1
|
Rouaud F, Meens MJ, Yvon R, Hautefort A, Legouis D, Mean I, Jond L, Maillard M, Kwak BR, Moll S, Seigneux SD, Feraille E, Citi S. The knock-out of paracingulin attenuates hypertension through modulation of kidney ion transport. Am J Physiol Renal Physiol 2025; 328:F737-F751. [PMID: 40204428 DOI: 10.1152/ajprenal.00271.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Hypertension is a major risk factor for human morbidity and mortality, and the junctional protein paracingulin (CGNL1, JACOP) is required for the development of hypertension in a Dahl salt-sensitive rat model and is linked to human hypertension in genome wide association studies. However, the mechanism through which CGNL1 may regulate hypertension is unknown. Here, we address this question using a mouse model, where hypertension is induced by unilateral nephrectomy and angiotensin II infusion (N+A protocol). Although untreated WT and CGNL1-KO mice showed similar blood pressure, the N+A protocol induced hypertension in WT mice but not in CGNL1-KO mice. We show by immunolocalization and transcriptomic analysis that CGNL1 is expressed throughout the kidney tubules and in the endothelium of blood vessels, but not in smooth muscle. The N+A protocol induced decreased potassium urinary excretion in wild-type (WT), but not in CGNL1-KO mice. Immunoblot analysis shows that the KO of CGNL1 blunted the N+A-induced changes in the expression levels and activation of tubular ion transporters, including the Na/H exchanger 3 (NHE3) and the thiazide-sensitive Na-Cl cotransporter (NCC), and blunted the angiotensin II-dependent changes in the levels and/or activation of AMP-activated protein kinase (AMPK), ERK and myosin light chain. In contrast, myography showed comparable vascular reactivity in thoracic aortas and mesenteric arteries isolated from WT or CGNL1-KO mice. Together, these results suggest the KO of CGNL1 attenuates hypertension by uncoupling angiotensin II signaling in kidney tubule cells, indicating a novel pathway of regulation of signaling by a junctional protein.NEW & NOTEWORTHY The knock-out of paracingulin (CGNL1) prevents the development of hypertension in a unilateral nephrectomy/angiotensin II infusion model (N+A) in mice and this antihypertensive effect likely depends on uncoupling of angiotensin II from stimulation of sodium transporter activity in kidney tubules rather than on alteration of resistance blood vessel contractility.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Merlijn J Meens
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Research Office, Faculty of Health, Medicine and Life Sciences, Maastricht, The Netherlands
| | - Raphaël Yvon
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Isabelle Mean
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Maillard
- Department of Nephrology and Hypertension, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Solange Moll
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie De Seigneux
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eric Feraille
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Ni Y, Liu B, Zhang W, Pang Y, Tian Y, Lv Q, Shi S, Zheng Y, Fan H. Evaluation of PDZD11 in hepatocellular carcinoma: prognostic value and diagnostic potential in combination with AFP. Front Oncol 2025; 15:1533865. [PMID: 40201341 PMCID: PMC11975663 DOI: 10.3389/fonc.2025.1533865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent liver cancer, with a 5-year survival rate below 20% and an average survival time of 3-6 months. Identifying new biomarkers is crucial for early diagnosis and prognosis. The function of PDZ domain protein 11 (PDZD11) in HCC remains unclear. Methods In this study, PDZD11 was investigated as a potential biomarker for HCC using bioinformatic analysis of the TCGA and ICGC datasets. Furthermore, we assessed the potential of serum PDZD11 as a clinical diagnostic marker by enrolling a cohort comprising 78 HCC patients and 62 healthy controls (HC) using the ELISA analysis and combining its expression with common tumor markers. Results Our research found significantly higher PDZD11 mRNA expression in HCC tissues compared to tumor-adjacent tissues (p < 0.001), which was associated with lower overall survival (OS) rates (p < 0.01). Multivariate evaluation methods established PDZD11 as a standalone predictor of prognosis. A nomogram incorporating PDZD11 expression and clinicopathological factors predicted OS rates for HCC patients over various years. Patients with HCC exhibited notably elevated serum PDZD11 levels compared to HC, with these levels rising further in advanced disease stages and deteriorating performance status (PS). ROC analysis showed high diagnostic accuracy when PDZD11 is combined with AFP (AUC = 0.958). Conclusion PDZD11 is more sensitive than AFP in assessing HCC prognosis. In conclusion, PDZD11 is a promising supplementary biomarker for HCC diagnosis and prognosis alongside AFP.
