1
|
Wang W, Pan L, He H, Xue H, Huang H, Samosir AM, Fu X, Shen Y. Systematic Engineering for Efficient Uric Acid-Degrading Activity in Probiotic Yeast Saccharomyces boulardii. ACS Synth Biol 2025. [PMID: 40340401 DOI: 10.1021/acssynbio.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Hyperuricemia, caused by uric acid disequilibrium, is a prevalent metabolic disease that most commonly manifests as gout and is closely associated with a spectrum of other comorbidities such as renal disorders and cardiovascular diseases. While natural and engineered probiotics that promote catabolism of uric acid in the intestine have shown promise in relieving hyperuricemia, limitations in strain efficiency and the requirements for achieving high performance remain major hurdles in the practical application of probiotic-mediated prevention and management. Here, we employed a systematic strategy to engineer a high-efficiency uric acid catabolism pathway in S. cerevisiae. An uricase from Vibrio vulnificus, exhibiting high-level activity in S. cerevisiae, was identified as the uric acid-degrading component. The expression level and stability of urate transporter UapA were improved by constructing a chimera, enabling reliable uric acid import in S. cerevisiae. Additionally, constitutive promoters were selected and combinatorially assembled with the two functional components, creating a collection of pathways that confer varied levels of uric acid catabolic activity to S. cerevisiae. The best-performing pathway can express uric acid-degrading activity up to 365.32 ± 20.54 μmol/h/OD, requiring only simple cultivation steps. Eventually, we took advantage of the genetic similarity between model organism S. cerevisiae and probiotic S. boulardii and integrated the optimized pathway into identified high-expression integration loci in the S. boulardii genome. The activity can be stably maintained under high-density fermentation conditions. Overall, this study provided a high-potential hyperuricemia-managing yeast probiotic strain, demonstrating the capabilities of developing recombinant probiotics.
Collapse
Affiliation(s)
- Wenzhuo Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, PR China
- BGI Research, Hangzhou 310030, China
| | - Lei Pan
- BGI Research, Hangzhou 310030, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | | | | | - He Huang
- BGI Research, Changzhou 213299, China
| | | | - Xian Fu
- BGI Research, Changzhou 213299, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| | - Yue Shen
- BGI Research, Changzhou 213299, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| |
Collapse
|
2
|
Sonawala U, Busidan A, Haak D, Pilot G. Characterization and whole genome sequencing of Saccharomyces cerevisiae strains lacking several amino acid transporters: Tools for studying amino acid transport. PLoS One 2025; 20:e0315789. [PMID: 40305508 PMCID: PMC12043151 DOI: 10.1371/journal.pone.0315789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Saccharomyces cerevisiae mutants have been used since the early 1980s as a tool for characterizing genes from other organisms by functional complementation. This approach has been extremely successful in cloning and studying transporters; for instance, plant amino acid, sugar, urea, ammonium, peptide, sodium, and potassium transporters were characterized using yeast mutants lacking these functions. Over the years, new strains lacking even more endogenous transporters have been developed, enabling the characterization of transport properties of heterologous proteins in a more precise way. Furthermore, these strains provide the added possibility of characterizing a transporter belonging to a family of proteins in isolation, and thus can be used to study the relative contribution of redundant transporters to the whole function. We focused on amino acid transport, starting with the yeast strain 22 ∆ 8AA, which was developed to clone plant amino acid transporters in the early 2000s. We recently deleted two additional amino acid permeases, Gnp1 and Agp1, creating 22 ∆ 10α. In the present work, five additional permeases (Bap3, Tat1, Tat2, Agp3, Bap2) were deleted from 22 ∆ 10α genome, in a combination of up to three at a time. Unexpectedly, the amino acid transport properties of the new strains were not very different from the parent, suggesting that these amino acid permeases play a minor role in amino acid uptake, at least in our conditions. Furthermore, the inability to utilize certain amino acids as sole nitrogen source did not correlate with reduced uptake activity, questioning the well-accepted relationship between lack of growth and loss of transport properties. Finally, in order to verify the mutations and the integrity of 22 ∆ 10α genome, we performed whole-genome sequencing of 22 ∆ 10α using long-read PacBio sequencing technology. We successfully assembled 22 ∆ 10α's genome de novo, identified all expected mutations and precisely characterized the nature of the deletions of the ten amino acid transporters. The sequencing data and genome will serve as a valuable resource to researchers interested in using these strains as a tool for amino acid transport study.
