1
|
Ogunlusi O, Ghosh A, Sarkar M, Carter K, Davuluri H, Chakraborty M, Eckel-Mahan K, Keene A, Menet JS, Bell-Pedersen D, Sarkar TR. Rhythm is essential: Unraveling the relation between the circadian clock and cancer. Crit Rev Oncol Hematol 2025; 208:104632. [PMID: 39864535 DOI: 10.1016/j.critrevonc.2025.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Physiological processes such as the sleep-wake cycle, metabolism, hormone secretion, neurotransmitter release, sensory capabilities, and a variety of behaviors, including sleep, are controlled by a circadian rhythm adapted to 24-hour day-night periodicity. Disruption of circadian rhythm may lead to the risks of numerous diseases, including cancers. Several epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer. On the contrary, oncogenic processes may suppress the homeostatic balance imposed by the circadian clock. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, and the pharmacological modulation of core clock genes is a new approach in cancer therapy. This review highlights the role of the circadian clock in tumorigenesis, how clock disruption alters the tumor microenvironment, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.
Collapse
Affiliation(s)
| | - Abantika Ghosh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kayla Carter
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Harshini Davuluri
- The Master of Biotechnology Program, Texas A&M University, College Station, TX, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, The University of Texas Health Science Centre, Houston, TX, USA
| | - Alex Keene
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Jerome S Menet
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Deborah Bell-Pedersen
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA.
| |
Collapse
|
2
|
Zhang Y, Zhang Q, Liu R, Zhang D, Hu G, Chen X. Circadian disruption in cancer and regulation of cancer stem cells by circadian clock genes: An updated review. Cancer Lett 2024; 611:217391. [PMID: 39672457 DOI: 10.1016/j.canlet.2024.217391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Circadian rhythm, regulated by a time keeping system termed as the circadian clock, is important for many biological processes in eukaryotes. Disordered circadian rhythm is implicated in different human diseases, including cardiovascular disease, neurologic disease, metabolic disorders, and cancer. The stem like-cancer cells (or cancer stem cells, CSCs) are proposed to stand at the top of the heterogeneous hierarchy in different solid tumors, which are responsible for tumor initiation, development, therapy resistance and metastasis. Emerging evidence has shown that circadian clock genes potentially regulate the stemness and features of CSCs in several malignant systems, including leukemia, glioblastoma, breast cancer, colorectal cancer and prostate cancer. The chronotherapies targeting CSCs are therefore of therapeutic potentials in treating malignancies. In this review, we have summarized our current knowledge of circadian clock gene regulation in normal stem/progenitor cells. Moreover, we have provided evidence linking dysregulations of circadian clock genes and cancer development. Importantly, we have listed the potential mechanisms underlying circadian clock gene regulation of CSCs. Finally, we have offered the current attempts of chronotherapy targeting CSCs. Elucidating the molecular regulation of circadian clock gene in CSCs will provide us a novel direction for the development of therapeutics to target CSCs.
Collapse
Affiliation(s)
- Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rundong Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingxiao Zhang
- Provincial Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Li F, Guo L, Zhou M, Han L, Wu S, Wu L, Yang J. Cryptochrome 2 Suppresses Epithelial-Mesenchymal Transition by Promoting Trophoblastic Ferroptosis in Unexplained Recurrent Spontaneous Abortion. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1197-1217. [PMID: 38537935 DOI: 10.1016/j.ajpath.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is a serious reproductive issue that affects women of childbearing age. Studies have shown a close association between disrupted circadian rhythm and impaired epithelial-mesenchymal transition (EMT) in trophoblasts during URSA, although the underlying mechanism is not known. The current study investigated the regulatory relationship between circadian rhythm gene cryptochrome 2 (CRY2) and ferroptosis on the migratory ability of trophoblast cells. Cell proliferation experiments, wound-healing assays, and expression of related markers were conducted to study EMT. Trophoblastic ferroptosis was confirmed by the expressions of malondialdehyde, glutathione, mitochondrial membrane potential, divalent iron ions, and related genes. The results showed significant increased expression of CRY2 and decreased expression of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) in the URSA villous tissues, accompanied by iron-dependent oxidative changes and abnormal expression of ferroptosis-related proteins. CRY2 and BMAL1 were co-localized and functioned as a feedback loop, which regulated the dynamic changes of EMT-related markers in trophoblast cells. CRY2 promoted trophoblastic ferroptosis, whereas BMAL1 had the opposite effect. Particularly, the ferroptosis inhibitor (ferrostatin-1) effectively reversed the trophoblastic ferroptosis and EMT inhibition caused by CRY2 overexpression. Collectively, these results suggest that CRY2 regulates trophoblastic ferroptosis and hinders cellular EMT and migratory ability by suppressing BMAL1 expression.