Collapse
Affiliation(s)
- Yiyun Ni
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| | - Bin Liu
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| | - Weizhen Zhang
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| | - Yilin Pang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaling Tian
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| | - Qingsong Lv
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| | - Shengwen Shi
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| | - Yang Zheng
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| | - Huihui Fan
- The Central Hospital of Yongzhou, Yongzhou Clinical College, University of South China, Yongzhou, Hunan, China
| |
Collapse
|
3
|
Chen X, Li Z, Feng Y, Yang Z, Zhao B. Identification of PDZD11 as a Potential Biomarker Associated with Immune Infiltration for Diagnosis and Prognosis in Epithelial Ovarian Cancer. Int J Gen Med 2024; 17:2113-2128. [PMID: 38766598 PMCID: PMC11102278 DOI: 10.2147/ijgm.s459418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Evidence has indicated that PDZD11 is involved in regulating adherens junction. However, the distinct effect of its aberrant expression on epithelial ovarian cancer (EOC) awaits clarification. Methods In this study, public databases (Gene Expression Omnibus, The Cancer Genome Atlas, and The Genotype-Tissue Expression), online analysis tools (Kaplan-Meier plotter and TIMER), and data analysis methods (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and the CIBERSORT algorithm) were fully utilized to analyze the differential expression, diagnostic efficiency, prognostic significance, potential function, and correlation with immune infiltration of PDZD11. The differential expression of PDZD11 was tested by immunohistochemistry in EOC tissues (78 cases) and control tissues (37 cases). Results Our results indicate that PDZD11 was remarkably overexpressed in EOC, which was associated with advanced cancer stages, no lymphatic metastasis status, and poor prognosis. Moreover, PDZD11 played a role in cell adhesion, cell proliferation, and immune responses. Also, PDZD11 was significantly related to the abundances of infiltrating immune cells in EOC, including neutrophils, macrophages, dendritic cells, CD8+ T cells, and CD4+ T cells, and its expression was positively co-expressed with well-known immune checkpoints, including TIGIT, TIM3, LAG3, CTLA4, and PD-1. Conclusion These results suggest that PDZD11 could be a potential diagnostic and prognostic biomarker associated with immune infiltration in EOC, and our findings might help elucidate the function of PDZD11 in carcinogenesis.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhuang Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yanying Feng
- Department of Cardiopulmonary Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhijun Yang
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Bingbing Zhao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
4
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Maupérin M, Sassi A, Méan I, Feraille E, Citi S. Knock Out of CGN and CGNL1 in MDCK Cells Affects Claudin-2 but Has a Minor Impact on Tight Junction Barrier Function. Cells 2023; 12:2004. [PMID: 37566083 PMCID: PMC10417749 DOI: 10.3390/cells12152004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Cingulin (CGN) and paracingulin (CGNL1) are cytoplasmic proteins of tight junctions (TJs), where they play a role in tethering ZO-1 to the actomyosin and microtubule cytoskeletons. The role of CGN and CGNL1 in the barrier function of epithelia is not completely understood. Here, we analyzed the effect of the knock out (KO) of either CGN or CGNL1 or both on the paracellular permeability of monolayers of kidney epithelial (MDCK) cells. KO cells displayed a modest but significant increase in the transepithelial resistance (TER) of monolayers both in the steady state and during junction assembly by the calcium switch, whereas the permeability of the monolayers to 3 kDa dextran was not affected. The permeability to sodium was slightly but significantly decreased in KO cells. This phenotype correlated with slightly increased mRNA levels of claudin-2, slightly decreased protein levels of claudin-2, and reduced junctional accumulation of claudin-2, which was rescued by CGN or CGNL1 but not by ZO-1 overexpression. These results confirm previous observations indicating that CGN and CGNL1 are dispensable for the barrier function of epithelia and suggest that the increase in the TER in clonal lines of MDCK cells KO for CGN, CGNL1, or both is due to reduced protein expression and junctional accumulation of the sodium pore-forming claudin, claudin-2.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Ali Sassi
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Eric Feraille
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
The Role of Certain Polymorphic Variants in Genes, Previously Associated with Blood Pressure Values, with Reference to the Risk of Development of Coronary Artery Disease. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Abstract
The aim of the study was to analyze the effect of polymorphic variants previously associated with arterial hypertension (AH) in Genome Wide Association Studies (GWASs) in/next to genes and locuses CYP7A1 and PLEKHA7 on the development of coronary artery disease (CAD) in Bulgarian patients. A hundred and nine consecutive patients with angiographically documented CAD were studied. The genotyping was done with 7900 HT Fast Real-Time PCR (Applied Biosystems) with TaqMan® method. The control group consisted of 192 healthy population controls, selected from the bio- bank of the Molecular Medicine Center. SPSS and PLINK were used for the statistical analysis with level of significance < 0.05 and confidence interval 95%. The mean age of the studied patients was 63.71 ± 9.35 years; 35 (35%) females. Previous myocardial infarction (MI) had 38(38%); one-vessel – 39 (39%); two-vessel – 28 (28%); three-vessel disease – 34 (34%); 43 (43%) were with diabetes mellitus; 92 (92%) – with arterial hypertension (AH); 77 (77%) – with dyslipidemia; 42 (42%) were smokers; 25 (25%) were obese. We did not find any significant association between CAD and poly- morphism rs11191548 near CYP17A1 and only a tendency for genotype of rs381815 in PLEKHA7 (p = 0.06; OR 0.64; CI 0.40-1.02 for CAD) under dominant model. This is of practical importance both for studying the genetic aspects of CAD in the future and for enlargement of the current database.
Collapse
|
7
|
Ngalim SH, Yusoff N, Johnson RR, Abdul Razak SR, Chen X, Hobbs JK, Lee YY. A review on mechanobiology of cell adhesion networks in different stages of sporadic colorectal cancer to explain its tumorigenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:63-72. [PMID: 36116549 DOI: 10.1016/j.pbiomolbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sporadic colorectal cancer (CRC) is strongly linked to extraneous factors, like poor diet and lifestyle, but not to inherent factors like familial genetics. The changes at the epigenomics and signalling pathways are known across the sporadic CRC stages. The catch is that temporal information of the onset, the feedback loop, and the crosstalk of signalling and noise are still unclear. This makes it challenging to diagnose and treat colon cancer effectively with no relapse. Various microbial cells and native cells of the colon, contribute to sporadic CRC development. These cells secrete autocrine and paracrine for their bioenergetics and communications with other cell types. Imbalances of the biochemicals affect the epithelial lining of colon. One side of this epithelial lining is interfacing the dense colon tissue, while the other side is exposed to microbiota and excrement from the lumen. Hence, the epithelial lining is prone to tumorigenesis due to the influence of both biochemical and mechanical cues from its complex surrounding. The role of physical transformations in tumorigenesis have been limitedly discussed. In this context, cellular and tissue structures, and force transductions are heavily regulated by cell adhesion networks. These networks include cell anchoring mechanism to the surrounding, cell structural integrity mechanism, and cell effector molecules. This review will focus on the progression of the sporadic CRC stages that are governed by the underlaying cell adhesion networks within the epithelial cells. Additionally, current and potential technologies and therapeutics that target cell adhesion networks for treatments of sporadic CRC will be incorporated.