Collapse
Affiliation(s)
- Unnati Sonawala
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aymeric Busidan
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
3
|
Wegner SA, Kim H, Avalos JL. Optogenetic screening of MCT1 activity implicates a cluster of non-steroidal anti-inflammatory drugs (NSAIDs) as inhibitors of lactate transport. PLoS One 2024; 19:e0312492. [PMID: 39666628 PMCID: PMC11637378 DOI: 10.1371/journal.pone.0312492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 12/14/2024] Open
Abstract
Lactate transport plays a crucial role in the metabolism, microenvironment, and survival of cancer cells. However, current drugs targeting either MCT1 or MCT4, which traditionally mediate lactate import or efflux respectively, show limited efficacy beyond in vitro models. This limitation partly arises from the existence of both isoforms in certain tumors, however existing high-affinity MCT1/4 inhibitors are years away from human testing. Therefore, we conducted an optogenetic drug screen in Saccharomyces cerevisiae on a subset of the FDA-approved drug library to identify existing scaffolds that could be repurposed as monocarboxylate transporter (MCT) inhibitors. Our findings show that several existing drug classes inhibit MCT1 activity, including non-steroidal estrogens, non-steroidal anti-inflammatory drugs (NSAIDs), and natural products (in total representing approximately 1% of the total library, 78 out of 6400), with a moderate affinity (IC50 1.8-21 μM). Given the well-tolerated nature of NSAIDs, and their known anticancer properties associated with COX inhibition, we chose to further investigate their MCT1 inhibition profile. The majority of NSAIDs in our screen cluster into a single large structural grouping. Moreover, this group is predominantly comprised of FDA-approved NSAIDs, with seven exhibiting moderate MCT1 inhibition. Since these molecules form a distinct structural cluster with known NSAID MCT4 inhibitors, such as diclofenac, ketoprofen, and indomethacin, we hypothesize that these newly identified inhibitors may also inhibit both transporters. Consequently, NSAIDs as a class, and piroxicam specifically (IC50 4.4 μM), demonstrate MCT1 inhibition at theoretically relevant human dosages, suggesting immediate potential for standalone MCT inhibition or combined anticancer therapy.
Collapse
Affiliation(s)
- Scott A. Wegner
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Hahn Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Princeton University Small Molecule Screening Center, Princeton University, Princeton, New Jersey, United States of America
| | - José L. Avalos
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, United States of America
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Liu Z, Li S, Wang C, Vidmar KJ, Bracey S, Li L, Willard B, Miyagi M, Lan T, Dickinson BC, Osme A, Pizarro TT, Xiao TS. Palmitoylation at a conserved cysteine residue facilitates gasdermin D-mediated pyroptosis and cytokine release. Proc Natl Acad Sci U S A 2024; 121:e2400883121. [PMID: 38980908 PMCID: PMC11260154 DOI: 10.1073/pnas.2400883121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1β secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Sai Li
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Chuanping Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Kaylynn J. Vidmar
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Syrena Bracey
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Ling Li
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44196
| | - Belinda Willard
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44196
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH44106
| | - Tong Lan
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | | | - Abdullah Osme
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
5
|
Seitz W, Kirwan AD, Brčić-Kostić K, Mitrikeski PT, Seitz PK. Visualizing genomic data: The mixing perspective. Biosystems 2023; 224:104839. [PMID: 36690200 DOI: 10.1016/j.biosystems.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
We report on a novel way to visualize genomic data. By considering genome coding sequences, cds, as sets of the N=61 non-stop codons, one obtains a partition of the total number of codons in each cds. Partitions exhibit a statistical property known as mixing character which characterizes how mixed the partition is. Mixing characters have been shown mathematically to exhibit a partial order known as majorization (Ruch, 1975). In previous work (Seitz and Kirwan, 2022) we developed an approach that combined mixing and entropy that is visualized as a scatter plot. If we consider all 1,121,505 partitions of 61 codons, this produces a plot we call the theoretical mixing space, TGMS. A normalization procedure is developed here and applied to real genomic data to produce the genome mixing signature, GMS. Example GMS's of 19 species, including Homo sapiens, are shown and discussed.