Collapse
Affiliation(s)
- Faminzi Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lu Han
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Shujuan Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lianzhi Wu
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| |
Collapse
|
4
|
Nadimpalli HP, Katsioudi G, Arpa ES, Chikhaoui L, Arpat AB, Liechti A, Palais G, Tessmer C, Hofmann I, Galy B, Gatfield D. Diurnal control of iron responsive element containing mRNAs through iron regulatory proteins IRP1 and IRP2 is mediated by feeding rhythms. Genome Biol 2024; 25:128. [PMID: 38773499 PMCID: PMC11106963 DOI: 10.1186/s13059-024-03270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.
Collapse
Affiliation(s)
| | - Georgia Katsioudi
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Enes Salih Arpa
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Lies Chikhaoui
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Gaël Palais
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Claudia Tessmer
- German Cancer Research Center (DKFZ), Core Facility Antibodies, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Ilse Hofmann
- German Cancer Research Center (DKFZ), Core Facility Antibodies, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
5
|
Sun C, Zhang H, Li Y, Yu Y, Liu J, Liu R, Sun C. Elucidation of clinical implications Arising from circadian rhythm and insights into the tumor immune landscape in breast cancer. Heliyon 2024; 10:e27356. [PMID: 38500978 PMCID: PMC10945177 DOI: 10.1016/j.heliyon.2024.e27356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Background Circadian rhythm is an internal timing system generated by circadian-related genes (CRGs). Disruption in this rhythm has been associated with a heightened risk of breast cancer (BC) and regulation of the immune microenvironment of tumors. This study aimed to investigate the clinical significance of CRGs in BC and the immune microenvironment. Methods CRGs were identified using the GeneCards and MSigDB databases. Through unsupervised clustering, we identified two circadian-related subtypes in patients with BC. We constructed a prognostic model and nomogram for circadian-related risk scores using LASSO and Cox regression analyses. Using multi-omics analysis, the mutation profile and immunological microenvironment of tumors were investigated, and the immunotherapy response in different groups of patients was predicted based on their risk strata. Results The two circadian-related subtypes of BC that were identified differed significantly in their prognoses, clinical characteristics, and tumor immune microenvironments. Subsequently, we constructed a circadian-related risk score (CRRS) model containing eight signatures (SIAH2, EZR, GSN, TAGLN2, PRDX1, MCM4, EIF4EBP1, and CD248) and a nomogram. High-risk individuals had a greater burden of tumor mutations, richer immune cell infiltration, and higher expression of immune checkpoint genes, than low-risk individuals, indicating a "hot tumor" immune phenotype and a more favorable treatment outcome. Conclusions Two circadian-related subtypes of BC were identified and used to establish a CRRS prognostic model and nomogram. These will be valuable in providing guidance for forecasting prognosis and developing personalized treatment plans for BC.
Collapse
Affiliation(s)
- Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, China
| | - Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Yang Yu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053 Shandong, China
| |
Collapse
|
6
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
7
|
Ohdo S, Koyanagi S, Matsunaga N. Implications of biological clocks in pharmacology and pharmacokinetics of antitumor drugs. J Control Release 2023; 364:490-507. [PMID: 37918485 DOI: 10.1016/j.jconrel.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Mammalians' circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN). SCN control biological rhythms such as the sleep-wake rhythm and homeostatic functions of steroid hormones and their receptors. Alterations in these biological rhythms are implicated in the outcomes of pathogenic conditions such as depression, diabetes, and cancer. Chronotherapy is about optimizing treatment to combat risks and intensity of the disease symptoms that vary depending on the time of day. Thus, conditions/diseases such as allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease, prone to manifest severe symptoms depending on the time of day, would be benefited from chronotherapy. Monitoring rhythm, overcoming rhythm disruption, and manipulating the rhythms from the viewpoints of underlying molecular clocks are essential to enhanced chronopharmacotherapy. New drugs focused on molecular clocks are being developed to improve therapeutics. In this review, we provide a critical summary of literature reports concerning (a) the rationale/mechanisms for time-dependent dosing differences in therapeutic outcomes and safety of antitumor drugs, (b) the molecular pathways underlying biological rhythms, and (c) the possibility of pharmacotherapy based on the intra- and inter-individual variabilities from the viewpoints of the clock genes.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| | - Satoru Koyanagi
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Huang Q, Tian H, Tian L, Zhao X, Li L, Zhang Y, Qiu Z, Lei S, Xia Z. Inhibiting Rev-erbα-mediated ferroptosis alleviates susceptibility to myocardial ischemia-reperfusion injury in type 2 diabetes. Free Radic Biol Med 2023; 209:135-150. [PMID: 37805047 DOI: 10.1016/j.freeradbiomed.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Hao Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Lu Li
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Yuxi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
9
|
Zhu H, Chen J, Wen Z, Li J, Yu Q, Liao W, Luo X. The role of circadian clock genes in colorectal carcinoma: Novel insights into regulatory mechanism and implications in clinical therapy. Life Sci 2023; 333:122145. [PMID: 37797685 DOI: 10.1016/j.lfs.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Colorectal cancer (CRC) is a lethal malignancy with limited treatment strategies. Accumulating evidence indicates that CRC tumorigenesis, progression and metastasis are intimately associated with circadian clock, an inherent 24-h cycle oscillation of biochemical, physiological functions in almost every eukaryote. In the present review, we summarize the altered expression level of circadian genes in CRC and the prognosis associated with gene abundance switch. We illustrate the function and potential mechanisms of circadian genes in CRC pathogenesis and progression. Moreover, circadian based-therapeutic strategies including chronotherapy, therapeutics targeting potential circadian components, and melatonin treatment in CRC are also highlighted.