Collapse
Affiliation(s)
- Siti Hawa Ngalim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Norwahida Yusoff
- School of Mechanical Engineering, Universiti Sains Malaysia (USM) Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Rayzel Renitha Johnson
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Siti Razila Abdul Razak
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia (USM) Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
8
|
Sluysmans S, Salmaso A, Rouaud F, Méan I, Brini M, Citi S. The PLEKHA7-PDZD11 complex regulates the localization of the calcium pump PMCA and calcium handling in cultured cells. J Biol Chem 2022; 298:102138. [PMID: 35714771 PMCID: PMC9307954 DOI: 10.1016/j.jbc.2022.102138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
The plasma membrane calcium ATPase (PMCA) extrudes calcium from the cytosol to the extracellular space to terminate calcium-dependent signaling. Although the distribution of PMCA is crucial for its function, the molecular mechanisms that regulate the localization of PMCA isoforms are not well understood. PLEKHA7 is implicated by genetic studies in hypertension and the regulation of calcium handling. PLEKHA7 recruits the small adapter protein PDZD11 to adherens junctions, and together they control the trafficking and localization of plasma membrane associated proteins, including the Menkes copper ATPase. Since PDZD11 binds to the C-terminal domain of b-isoforms of PMCA, PDZD11 and its interactor PLEKHA7 could control the localization and activity of PMCA. Here, we test this hypothesis using cultured cell model systems. We show using immunofluorescence microscopy and a surface biotinylation assay that KO of either PLEKHA7 or PDZD11 in mouse kidney collecting duct epithelial cells results in increased accumulation of endogenous PMCA at lateral cell–cell contacts and PDZ-dependent ectopic apical localization of exogenous PMCA4x/b isoform. In HeLa cells, coexpression of PDZD11 reduces membrane accumulation of overexpressed PMCA4x/b, and analysis of cytosolic calcium transients shows that PDZD11 counteracts calcium extrusion activity of overexpressed PMCA4x/b, but not PMCA4x/a, which lacks the PDZ-binding motif. Moreover, KO of PDZD11 in either endothelial (bEnd.3) or epithelial (mouse kidney collecting duct) cells increases the rate of calcium extrusion. Collectively, these results suggest that the PLEKHA7–PDZD11 complex modulates calcium homeostasis by regulating the localization of PMCA.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andrea Salmaso
- Department of Biology, University of Padua, Padua, Italy
| | - Florian Rouaud
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy.
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Cingulin binds to the ZU5 domain of scaffolding protein ZO-1 to promote its extended conformation, stabilization, and tight junction accumulation. J Biol Chem 2022; 298:101797. [PMID: 35259394 PMCID: PMC9010756 DOI: 10.1016/j.jbc.2022.101797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Zonula occludens-1 (ZO-1), the major scaffolding protein of tight junctions (TJs), recruits the cytoskeleton-associated proteins cingulin (CGN) and paracingulin (CGNL1) to TJs by binding to their N-terminal ZO-1 interaction motif. The conformation of ZO-1 can be either folded or extended, depending on cytoskeletal tension and intramolecular and intermolecular interactions, and only ZO-1 in the extended conformation recruits the transcription factor DbpA to TJs. However, the sequences of ZO-1 that interact with CGN and CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not known. Here, we used glutathione-S-transferase pulldowns and immunofluorescence microscopy to show that CGN and CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that this domain is required for CGN and CGNL1 recruitment to TJs and to phase-separated ZO-1 condensates in cells. We show that KO of CGN, but not CGNL1, results in decreased accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the ZU5 domain showed decreased accumulation at TJs, was detectable along lateral contacts, had a higher mobile fraction than full-length ZO-1 by fluorescence recovery after photobleaching analysis, and had a folded conformation, as determined by structured illumination microscopy of its N-terminal and C-terminal ends. The CGN–ZU5 interaction promotes the extended conformation of ZO-1, since binding of the CGN–ZO-1 interaction motif region to ZO-1 resulted in its interaction with DbpA in cells and in vitro. Together, these results show that binding of CGN to the ZU5 domain of ZO-1 promotes ZO-1 stabilization and accumulation at TJs by promoting its extended conformation.
Collapse
|
10
|
The ACE2 Receptor for Coronavirus Entry Is Localized at Apical Cell—Cell Junctions of Epithelial Cells. Cells 2022; 11:cells11040627. [PMID: 35203278 PMCID: PMC8870730 DOI: 10.3390/cells11040627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Transmembrane proteins of adherens and tight junctions are known targets for viruses and bacterial toxins. The coronavirus receptor ACE2 has been localized at the apical surface of epithelial cells, but it is not clear whether ACE2 is localized at apical Cell—Cell junctions and whether it associates with junctional proteins. Here we explored the expression and localization of ACE2 and its association with transmembrane and tight junction proteins in epithelial tissues and cultured cells by data mining, immunoblotting, immunofluorescence microscopy, and co-immunoprecipitation experiments. ACE2 mRNA is abundant in epithelial tissues, where its expression correlates with the expression of the tight junction proteins cingulin and occludin. In cultured epithelial cells ACE2 mRNA is upregulated upon differentiation and ACE2 protein is widely expressed and co-immunoprecipitates with the transmembrane proteins ADAM17 and CD9. We show by immunofluorescence microscopy that ACE2 colocalizes with ADAM17 and CD9 and the tight junction protein cingulin at apical junctions of intestinal (Caco-2), mammary (Eph4) and kidney (mCCD) epithelial cells. These observations identify ACE2, ADAM17 and CD9 as new epithelial junctional transmembrane proteins and suggest that the cytokine-enhanced endocytic internalization of junction-associated protein complexes comprising ACE2 may promote coronavirus entry.