Collapse
Affiliation(s)
- William Seitz
- Texas A&M University at Galveston, Galveston, TX 77553, United States of America.
| | - A D Kirwan
- College of Earth, Ocean and Environment, University of Delaware, Newark, DE, 19716, United States of America
| | - Krunoslav Brčić-Kostić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bos̆ković Institute, Zagreb 10000, Croatia
| | - Petar Tomev Mitrikeski
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bos̆ković Institute, Zagreb 10000, Croatia
| | - P K Seitz
- University of Texas Medical Branch, Galveston, TX 77555, United States of America
| |
Collapse
|
6
|
Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metab Eng 2022; 70:129-142. [DOI: 10.1016/j.ymben.2022.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
|
7
|
Mioka T, Guo T, Wang S, Tsuji T, Kishimoto T, Fujimoto T, Tanaka K. Characterization of micron-scale protein-depleted plasma membrane domains in phosphatidylserine-deficient yeast cells. J Cell Sci 2021; 135:261783. [PMID: 34000034 DOI: 10.1242/jcs.256529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane phase separation to form micron-scale domains of lipids and proteins occurs in artificial membranes; however, a similar large-scale phase separation has not been reported in the plasma membrane of the living cells. We show here that a stable micron-scale protein-depleted region is generated in the plasma membrane of yeast mutants lacking phosphatidylserine at high temperatures. We named this region the 'void zone'. Transmembrane proteins and certain peripheral membrane proteins and phospholipids are excluded from the void zone. The void zone is rich in ergosterol, and requires ergosterol and sphingolipids for its formation. Such properties are also found in the cholesterol-enriched domains of phase-separated artificial membranes, but the void zone is a novel membrane domain that requires energy and various cellular functions for its formation. The formation of the void zone indicates that the plasma membrane in living cells has the potential to undergo phase separation with certain lipid compositions. We also found that void zones were frequently in contact with vacuoles, in which a membrane domain was also formed at the contact site.
Collapse
Affiliation(s)
- Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Tian Guo
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Shiyao Wang
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Takuma Tsuji
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Toyoshi Fujimoto
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
8
|
van‘t Klooster JS, Bianchi F, Doorn RB, Lorenzon M, Lusseveld JH, Punter CM, Poolman B. Extracellular loops matter - subcellular location and function of the lysine transporter Lyp1 from Saccharomyces cerevisiae. FEBS J 2020; 287:4401-4414. [PMID: 32096906 PMCID: PMC7687128 DOI: 10.1111/febs.15262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/01/2022]
Abstract
Yeast amino acid transporters of the APC superfamily are responsible for the proton motive force-driven uptake of amino acids into the cell, which for most secondary transporters is a reversible process. The l-lysine proton symporter Lyp1 of Saccharomyces cerevisiae is special in that the Michaelis constant from out-to-in transport ( K m out → in ) is much lower than K m in → out , which allows accumulation of l-lysine to submolar concentration. It has been proposed that high intracellular lysine is part of the antioxidant mechanism of the cell. The molecular basis for the unique kinetic properties of Lyp1 is unknown. We compared the sequence of Lyp1 with APC para- and orthologues and find structural features that set Lyp1 apart, including differences in extracellular loop regions. We screened the extracellular loops by alanine mutagenesis and determined Lyp1 localization and activity and find positions that affect either the localization or activity of Lyp1. Half of the affected mutants are located in the extension of extracellular loop 3 or in a predicted α-helix in extracellular loop 4. Our data indicate that extracellular loops not only connect the transmembrane helices but also serve functionally important roles.