Collapse
Affiliation(s)
- Haodong Zhu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Jiawei Chen
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Jinfei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Qinyang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, PR China.
| |
Collapse
|
10
|
Zhao Y, Zhang R, Chen Z, Wang Z, Guan S, Lu J. Protective effect of brain and muscle arnt-like protein-1 against ethanol-induced ferroptosis by activating Nrf2 in mice liver and HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Liu Y, Wang Z, Hao H, Wang Y, Hua L. Insight into immune checkpoint inhibitor therapy for colorectal cancer from the perspective of circadian clocks. Immunology 2023; 170:13-27. [PMID: 37114514 DOI: 10.1111/imm.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours and the third most common cause of cancer deaths worldwide, with high morbidity and mortality. Circadian clocks are widespread in humans and temporally regulate physiologic functions to maintain homeostasis. Recent studies showed that circadian components were strong regulators of the tumour immune microenvironment (TIME) and the immunogenicity of CRC cells. Therefore, insight into immunotherapy from the perspective of circadian clocks can be promising. Although immunotherapy, especially immune checkpoint inhibitor (ICI) treatment, has been a milestone in cancer treatment, greater accuracy is still needed for selecting patients who will respond positively to immunotherapy with minimal side effects. In addition, there were few reviews focusing on the role of the circadian components in the TIME and the immunogenicity of CRC cells. Therefore, this review highlights the crosstalk between the TIME in CRC and the immunogenicity of CRC cells based on the circadian clocks. With the goal to achieve the possibility that patients with CRC can benefit most from the ICI treatment, we provide potential evidence and a novel idea for building a predictive framework combined with circadian factors, searching for enhancers of ICIs targeting circadian components and clinically implementing the timing of ICI treatment for patients with CRC.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zeqin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hankun Hao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaping Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Luchun Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chen M, Lin Y, Dang Y, Xiao Y, Zhang F, Sun G, Jiang X, Zhang L, Du J, Duan S, Zhang X, Qin Z, Yang J, Liu K, Wu B. Reprogramming of rhythmic liver metabolism by intestinal clock. J Hepatol 2023; 79:741-757. [PMID: 37230230 DOI: 10.1016/j.jhep.2023.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Temporal oscillations in intestinal nutrient processing and absorption are coordinated by the local clock, which leads to the hypothesis that the intestinal clock has major impacts on shaping peripheral rhythms via diurnal nutritional signals. Here, we investigate the role of the intestinal clock in controlling liver rhythmicity and metabolism. METHODS Transcriptomic analysis, metabolomics, metabolic assays, histology, quantitative (q)PCR, and immunoblotting were performed with Bmal1-intestine-specific knockout (iKO), Rev-erba-iKO, and control mice. RESULTS Bmal1 iKO caused large-scale reprogramming of the rhythmic transcriptome of mouse liver with a limited effect on its clock. In the absence of intestinal Bmal1, the liver clock was resistant to entrainment by inverted feeding and a high-fat diet. Importantly, Bmal1 iKO remodelled diurnal hepatic metabolism by shifting to gluconeogenesis from lipogenesis during the dark phase, leading to elevated glucose production (hyperglycaemia) and insulin insensitivity. Conversely, Rev-erba iKO caused a diversion to lipogenesis from gluconeogenesis during the light phase, resulting in enhanced lipogenesis and an increased susceptibility to alcohol-related liver injury. These temporal diversions were attributed to disruption of hepatic SREBP-1c rhythmicity, which was maintained via gut-derived polyunsaturated fatty acids produced by intestinal FADS1/2 under the control of a local clock. CONCLUSIONS Our findings establish a pivotal role for the intestinal clock in dictating liver rhythmicity and diurnal metabolism, and suggest targeting intestinal rhythms as a new avenue for improving metabolic health. IMPACT AND IMPLICATIONS Our findings establish the centrality of the intestinal clock among peripheral tissue clocks, and associate liver-related pathologies with its malfunction. Clock modifiers in the intestine are shown to modulate liver metabolism with improved metabolic parameters. Such knowledge will help clinicians improve the diagnosis and treatment of metabolic diseases by incorporating intestinal circadian factors.