Collapse
|
11
|
Kourtidis A, Dighera B, Risner A, Hackemack R, Nikolaidis N. Origin and Evolution of the Multifaceted Adherens Junction Component Plekha7. Front Cell Dev Biol 2022; 10:856975. [PMID: 35399503 PMCID: PMC8983885 DOI: 10.3389/fcell.2022.856975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Plekha7 is a key adherens junction component involved in numerous functions in mammalian cells. Plekha7 is the most studied member of the PLEKHA protein family, which includes eight members with diverse functions. However, the evolutionary history of Plekha7 remains unexplored. Here, we outline the phylogeny and identify the origins of this gene and its paralogs. We show that Plekha7, together with Plekha4, Plekha5, and Plekha6, belong to a subfamily that we name PLEKHA4/5/6/7. This subfamily is distinct from the other Plekha proteins, which form two additional separate subfamilies, namely PLEKHA1/2 and PLEKHA3/8. Sequence, phylogenetic, exon-intron organization, and syntenic analyses reveal that the PLEKHA4/5/6/7 subfamily is represented by a single gene in invertebrates, which remained single in the last common ancestor of all chordates and underwent gene duplications distinctly in jawless and jawed vertebrates. In the latter species, a first round of gene duplications gave rise to the Plekha4/7 and Plekha5/6 pairs and a second round to the four extant members of the subfamily. These observations are consistent with the 1R/2R hypothesis of vertebrate genome evolution. Plekha7 and Plekha5 also exist in two copies in ray-finned fishes, due to the Teleostei-specific whole genome duplication. Similarities between the vertebrate Plekha4/5/6/7 members and non-chordate sequences are restricted to their N-terminal PH domains, whereas similarities across the remaining protein molecule are only sporadically found among few invertebrate species and are limited to the coiled-coil and extreme C-terminal ends. The vertebrate Plekha4/5/6/7 proteins contain extensive intrinsically disordered domains, which are topologically and structurally conserved in all chordates, but not in non-chordate invertebrates. In summary, our study sheds light on the origins and evolution of Plekha7 and the PLEKHA4/5/6/7 subfamily and unveils new critical information suitable for future functional studies of this still understudied group of proteins.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Bryan Dighera
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Alyssa Risner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Rob Hackemack
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
12
|
Jeung HC, Puentes R, Aleshin A, Indarte M, Correa RG, Bankston LA, Layng FIAL, Ahmed Z, Wistuba I, Yao Y, Duenas DG, Zhang S, Meuillet EJ, Marassi F, Liddington RC, Kirkpatrick L, Powis G. PLEKHA7 signaling is necessary for the growth of mutant KRAS driven colorectal cancer. Exp Cell Res 2021; 409:112930. [PMID: 34800542 DOI: 10.1016/j.yexcr.2021.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Plekha7 (Pleckstrin homology [PH] domain containing, family A member 7) regulates the assembly of proteins of the cytoplasmic apical zonula adherens junction (AJ), thus ensuring cell-cell adhesion and tight-junction barrier integrity. Little is known of Plekha7 function in cancer. In colorectal cancer (CRC) Plekha7 expression is elevated compared to adjacent normal tissue levels, increasing with clinical stage. Plekha7 was present at plasma membrane AJ with wild-type KRas (wt-KRas) but was dispersed in cells expressing mutant KRas (mut-KRas). Fluorescence lifetime imaging microscopy (FLIM) indicated a direct Plekha7 interaction with wt-KRas but scantily with mut-KRas. Inhibiting Plekha7 specifically decreased mut-KRas cell signaling, proliferation, attachment, migration, and retarded mut-KRAS CRC tumor growth. Binding of diC8-phosphoinositides (PI) to the PH domain of Plekha7 was relatively low affinity. This may be because a D175 amino acid residue plays a "sentry" role preventing PI(3,4)P2 and PI(3,4,5)P3 binding. Molecular or pharmacological inhibition of the Plekha7 PH domain prevented the growth of mut-KRas but not wt-KRas cells. Taken together the studies suggest that Plekha7, in addition to maintaining AJ structure plays a role in mut-KRas signaling and phenotype through interaction of its PH domain with membrane mut-KRas, but not wt-KRas, to increase the efficiency of mut-KRas downstream signaling.
Collapse
Affiliation(s)
- Hei-Cheul Jeung
- MD Anderson Cancer Center, Houston, TX, USA; Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-Gu, Seoul, South Korea
| | - Roisin Puentes
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Alexander Aleshin
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Laurie A Bankston
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Fabiana I A L Layng
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | | | - Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Daniela G Duenas
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | | | - Francesca Marassi
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA
| | | | - Garth Powis
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, USA; PHusis Therapeutics, La Jolla, CA, USA.