Collapse
Affiliation(s)
- Joury S. van‘t Klooster
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Frans Bianchi
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Ruben B. Doorn
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Mirco Lorenzon
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Jarnick H. Lusseveld
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Christiaan M. Punter
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Bert Poolman
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| |
Collapse
|
9
|
Syga Ł, de Vries RH, van Oosterhout H, Bartelds R, Boersma AJ, Roelfes G, Poolman B. A Trifunctional Linker for Palmitoylation and Peptide and Protein Localization in Biological Membranes. Chembiochem 2020; 21:1320-1328. [PMID: 31814256 PMCID: PMC7317724 DOI: 10.1002/cbic.201900655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/09/2023]
Abstract
Attachment of lipophilic groups is an important post-translational modification of proteins, which involves the coupling of one or more anchors such as fatty acids, isoprenoids, phospholipids, or glycosylphosphatidyl inositols. To study its impact on the membrane partitioning of hydrophobic peptides or proteins, we designed a tyrosine-based trifunctional linker. The linker allows the facile incorporation of two different functionalities at a cysteine residue in a single step. We determined the effect of the lipid modification on the membrane partitioning of the synthetic α-helical model peptide WALP with or without here and in all cases below; palmitoyl groups in giant unilamellar vesicles that contain a liquid-ordered (Lo ) and liquid-disordered (Ld ) phase. Introduction of two palmitoyl groups did not alter the localization of the membrane peptides, nor did the membrane thickness or lipid composition. In all cases, the peptide was retained in the Ld phase. These data demonstrate that the Lo domain in model membranes is highly unfavorable for a single membrane-spanning peptide.
Collapse
Affiliation(s)
- Łukasz Syga
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Reinder H. de Vries
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Hugo van Oosterhout
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Rianne Bartelds
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Arnold J. Boersma
- DWI Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - Gerard Roelfes
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Bert Poolman
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
10
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
11
|
Cytosolic N- and C-Termini of the Aspergillus nidulans FurE Transporter Contain Distinct Elements that Regulate by Long-Range Effects Function and Specificity. J Mol Biol 2019; 431:3827-3844. [DOI: 10.1016/j.jmb.2019.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 01/05/2023]
|
12
|
Abstract
Cell nutrition, detoxification, signalling, homeostasis and response to drugs, processes related to cell growth, differentiation and survival are all mediated by plasma membrane (PM) proteins called transporters. Despite their distinct fine structures, mechanism of function, energetic requirements, kinetics and substrate specificities, all transporters are characterized by a main hydrophobic body embedded in the PM as a series of tightly packed, often intertwined, α-helices that traverse the lipid bilayer in a zigzag mode, connected with intracellular or extracellular loops and hydrophilic N- and C-termini. Whereas longstanding genetic, biochemical and biophysical evidence suggests that specific transmembrane segments, and also their connecting loops, are responsible for substrate recognition and transport dynamics, emerging evidence also reveals the functional importance of transporter N- and C-termini, in respect to transport catalysis, substrate specificity, subcellular expression, stability and signalling. This review highlights selected prototypic examples of transporters in which their termini play important roles in their functioning.
