and chemical induction, which leads to the cleavage and de-stabilization of several host factors suppressing lytic replication, including KAP1. Caspase-1 depletion blocks EBV reactivation while KAP1 depletion facilitates reactivation in caspase-1 depleted cells. These results together establish a IRF8/caspase-1/KAP1 axis important for EBV reactivation.
Collapse
Affiliation(s)
- Dong-Wen Lv
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|