| |
Collapse
|
13
|
Sluysmans S, Méan I, Xiao T, Boukhatemi A, Ferreira F, Jond L, Mutero A, Chang CJ, Citi S. PLEKHA5, PLEKHA6, and PLEKHA7 bind to PDZD11 to target the Menkes ATPase ATP7A to the cell periphery and regulate copper homeostasis. Mol Biol Cell 2021; 32:ar34. [PMID: 34613798 PMCID: PMC8693958 DOI: 10.1091/mbc.e21-07-0355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Copper homeostasis is crucial for cellular physiology and development, and its dysregulation leads to disease. The Menkes ATPase ATP7A plays a key role in copper efflux, by trafficking from the Golgi to the plasma membrane upon cell exposure to elevated copper, but the mechanisms that target ATP7A to the cell periphery are poorly understood. PDZD11 interacts with the C-terminus of ATP7A, which contains sequences involved in ATP7A trafficking, but the role of PDZD11 in ATP7A localization is unknown. Here we identify PLEKHA5 and PLEKHA6 as new interactors of PDZD11 that bind to the PDZD11 N-terminus through their WW domains similarly to the junctional protein PLEKHA7. Using CRISPR-KO kidney epithelial cells, we show by immunofluorescence microscopy that WW-PLEKHAs (PLEKHA5, PLEKHA6, PLEKHA7) recruit PDZD11 to distinct plasma membrane localizations and that they are required for the efficient anterograde targeting of ATP7A to the cell periphery in elevated copper conditions. Pull-down experiments show that WW-PLEKHAs promote PDZD11 interaction with the C-terminus of ATP7A. However, WW-PLEKHAs and PDZD11 are not necessary for ATP7A Golgi localization in basal copper, ATP7A copper-induced exit from the Golgi, and ATP7A retrograde trafficking to the Golgi. Finally, measuring bioavailable and total cellular copper, metallothionein-1 expression, and cell viability shows that WW-PLEKHAs and PDZD11 are required for maintaining low intracellular copper levels when cells are exposed to elevated copper. These data indicate that WW-PLEKHAs-PDZD11 complexes regulate the localization and function of ATP7A to promote copper extrusion in elevated copper.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Amina Boukhatemi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Flavio Ferreira
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Lionel Jond
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Annick Mutero
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
14
|
Sluysmans S, Méan I, Jond L, Citi S. WW, PH and C-Terminal Domains Cooperate to Direct the Subcellular Localizations of PLEKHA5, PLEKHA6 and PLEKHA7. Front Cell Dev Biol 2021; 9:729444. [PMID: 34568338 PMCID: PMC8458771 DOI: 10.3389/fcell.2021.729444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
PLEKHA5, PLEKHA6, and PLEKHA7 (WW-PLEKHAs) are members of the PLEKHA family of proteins that interact with PDZD11 through their tandem WW domains. WW-PLEKHAs contribute to the trafficking and retention of transmembrane proteins, including nectins, Tspan33, and the copper pump ATP7A, at cell-cell junctions and lateral membranes. However, the structural basis for the distinct subcellular localizations of PLEKHA5, PLEKHA6, and PLEKHA7 is not clear. Here we expressed mutant and chimeric proteins of WW-PLEKHAs in cultured cells to clarify the role of their structural domains in their localization. We found that the WW-mediated interaction between PLEKHA5 and PDZD11 is required for their respective association with cytoplasmic microtubules. The PH domain of PLEKHA5 is required for its localization along the lateral plasma membrane and promotes the lateral localization of PLEKHA7 in a chimeric molecule. Although the PH domain of PLEKHA7 is not required for its localization at the adherens junctions (AJ), it promotes a AJ localization of chimeric proteins. The C-terminal region of PLEKHA6 and PLEKHA7 and the coiled-coil region of PLEKHA7 promote their localization at AJ of epithelial cells. These observations indicate that the localizations of WW-PLEKHAs at specific subcellular sites, where they recruit PDZD11, are the result of multiple cooperative protein-lipid and protein-protein interactions and provide a rational basis for the identification of additional proteins involved in trafficking and sorting of WW-PLEKHAs.
Collapse
Affiliation(s)
| | | | | | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Chen Y, Xie H, Xie T, Yang X, Pang Y, Ye S. Elevated Expression of PDZD11 Is Associated With Poor Prognosis and Immune Infiltrates in Hepatocellular Carcinoma. Front Genet 2021; 12:669928. [PMID: 34093661 PMCID: PMC8176286 DOI: 10.3389/fgene.2021.669928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Epithelial cells are held together by tight and adherent junctions, which are destroyed by the activation of epithelial-to-mesenchymal transition (EMT). The PLEKHA7-PDZD11 complex has been reported to be important for epithelial cell adhesion and connecting tissues. However, there is no research regarding the expression and role of PDZD11 in liver hepatocellular carcinoma (LIHC) progression. Here, we analyzed PDZD11 mRNA expression and its clinical results in LIHC patient RNA sequencing data based on different open databases. Furthermore, we examined differences in PDZD11 expression in LIHC tissues and cell lines using western blotting and real-time qPCR. These results are the first to report that the mRNA and protein levels of PDZD11 are significantly overexpressed in LIHC. Moreover, high expression of PDZD11 was correlated with poor overall survival in patients with LIHC. Gene regulatory network analysis suggested that PDZD11 is mainly involved in copper ion homeostasis, proteasome, and oxidative phosphorylation pathways. Interestingly, we found that PDZD11 levels were positively correlated with the abundance of immune infiltrates. In particular, higher infiltration levels of CD4+ T cells and macrophage subsets significantly affected LIHC patient prognosis. Taken together, these results demonstrate that PDZD11 could be a potential diagnostic and prognostic biomarker in LIHC.