Collapse
Affiliation(s)
- Min Chen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongkang Dang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Sun
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejun Jiang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhao Du
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuyi Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Mineiro R, Albuquerque T, Neves AR, Santos CRA, Costa D, Quintela T. The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers. Int J Mol Sci 2023; 24:12541. [PMID: 37628722 PMCID: PMC10454916 DOI: 10.3390/ijms241612541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
For brain protection, the blood-brain barrier and blood-cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood-brain barrier and in the blood-cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
14
|
Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis 2023; 14:186. [PMID: 36882414 PMCID: PMC9992652 DOI: 10.1038/s41419-023-05708-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.
Collapse
|
15
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
16
|
Feng G, Zhao J, Peng J, Luo B, Zhang J, Chen L, Xu Z. Circadian clock—A promising scientific target in oral science. Front Physiol 2022; 13:1031519. [PMCID: PMC9708896 DOI: 10.3389/fphys.2022.1031519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The oral and maxillofacial organs play vital roles in chewing, maintaining facial beauty, and speaking. Almost all physiological processes display circadian rhythms that are driven by the circadian clock, allowing organisms to adapt to the changing environment. In recent years, increasing evidence has shown that the circadian clock system participates in oral and maxillofacial physiological and pathological processes, such as jaw and tooth development, salivary gland function, craniofacial malformations, oral carcinoma and other diseases. However, the roles of the circadian clock in oral science have not yet been comprehensively reviewed. Therefore, This paper provides a systematic and integrated perspective on the function of the circadian clock in the fields of oral science, reviews recent advances in terms of the circadian clock in oral and maxillofacial development and disease, dialectically analyzes the importance of the circadian clock system and circadian rhythm to the activities of oral and maxillofacial tissues, and focuses on analyzing the mechanism of the circadian clock in the maintenance of oral health, affecting the common diseases of the oral and maxillofacial region and the process of oral-related systemic diseases, sums up the chronotherapy and preventive measures for oral-related diseases based on changes in tissue activity circadian rhythms, meanwhile, comes up with a new viewpoint to promote oral health and human health.
Collapse
Affiliation(s)
- Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| |
Collapse
|
17
|
Tsuruta A, Shiiba Y, Matsunaga N, Fujimoto M, Yoshida Y, Koyanagi S, Ohdo S. Diurnal Expression of PD-1 on Tumor-Associated Macrophages Underlies the Dosing Time-Dependent Antitumor Effects of the PD-1/PD-L1 Inhibitor BMS-1 in B16/BL6 Melanoma-Bearing Mice. Mol Cancer Res 2022; 20:972-982. [PMID: 35190830 PMCID: PMC9381128 DOI: 10.1158/1541-7786.mcr-21-0786] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023]
Abstract
Cancer cells have acquired several pathways to escape from host immunity in the tumor microenvironment. Programmed death 1 (PD-1) receptor and its ligand PD-L1 are involved in the key pathway of tumor immune escape, and immune checkpoint therapy targeting PD-1 and PD-L1 has been approved for the treatment of patients with certain types of malignancies. Although PD-1 is a well-characterized receptor on T cells, the immune checkpoint receptor is also expressed on tumor-associated macrophages (TAM), a major immune component of the tumor microenvironment. In this study, we found significant diurnal oscillation in the number of PD-1-expressing TAMs collected from B16/BL6 melanoma-bearing mice. The levels of Pdcd1 mRNA, encoding PD-1, in TAMs also fluctuated in a diurnal manner. Luciferase reporter and bioluminescence imaging analyses revealed that a NF-κB response element in the upstream region of the Pdcd1 gene is responsible for its diurnal expression. A circadian regulatory component, DEC2, whose expression in TAMs exhibited diurnal oscillation, periodically suppressed NF-κB-induced transactivation of the Pdcd1 gene, resulting in diurnal expression of PD-1 in TAMs. Furthermore, the antitumor efficacy of BMS-1, a small molecule inhibitor of PD-1/PD-L1, was enhanced by administering it at the time of day when PD-1 expression increased on TAMs. These findings suggest that identification of the diurnal expression of PD-1 on TAMs is useful for selecting the most appropriate time of day to administer PD-1/PD-L1 inhibitors. IMPLICATIONS Selecting the most appropriate dosing time of PD-1/PD-L1 inhibitors may aid in developing cancer immunotherapy with higher efficacy.