Collapse
Affiliation(s)
- Emmanuel Mikros
- Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| |
Collapse
|
13
|
Besnard J, Zhao C, Avice JC, Vitha S, Hyodo A, Pilot G, Okumoto S. Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5221-5232. [PMID: 30312461 PMCID: PMC6184519 DOI: 10.1093/jxb/ery302] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/14/2018] [Indexed: 05/17/2023]
Abstract
Phloem-derived amino acids are the major source of nitrogen supplied to developing seeds. Amino acid transfer from the maternal to the filial tissue requires at least one cellular export step from the maternal tissue prior to the import into the symplasmically isolated embryo. Some members of UMAMIT (usually multiple acids move in an out transporter) family (UMAMIT11, 14, 18, 28, and 29) have previously been implicated in this process. Here we show that additional members of the UMAMIT family, UMAMIT24 and UMAMIT25, also function in amino acid transfer in developing seeds. Using a recently published yeast-based assay allowing detection of amino acid secretion, we showed that UMAMIT24 and UMAMIT25 promote export of a broad range of amino acids in yeast. In plants, UMAMIT24 and UMAMIT25 are expressed in distinct tissues within developing seeds; UMAMIT24 is mainly expressed in the chalazal seed coat and localized on the tonoplast, whereas the plasma membrane-localized UMAMIT25 is expressed in endosperm cells. Seed amino acid contents of umamit24 and umamit25 knockout lines were both decreased during embryogenesis compared with the wild type, but recovered in the mature seeds without any deleterious effect on yield. The results suggest that UMAMIT24 and 25 play different roles in amino acid translocation from the maternal to filial tissue; UMAMIT24 could have a role in temporary storage of amino acids in the chalaza, while UMAMIT25 would mediate amino acid export from the endosperm, the last step before amino acids are taken up by the developing embryo.
Collapse
Affiliation(s)
- Julien Besnard
- Department of Soil and Crop, Texas A&M, College Station, TX, USA
| | - Chengsong Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jean-Christophe Avice
- UMR INRA - UCBN 950 EVA, UFR des Sciences, Département de Biologie, Université de Caen Normandie, Esplanade de la Paix, Caen cedex, France
| | - Stanislav Vitha
- Microscopy and Imaging Center, Texas A&M, College Station, TX, USA
| | - Ayumi Hyodo
- Stable Isotopes for Biosphere Science Laboratory, Texas A&M, College Station, TX, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sakiko Okumoto
- Department of Soil and Crop, Texas A&M, College Station, TX, USA
- Correspondence: or
| |
Collapse
|
14
|
Argüello-Miranda O, Liu Y, Wood NE, Kositangool P, Doncic A. Integration of Multiple Metabolic Signals Determines Cell Fate Prior to Commitment. Mol Cell 2018; 71:733-744.e11. [PMID: 30174289 DOI: 10.1016/j.molcel.2018.07.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022]
Abstract
Cell-fate decisions are central to the survival and development of both uni- and multicellular organisms. It remains unclear when and to what degree cells can decide on future fates prior to commitment. This uncertainty stems from experimental and theoretical limitations in measuring and integrating multiple signals at the single-cell level during a decision process. Here, we combine six-color live-cell imaging with the Bayesian method of statistical evidence to study the meiosis/quiescence decision in budding yeast. Integration of multiple upstream metabolic signals predicts individual cell fates with high probability well before commitment. Cells "decide" their fates before birth, well before the activation of pathways characteristic of downstream cell fates. This decision, which remains stable through several cell cycles, occurs when multiple metabolic parameters simultaneously cross cell-fate-specific thresholds. Taken together, our results show that cells can decide their future fates long before commitment mechanisms are activated.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Yanjie Liu
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - N Ezgi Wood
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Piya Kositangool
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Andreas Doncic
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Green Center for Systems Biology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets. Int J Mol Sci 2018; 19:ijms19030909. [PMID: 29562716 PMCID: PMC5877770 DOI: 10.3390/ijms19030909] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/15/2023] Open
Abstract
Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.
Collapse
|
16
|
Bianchi F, Syga Ł, Moiset G, Spakman D, Schavemaker PE, Punter CM, Seinen AB, van Oijen AM, Robinson A, Poolman B. Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nat Commun 2018; 9:501. [PMID: 29402931 PMCID: PMC5799302 DOI: 10.1038/s41467-018-02864-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.
Collapse
Affiliation(s)
- Frans Bianchi
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Łukasz Syga
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Gemma Moiset
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Dian Spakman
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Paul E Schavemaker
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Christiaan M Punter
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Anne-Bart Seinen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Antoine M van Oijen
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Andrew Robinson
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Bert Poolman
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands. .,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|