Collapse
Affiliation(s)
- Yao Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haifeng Xie
- Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xunjun Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilin Pang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - SongDao Ye
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
17
|
Rouaud F, Tessaro F, Aimaretti L, Scapozza L, Citi S. Cooperative binding of the tandem WW domains of PLEKHA7 to PDZD11 promotes conformation-dependent interaction with tetraspanin 33. J Biol Chem 2020; 295:9299-9312. [PMID: 32371390 PMCID: PMC7363125 DOI: 10.1074/jbc.ra120.012987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Indexed: 01/11/2023] Open
Abstract
Pleckstrin homology domain–containing A7 (PLEKHA7) is a cytoplasmic protein at adherens junctions that has been implicated in hypertension, glaucoma, and responses to Staphylococcus aureus α-toxin. Complex formation between PLEKHA7, PDZ domain–containing 11 (PDZD11), tetraspanin 33, and the α-toxin receptor ADAM metallopeptidase domain 10 (ADAM10) promotes junctional clustering of ADAM10 and α-toxin–mediated pore formation. However, how the N-terminal region of PDZD11 interacts with the N-terminal tandem WW domains of PLEKHA7 and how this interaction promotes tetraspanin 33 binding to the WW1 domain is unclear. Here, we used site-directed mutagenesis, glutathione S-transferase pulldown experiments, immunofluorescence, molecular modeling, and docking experiments to characterize the mechanisms driving these interactions. We found that Asp-30 of WW1 and His-75 of WW2 interact through a hydrogen bond and, together with Thr-35 of WW1, form a binding pocket that accommodates a polyproline stretch within the N-terminal PDZD11 region. By strengthening the interactions of the ternary complex, the WW2 domain stabilized the WW1 domain and cooperatively promoted the interaction with PDZD11. Modeling results indicated that, in turn, PDZD11 binding induces a conformational rearrangement, which strengthens the ternary complex, and contributes to enlarging a “hydrophobic hot spot” region on the WW1 domain. The last two lipophilic residues of tetraspanin 33, Trp-283 and Tyr-282, were required for its interaction with PLEKHA7. Docking of the tetraspanin 33 C terminus revealed that it fits into the hydrophobic hot spot region of the accessible surface of WW1. We conclude that communication between the two tandem WW domains of PLEKHA7 and the PLEKHA7–PDZD11 interaction modulate the ligand-binding properties of PLEKHA7.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.,The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Francesca Tessaro
- The Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Laura Aimaretti
- The Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- The Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland .,The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Robakis TK, Zhang S, Rasgon NL, Li T, Wang T, Roth MC, Humphreys KL, Gotlib IH, Ho M, Khechaduri A, Watson K, Roat-Shumway S, Budhan VV, Davis KN, Crowe SD, Ellie Williams K, Urban AE. Epigenetic signatures of attachment insecurity and childhood adversity provide evidence for role transition in the pathogenesis of perinatal depression. Transl Psychiatry 2020; 10:48. [PMID: 32066670 PMCID: PMC7026105 DOI: 10.1038/s41398-020-0703-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/05/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
Early life adversity and insecure attachment style are known risk factors for perinatal depression. The biological pathways linking these experiences, however, have not yet been elucidated. We hypothesized that overlap in patterns of DNA methylation in association with each of these phenomena could identify genes and pathways of importance. Specifically, we wished to distinguish between allostatic-load and role-transition hypotheses of perinatal depression. We conducted a large-scale analysis of methylation patterns across 5 × 106 individual CG dinucleotides in 54 women participating in a longitudinal prospective study of perinatal depression, using clustering-based criteria for significance to control for multiple comparisons. We identified 1580 regions in which methylation density was associated with childhood adversity, 3 in which methylation density was associated with insecure attachment style, and 6 in which methylation density was associated with perinatal depression. Shorter telomeres were observed in association with childhood trauma but not with perinatal depression or attachment insecurity. A detailed analysis of methylation density in the oxytocin receptor gene revealed similar patterns of DNA methylation in association with perinatal depression and with insecure attachment style, while childhood trauma was associated with a distinct methylation pattern in this gene. Clinically, attachment style was strongly associated with depression only in pregnancy and the early postpartum, whereas the association of childhood adversity with depression was time-invariant. We concluded that the broad DNA methylation signature and reduced telomere length associated with childhood adversity could indicate increased allostatic load across multiple body systems, whereas perinatal depression and attachment insecurity may be narrower phenotypes with more limited DNA methylation signatures outside the CNS, and no apparent association with telomere length or, by extension, allostatic load. In contrast, the finding of matching DNA methylation patterns within the oxytocin receptor gene for perinatal depression and attachment insecurity is consistent with the theory that the perinatal period is a time of activation of existing attachment schemas for the purpose of structuring the mother-child relationship, and that such activation may occur in part through specific patterns of methylation of the oxytocin receptor gene.
Collapse
Affiliation(s)
- Thalia K Robakis
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA.
| | - Siming Zhang
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
- Stanford University Department of Genetics, Stanford, CA, USA
| | - Natalie L Rasgon
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | | | - Tao Wang
- AccuraScience, LLC, Johnston, IN, USA
| | - Marissa C Roth
- Vanderbilt University Department of Psychology, Nashville, TN, USA
| | | | - Ian H Gotlib
- Stanford University Department of Psychology, Stanford, CA, USA
| | - Marcus Ho
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | | | - Katherine Watson
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Siena Roat-Shumway
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Vena V Budhan
- Palo Alto University Graduate School of Psychology, Palo Alto, CA, USA
| | - Kasey N Davis
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Susan D Crowe
- Stanford University Department of Obstetrics & Gynecology, Stanford, CA, USA
| | | | - Alexander E Urban
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA.
- Stanford University Department of Genetics, Stanford, CA, USA.