Collapse
Affiliation(s)
- Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Yuki Shiiba
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Marina Fujimoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Yoshida
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Corresponding Author: Shigehiro Ohdo, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8512, Japan. E-mail:
| |
Collapse
|
18
|
Ogata S, Ito S, Masuda T, Ohtsuki S. Diurnal Changes in Protein Expression at the Blood-Brain Barrier in Mice. Biol Pharm Bull 2022; 45:751-756. [PMID: 35650102 DOI: 10.1248/bpb.b22-00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circadian rhythms influence the transport function of the blood-brain barrier (BBB) and peripheral organs. However, the influence of circadian rhythms on protein expression in the BBB remains to be completely elucidated. Therefore, we aimed to investigate diurnal changes in protein expression in the mouse BBB using quantitative proteomics. Quantitative proteomics showed that the expression of 67, 10, and 20 proteins in the isolated mouse brain capillary fraction changed significantly at zeitgeber time (ZT) 6, 12, and 18, respectively, compared to ZT0. Among them, the levels of 44 proteins were significantly increased at ZT6 and then returned to the same level as ZT0 at ZT12 and ZT18. Gene ontology analysis indicated that the proteins significantly increased at ZT6 were majorly related to translation. The brain capillary endothelial cell-selective proteins sepiapterin reductase and vascular endothelial growth factor receptor 2 showed diurnal variation. In contrast, the expression of ABC transporters, SLC transporters, and receptors associated with receptor-mediated transcytosis, and tight junction proteins did not change within a day. The present findings demonstrated that protein expression related to transport function and physical barrier at the BBB was maintained throughout the day, although the proteins involved in some biological processes exhibited diurnal variation at the BBB.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
19
|
Malik A, Nalluri S, De A, Beligala D, Geusz ME. The Relevance of Circadian Clocks to Stem Cell Differentiation and Cancer Progression. NEUROSCI 2022; 3:146-165. [PMID: 39483369 PMCID: PMC11523739 DOI: 10.3390/neurosci3020012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2024] Open
Abstract
The molecular mechanism of circadian clocks depends on transcription-translation feedback loops (TTFLs) that have known effects on key cellular processes. However, the distinct role of circadian TTFLs in mammalian stem cells and other less differentiated cells remains poorly understood. Neural stem cells (NSCs) of the brain generate neurons and glia postnatally but also may become cancer stem cells (CSCs), particularly in astrocytomas. Evidence indicates clock TTFL impairment is needed for tumor growth and progression; although, this issue has been examined primarily in more differentiated cancer cells rather than CSCs. Similarly, few studies have examined circadian rhythms in NSCs. After decades of research, it is now well recognized that tumors consist of CSCs and a range of other cancer cells along with noncancerous stromal cells. The circadian properties of these many contributors to tumor properties and treatment outcome are being widely explored. New molecular tools and ones in development will likely enable greater discrimination of important circadian and non-circadian cells within malignancies at multiple stages of cancer progression and following therapy. Here, we focus on adult NSCs and glioma CSCs to address how cells at different stages of differentiation may harbor unique states of the molecular circadian clock influencing differentiation and cell fate.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Dilshan Beligala
- Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| |
Collapse
|
20
|
Zhang H, Liu R, Zhang B, Huo H, Song Z. Advances in the Study of Circadian Genes in Non-Small Cell Lung Cancer. Integr Cancer Ther 2022; 21:15347354221096080. [PMID: 35575281 PMCID: PMC9121494 DOI: 10.1177/15347354221096080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Circadian genes regulate several physiological functions such as circadian rhythm
and metabolism and participate in the cytogenesis and progression of various
malignancies. The abnormal expression of these genes in non-small cell lung
cancer (NSCLC) is closely related to the clinicopathological features of NSCLC
and may promote or inhibit NSCLC progression. Circadian rhythm disorders and
clock gene abnormalities may increase the risk of lung cancer in some
populations. We collected 15 circadian genes in NSCLC, namely PER1,
PER2, PER3, TIMELESS, Cry1, Cry2, CLOCK, BMAL1/ARNTL-1, ARNTL2, NPAS2,
NR1D1(REV-ERB), DEC1, DEC2, RORα, and RORγ, and
determined their relationships with the clinicopathological features of patients
and the potential mechanisms promoting or inhibiting NSCLC progression. We also
summarized the studies on circadian rhythm disorders and circadian genes
associated with lung cancer risk. The present study aimed to provide theoretical
support for the future exploration of new therapeutic targets and for the
primary prevention of NSCLC from the perspective of circadian genes.
Interpretation of circadian rhythms in lung cancer could guide further lung
cancer mechanism research and drug development that could lead to more effective
treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Hao Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Renwang Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Huandong Huo
- Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
21
|
Wang F, Li C, Han F, Chen L, Zhu L. BMAL1 may be involved in angiogenesis and peritumoral cerebral edema of human glioma by regulating VEGF and ANG2. Aging (Albany NY) 2021; 13:24675-24685. [PMID: 34815366 PMCID: PMC8660602 DOI: 10.18632/aging.203708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022]
Abstract
The rhythm gene BMAL1 (Brain and Muscle ARNT-Like 1) may play an important role in glioma tolerance for anti-angiogenesis therapy. In humans with glioma of different pathological grades, BMAL1 expression was significantly different, and the expression of ANG2 (Angiopoietin 2) and VEGF (Vascular endothelial growth factor) was positively correlated with the expression of BMAL1. Additionally, BMAL1 expression is positively correlated with the microvascular density and peritumoral edema of glioma. According to in vitro experiments, silencing the expression of BMAL1 in primary glioma cells results in a decrease in the expression of VEGF. In contrast, overexpression of BMAL1 promotes the expression of ANG2 and VEGF via HIF-1a pathway. Therefore, BMAL1 likely participates in the angiogenesis of glioma by modulating ANG2 and VEGF expression, alters the therapeutic effect of anti-angiogenic treatments, and promotes peritumoral brain edema of glioma.
Collapse
Affiliation(s)
- Fan Wang
- Department of Neurosurgery, The Affiliated Jingmen First People's Hospital of Hubei Minzu University, Jingmen, China
| | - CaiYan Li
- Department of Neurosurgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Fei Han
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - LvAn Chen
- Department of Neurosurgery, The Affiliated Jingmen First People's Hospital of Hubei Minzu University, Jingmen, China
| | - Ling Zhu
- Department of Neurosurgery, The Affiliated Jingmen First People's Hospital of Hubei Minzu University, Jingmen, China
| |
Collapse
|
22
|
Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron Metabolism in Pancreatic Beta-Cell Function and Dysfunction. Cells 2021; 10:2841. [PMID: 34831062 PMCID: PMC8616520 DOI: 10.3390/cells10112841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential element involved in a variety of physiological functions. In the pancreatic beta-cells, being part of Fe-S cluster proteins, it is necessary for the correct insulin synthesis and processing. In the mitochondria, as a component of the respiratory chain, it allows the production of ATP and reactive oxygen species (ROS) that trigger beta-cell depolarization and potentiate the calcium-dependent insulin release. Iron cellular content must be finely tuned to ensure the normal supply but also to prevent overloading. Indeed, due to the high reactivity with oxygen and the formation of free radicals, iron excess may cause oxidative damage of cells that are extremely vulnerable to this condition because the normal elevated ROS production and the paucity in antioxidant enzyme activities. The aim of the present review is to provide insights into the mechanisms responsible for iron homeostasis in beta-cells, describing how alteration of these processes has been related to beta-cell damage and failure. Defects in iron-storing or -chaperoning proteins have been detected in diabetic conditions; therefore, the control of iron metabolism in these cells deserves further investigation as a promising target for the development of new disease treatments.
Collapse
Affiliation(s)
| | | | | | | | - Carla Perego
- Department of Excellence Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste, 22134 Milano, Italy; (A.M.); (A.G.); (P.M.); (N.D.)
| | - Michela Castagna
- Department of Excellence Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste, 22134 Milano, Italy; (A.M.); (A.G.); (P.M.); (N.D.)
| |
Collapse
|
23
|
Quintela T, Furtado A, Duarte AC, Gonçalves I, Myung J, Santos CRA. The role of circadian rhythm in choroid plexus functions. Prog Neurobiol 2021; 205:102129. [PMID: 34343629 DOI: 10.1016/j.pneurobio.2021.102129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/17/2022]
Abstract
For several years, a great effort has been devoted to understand how circadian oscillations in physiological processes are determined by the circadian clock system. This system is composed by the master clock at the suprachiasmatic nucleus which sets the pace and tunes peripheral clocks in several organs. It was recently demonstrated that the choroid plexus epithelial cells that compose the blood-cerebrospinal fluid barrier hold a circadian clock which might control their multiple functions with implications for the maintenance of brain homeostasis. However, the choroid plexus activities regulated by its inner clock are still largely unknown. In this review, we propose that several choroid plexus functions might be regulated by the circadian clock, alike in other tissues. We provide evidences that the timing of cerebrospinal fluid secretion, clearance of amyloid-beta peptides and xenobiotics, and the barrier function of the blood-cerebrospinal fluid barrier are regulated by the circadian clock. These data, highlight that the circadian regulation of the blood-cerebrospinal fluid barrier must be taken into consideration for enhancing drug delivery to central nervous system disorders.