| |
Collapse
|
19
|
Huang SC, Liang JY, Vu LV, Yu FH, Ou AC, Ou JP, Zhang HS, Burnett KM, Benz EJ. Epithelial-specific isoforms of protein 4.1R promote adherens junction assembly in maturing epithelia. J Biol Chem 2020; 295:191-211. [PMID: 31776189 PMCID: PMC6952607 DOI: 10.1074/jbc.ra119.009650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial adherens junctions (AJs) and tight junctions (TJs) undergo disassembly and reassembly during morphogenesis and pathological states. The membrane-cytoskeleton interface plays a crucial role in junctional reorganization. Protein 4.1R (4.1R), expressed as a diverse array of spliceoforms, has been implicated in linking the AJ and TJ complex to the cytoskeleton. However, which specific 4.1 isoform(s) participate and the mechanisms involved in junctional stability or remodeling remain unclear. We now describe a role for epithelial-specific isoforms containing exon 17b and excluding exon 16 4.1R (4.1R+17b) in AJs. 4.1R+17b is exclusively co-localized with the AJs. 4.1R+17b binds to the armadillo repeats 1-2 of β-catenin via its membrane-binding domain. This complex is linked to the actin cytoskeleton via a bispecific interaction with an exon 17b-encoded peptide. Exon 17b peptides also promote fodrin-actin complex formation. Expression of 4.1R+17b forms does not disrupt the junctional cytoskeleton and AJs during the steady-state or calcium-dependent AJ reassembly. Overexpression of 4.1R-17b forms, which displace the endogenous 4.1R+17b forms at the AJs, as well as depletion of the 4.1R+17b forms both decrease junctional actin and attenuate the recruitment of spectrin to the AJs and also reduce E-cadherin during the initial junctional formation of the AJ reassembly process. Expressing 4.1R+17b forms in depleted cells rescues junctional localization of actin, spectrin, and E-cadherin assembly at the AJs. Together, our results identify a critical role for 4.1R+17b forms in AJ assembly and offer additional insights into the spectrin-actin-4.1R-based membrane skeleton as an emerging regulator of epithelial integrity and remodeling.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
| | - Jia Y Liang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Alexander C Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Jennie Park Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Kimberly M Burnett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Shah J, Rouaud F, Guerrera D, Vasileva E, Popov LM, Kelley WL, Rubinstein E, Carette JE, Amieva MR, Citi S. A Dock-and-Lock Mechanism Clusters ADAM10 at Cell-Cell Junctions to Promote α-Toxin Cytotoxicity. Cell Rep 2019; 25:2132-2147.e7. [PMID: 30463011 DOI: 10.1016/j.celrep.2018.10.088] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
We previously identified PLEKHA7 and other junctional proteins as host factors mediating death by S. aureus α-toxin, but the mechanism through which junctions promote toxicity was unclear. Using cell biological and biochemical methods, we now show that ADAM10 is docked to junctions by its transmembrane partner Tspan33, whose cytoplasmic C terminus binds to the WW domain of PLEKHA7 in the presence of PDZD11. ADAM10 is locked at junctions through binding of its cytoplasmic C terminus to afadin. Junctionally clustered ADAM10 supports the efficient formation of stable toxin pores. Instead, disruption of the PLEKHA7-PDZD11 complex inhibits ADAM10 and toxin junctional clustering. This promotes toxin pore removal from the cell surface through an actin- and macropinocytosis-dependent process, resulting in cell recovery from initial injury and survival. These results uncover a dock-and-lock molecular mechanism to target ADAM10 to junctions and provide a paradigm for how junctions regulate transmembrane receptors through their clustering.
Collapse
Affiliation(s)
- Jimit Shah
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Diego Guerrera
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Lauren M Popov
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William L Kelley
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211-4 Geneva, Switzerland
| | - Eric Rubinstein
- INSERM, Université Paris-Sud, UMRS_935, 94807 Villejuif Cedex, France
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland.
| |
Collapse
|
21
|
Han L, Tang Y, Li S, Wu Y, Chen X, Wu Q, Hong K, Li J. Protective mechanism of SIRT1 on Hcy-induced atrial fibrosis mediated by TRPC3. J Cell Mol Med 2019; 24:488-510. [PMID: 31680473 PMCID: PMC6933351 DOI: 10.1111/jcmm.14757] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
High plasma levels of homocysteine (Hcy) are regarded as a risk factor for atrial fibrillation (AF), which is closely associated with the pathological consequence of atrial fibrosis and can lead to heart failure with a high mortality rate; here, we show that atrial fibrosis is mediated by the relationship between canonical transient receptor potential 3 (TRPC3) channels and sirtuin type 1 (SIRT1) under the stimulation of Hcy. The left atrial appendage was obtained from patients with either sinus rhythm (SR) or AF and used to evaluate the relationship between the concentration of Hcy and a potential mechanism of cardiac fibrosis mediated by TRPC3 and SIRT1. We next performed transverse aortic constriction (TAC) in mouse to investigate the relationship. The mechanisms underlying atrial fibrosis involving TRPC3 and SIRT1 proteins were explored by co‐IP, BLI and lentivirus transfection experiments. qPCR and WB were performed to analyse gene and protein expression, respectively. The higher level of atrial fibrosis was observed in the HH mouse group with a high Hcy diet. Such results suggest that AF patients may be more susceptible to atrial fibrosis and possess a high probability of progressing to hyperhomocysteinemia. Moreover, our findings are consistent with the hypothesis that TRPC3 channel up‐regulation leads to abnormal accumulation of collagen, with the down‐regulation of SIRT1 as an aetiological factor of high Hcy, which in turn predisposes to atrial fibrosis and strongly enhances the possibility of AF.