Collapse
Affiliation(s)
- Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - André Furtado
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jihwan Myung
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, No. 172-1 Sec. 2 Keelung Road, Da'an District, Taipei 106, Taiwan; Brain and Consciousness Research Centre, Shuang Ho Hospital, Ministry of Health and Welfare, No. 291 Zhongzheng Road, Zhonghe District, New Taipei City 235, Taiwan
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
24
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
25
|
Ohdo S. Chrono-Drug Discovery and Development Based on Circadian Rhythm of Molecular, Cellular and Organ Level. Biol Pharm Bull 2021; 44:747-761. [PMID: 34078807 DOI: 10.1248/bpb.b21-00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paired suprachiasmatic nuclei (SCN) is the circadian pacemaker in mammals. Clock genes ultimately regulates a vast array of circadian rhythms involved in biological, physiological and behavioral process. The clock genes are closely related to sleep disorders, metabolic syndromes, and cancer diseases. Monitoring rhythm, overcoming rhythm disruption, and manipulating rhythm from the perspective of the clock genes play an important role to improve chronopharmacotherapy. Such an approach should be achieved by overcoming the new challenges in drug delivery systems that match the circadian rhythm (Chrono-DDS). Gene and antibody delivery, targeting specific molecules for certain diseases have been focused in recent studies on pharmacotherapy. One of important candidates should also be clock genes. New drugs targeting the molecular clock are being developed to manage diseases in humans. The circadian dynamics of cancer stem cells are controlled by the tumor microenvironment and provide proof for its implication in chronotherapy against triple-negative breast cancer. To examine the relationship between the circadian clock and chronic kidney disease (CKD) exacervation leads to clarify the novel molecular mechanisms causing renal malfunction in mice with CKD. A novel inhibitor of cell cycle regulatory factors has been identified and the inhibitor repressed renal inflammation in a CKD mouse model. Therefore, this review aims to introduce the role of the molecular clock in the time-dependent dosing changes in the therapeutic effect and safety of a drug and the possibility of drug discovery and development based on the molecular clock.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
26
|
Sharbatoghli M, Vafaei S, Aboulkheyr Es H, Asadi-Lari M, Totonchi M, Madjd Z. Prediction of the treatment response in ovarian cancer: a ctDNA approach. J Ovarian Res 2020; 13:124. [PMID: 33076944 PMCID: PMC7574472 DOI: 10.1186/s13048-020-00729-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the eighth most commonly occurring cancer in women. Clinically, the limitation of conventional screening and monitoring approaches inhibits high throughput analysis of the tumor molecular markers toward prediction of treatment response. Recently, analysis of liquid biopsies including circulating tumor DNA (ctDNA) open new way toward cancer diagnosis and treatment in a personalized manner in various types of solid tumors. In the case of ovarian carcinoma, growing pre-clinical and clinical studies underscored promising application of ctDNA in diagnosis, prognosis, and prediction of treatment response. In this review, we accumulate and highlight recent molecular findings of ctDNA analysis and its associations with treatment response and patient outcome. Additionally, we discussed the potential application of ctDNA in the personalized treatment of ovarian carcinoma. ctDNA-monitoring usage during the ovarian cancer treatments procedures.
Collapse
Affiliation(s)
- Mina Sharbatoghli
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Jiang P, Xu C, Zhang P, Ren J, Mageed F, Wu X, Chen L, Zeb F, Feng Q, Li S. Epigallocatechin‑3‑gallate inhibits self‑renewal ability of lung cancer stem‑like cells through inhibition of CLOCK. Int J Mol Med 2020; 46:2216-2224. [PMID: 33125096 PMCID: PMC7595654 DOI: 10.3892/ijmm.2020.4758] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Circadian rhythm plays an important role in diverse physiological processes. Abnormal expression of circadian rhythm genes is associated with increased risk of disease, including different types of cancer. The cancer stem cell (CSC) hypothesis suggests that there is a small subset of stem-like cells within tumors that are responsible for tumor initiation. However, the biological effect of circadian rhythm on CSCs remains largely unknown. Studies have highlighted that the circadian rhythm protein CLOCK controls key aspects of various diseases. In the present study, lung cancer stem-like cells were successfully enriched using a sphere formation assay. Next, it was observed that CLOCK mRNA and protein expression levels in the A549 and H1299 sphere cells were notably increased compared with those in the corresponding parental cells. In addition, flow cytometry was performed to isolate CD133+ cells and, consistently, CLOCK expression was also found to be markedly upregulated in CD133+ lung cancer cells. Subsequently, to determine the effect of CLOCK on lung cancer stem cells in detail, CLOCK was knocked down using targeted short inhibiting RNA and the results demonstrated that the sphere-forming ability of the A549 and H1299 cell lines was reduced. In addition, CSC-like properties, including the expression of CD133, CD44, sex determining region Y-box 2, Nanog and octamer-binding transcription factor 4, were markedly decreased in the A549 and H1299 sphere cells following knockdown of CLOCK. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has been reported to be a potential anticancer phytochemical. EGCG was found to repress CLOCK expression in A549 and H1299 sphere cells. In addition, EGCG also decreased the ratio of CD133+ cells. The Wnt/β-catenin pathway was notably inactivated by the knockdown of CLOCK in A549 and H1299 sphere cells. Subsequently, using a xenograft model, it was demonstrated that EGCG suppressed the CSC-like characteristics of lung cancer cells by targeting CLOCK. In conclusion, the present study demonstrated that EGCG inhibited the self-renewal ability of lung cancer stem-like cells by targeting CLOCK.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, P.R. China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Pengpeng Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Jianglei Ren
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Fatima Mageed
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Shanqun Li
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, P.R. China
| |
Collapse
|
28
|
De A, Beligala DH, Sharma VP, Burgos CA, Lee AM, Geusz ME. Cancer stem cell generation during epithelial-mesenchymal transition is temporally gated by intrinsic circadian clocks. Clin Exp Metastasis 2020; 37:617-635. [PMID: 32816185 DOI: 10.1007/s10585-020-10051-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key event preceding tumor cell metastasis that increases cell invasiveness and cancer stem cell (CSC) populations. Studies suggest that genes used in generating circadian rhythms also serve in regulating EMT. To test the role of circadian clocks in cellular EMT events two cancer cell lines were compared, one that has a well-established circadian clock, C6 from rat glioma, and one that does not, MCF-7 from human breast tumor. MCF-7 tumorsphere cultures were tested for evidence of circadian rhythms because of previously reported circadian rhythm enhancement in C6 tumorspheres shown by elevated rhythm amplitude and increased expression of circadian clock gene Per2. Bioluminescence imaging of Per2 gene expression in MCF-7 tumorspheres revealed a previously unconfirmed circadian clock in this important cancer research model. Inducing CSC generation through EMT in C6 and MCF-7 monolayer cultures revealed circadian oscillations in the size of the post-EMT CSC population, confirming that circadian rhythms are additional processes controlling this stage of cancer progression. EMT was verified by distinct cellular morphological changes and expression of stem cell proteins OCT4, nestin, MSI1, and CD133 along with EMT-related proteins ZEB1, vimentin, and TWIST. Quantifying single-cell events and behaviors through time-lapse imaging indicated the post-EMT population size was determined largely by circadian rhythms in epithelial-like cancer cells undergoing EMT. We then identified a specific phase of the circadian rhythm in Per2 gene activation as a potential target for therapeutic treatments that may suppress EMT, minimize CSCs, and limit metastasis.