Collapse
Affiliation(s)
- Lu Han
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanhua Tang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaochuan Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoshu Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Abstract
The cytoskeleton is crucially important for the assembly of cell-cell junctions and the homeostatic regulation of their functions. Junctional proteins act, in turn, as anchors for cytoskeletal filaments, and as regulators of cytoskeletal dynamics and signalling proteins. The cross-talk between junctions and the cytoskeleton is critical for the morphogenesis and physiology of epithelial and other tissues, but is not completely understood. Microtubules are implicated in the delivery of junctional proteins to cell-cell contact sites, in the differentiation and spatial organization of the cytoplasm, and in the stabilization of the barrier and adhesive functions of junctions. Here we focus on the relationships between microtubules and junctions of vertebrate epithelial cells. We highlight recent discoveries on the molecular underpinnings of microtubule-junction interactions, and report new data about the interaction of cingulin and paracingulin with microtubules. We also propose a possible new role of junctions as “molecular sinks” for microtubule-associated signalling proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| | - Sandra Citi
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| |
Collapse
|
23
|
Lee MC, Shei W, Chan AS, Chua BT, Goh SR, Chong YF, Hilmy MH, Nongpiur ME, Baskaran M, Khor CC, Aung T, Hunziker W, Vithana EN. Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function. Hum Mol Genet 2018; 26:4011-4027. [PMID: 29016860 DOI: 10.1093/hmg/ddx292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
PLEKHA7, a gene recently associated with primary angle closure glaucoma (PACG), encodes an apical junctional protein expressed in components of the blood aqueous barrier (BAB). We found that PLEKHA7 is down-regulated in lens epithelial cells and in iris tissue of PACG patients. PLEKHA7 expression also correlated with the C risk allele of the sentinel SNP rs11024102 with the risk allele carrier groups having significantly reduced PLEKHA7 levels compared to non-risk allele carriers. Silencing of PLEKHA7 in human immortalized non-pigmented ciliary epithelium (h-iNPCE) and primary trabecular meshwork cells, which are intimately linked to BAB and aqueous humor outflow respectively, affected actin cytoskeleton organization. PLEKHA7 specifically interacts with GTP-bound Rac1 and Cdc42, but not RhoA, and the activation status of the two small GTPases is linked to PLEKHA7 expression levels. PLEKHA7 stimulates Rac1 and Cdc42 GTP hydrolysis, without affecting nucleotide exchange, identifying PLEKHA7 as a novel Rac1/Cdc42 GAP. Consistent with the regulatory role of Rac1 and Cdc42 in maintaining the tight junction permeability, silencing of PLEKHA7 compromises the paracellular barrier between h-iNPCE cells. Thus, downregulation of PLEKHA7 in PACG may affect BAB integrity and aqueous humor outflow via its Rac1/Cdc42 GAP activity, thereby contributing to disease etiology.
Collapse
Affiliation(s)
- Mei-Chin Lee
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - William Shei
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Anita S Chan
- The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Glaucoma, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Boon-Tin Chua
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Shuang-Ru Goh
- The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yaan-Fun Chong
- The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Maryam H Hilmy
- Department of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Monisha E Nongpiur
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Mani Baskaran
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Glaucoma, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Chiea-Chuen Khor
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,Department of Human Genetics, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore.,Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Tin Aung
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Glaucoma, Singapore National Eye Centre, Singapore 168751, Singapore.,Department of Ophthalmology, National University of Singapore, Singapore 119228, Singapore
| | - Walter Hunziker
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore.,Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Eranga N Vithana
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Ophthalmology, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
24
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
25
|
Vasileva E, Sluysmans S, Bochaton-Piallat ML, Citi S. Cell-specific diversity in the expression and organization of cytoplasmic plaque proteins of apical junctions. Ann N Y Acad Sci 2017; 1405:160-176. [PMID: 28617990 DOI: 10.1111/nyas.13391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/11/2023]
Abstract
Tight and adherens junctions play critical roles in the barrier, adhesion, and signaling functions of epithelial and endothelial cells. How the molecular organization of these junctions is tuned to the widely diverse physiological requirements of each tissue type is not well understood. Here, we address this question by examining the expression, localization, and interactions of major cytoplasmic plaque proteins of tight and adherens junctions in different cultured epithelial and endothelial cell lines. Immunoblotting and immunofluorescence analyses show that the expression profiles of cingulin, paracingulin, ZO-1, ZO-2, ZO-3, PLEKHA7, afadin, PDZD11, p120-catenin, and α-catenin, as well as the transmembrane junctional proteins occludin, E-cadherin, and VE-cadherin, are significantly diverse when comparing kidney cells (MDCK, mCCD), keratinocytes (HaCaT), lung carcinoma (A427, A549), and endothelium-derived cells (bEnd.3, meEC, H5V). Proximity ligation and co-immunoprecipitation assays show that PLEKHA7 and PDZD11 are significantly more associated with the tight junction proteins cingulin and ZO-1 in aortic endothelium-derived (meEC) cells but not kidney collecting duct epithelial (mCCD) cells. These results provide evidence that the cytoplasmic plaques of tight and adherens junctions are diverse in their composition and molecular architecture and establish a conceptual framework by which we can rationally address the mechanisms of tissue-dependent junction physiology and signaling by cytoplasmic junctional proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | | | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
26
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Shah J, Guerrera D, Vasileva E, Sluysmans S, Bertels E, Citi S. PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling. Int J Biochem Cell Biol 2016; 75:112-6. [PMID: 27072621 DOI: 10.1016/j.biocel.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
PLEKHA7 is a recently characterized component of the cytoplasmic region of epithelial adherens junctions (AJ). It comprises two WW domains, a pleckstrin-homology domain, and proline-rich and coiled-coil domains. PLEKHA7 interacts with cytoplasmic components of the AJ (p120-catenin, paracingulin, afadin), stabilizes the E-cadherin complex by linking it to the minus ends of noncentrosomal microtubules, and stabilizes junctional nectins through the newly identified interactor PDZD11. Similarly to afadin, and unlike E-cadherin and p120-catenin, the localization of PLEKHA7 at AJ is strictly zonular (in the zonula adhaerens subdomain of AJ), and does not extend along the basolateral contacts. Genome-wide association studies and experiments on animal and cellular models show that although PLEKHA7 is not required for organism viability, it is implicated in cardiovascular physiology, hypertension, primary angle closure glaucoma, susceptibility to staphylococcal α-toxin, and epithelial morphogenesis and growth. Thus, PLEKHA7 is a cytoskeletal adaptor protein important for AJ organization, and at the center of junction-associated signaling pathways which fine-tune important pathophysiological processes.
Collapse
Affiliation(s)
- Jimit Shah
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Diego Guerrera
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sophie Sluysmans
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Eva Bertels
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, University of Geneva, Geneva, Switzerland; The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|