Collapse
Affiliation(s)
- Arpan De
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dilshan H Beligala
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Vishal P Sharma
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
- Celsee, Inc., Ann Arbor, MI, 48108, USA
| | - Christian A Burgos
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
| | - Angelia M Lee
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, 217 Life Science Bldg., Bowling Green, OH, 43403, USA.
| |
Collapse
|
29
|
Thompson LR, Oliveira TG, Hermann ER, Chowanadisai W, Clarke SL, Montgomery MR. Distinct TP53 Mutation Types Exhibit Increased Sensitivity to Ferroptosis Independently of Changes in Iron Regulatory Protein Activity. Int J Mol Sci 2020; 21:ijms21186751. [PMID: 32942535 PMCID: PMC7555626 DOI: 10.3390/ijms21186751] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. In addition to loss of tumor suppressor functions, mutations in TP53 promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the coordination of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron-mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status affects the cellular response to ferroptosis induction. Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type (WT) TP53 gene, or a representative mutated TP53 gene from six exemplary “hotspot” mutations in the DNA binding domain (R273H, R248Q, R282W, R175H, G245S, and R249S). TP53 mutants (R273H, R248Q, R175H, G245S, and R249S) exhibited increased sensitivity ferroptosis compared to cells expressing WT TP53. As iron-mediated lipid peroxidation is critical for ferroptosis induction, we hypothesized that iron acquisition pathways would be upregulated in mutant TP53-expressing cells. However, only cells expressing the R248Q, R175H, and G245S TP53 mutation types exhibited statistically significant increases in spontaneous iron regulatory protein (IRP) RNA binding activity following ferroptosis activation. Moreover, changes in the expression of downstream IRP targets were inconsistent with the observed differences in sensitivity to ferroptosis. These findings reveal that canonical iron regulatory pathways are bypassed during ferroptotic cell death. These results also indicate that induction of ferroptosis may be an effective therapeutic approach for tumor cells expressing distinct TP53 mutation types.
Collapse
|
30
|
Ohdo S, Koyanagi S, Matsunaga N. Chronopharmacological strategies focused on chrono-drug discovery. Pharmacol Ther 2019; 202:72-90. [DOI: 10.1016/j.pharmthera.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
31
|
Sussman W, Stevenson M, Mowdawalla C, Mota S, Ragolia L, Pan X. BMAL1 controls glucose uptake through paired-homeodomain transcription factor 4 in differentiated Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C492-C501. [PMID: 31216190 PMCID: PMC6766619 DOI: 10.1152/ajpcell.00058.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) is an essential regulator of the circadian clock, which controls the 24-h cycle of physiological processes such as nutrient absorption. To examine the role of BMAL1 in small intestinal glucose absorption, we used differentiated human colon adenocarcinoma cells (Caco-2 cells). Here, we show that BMAL1 regulates glucose uptake in differentiated Caco-2 cells and that this process is dependent on the glucose transporter sodium-glucose cotransporter 1 (SGLT1). Mechanistic studies show that BMAL1 regulates glucose uptake by controlling the transcription of SGLT1 involving paired-homeodomain transcription factor 4 (PAX4), a transcriptional repressor. This is supported by the observation that clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated endonuclease Cas9 (Cas9) knockdown of PAX4 increases SGLT1 and glucose uptake. Chromatin immunoprecipitation (ChIP) and ChIP-quantitative PCR assays show that the knockdown or overexpression of BMAL1 decreases or increases the binding of PAX4 to the hepatocyte nuclear factor 1-α binding site of the SGLT1 promoter, respectively. These findings identify BMAL1 as a critical mediator of small intestine carbohydrate absorption and SGLT1.
Collapse
Affiliation(s)
- Whitney Sussman
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Matthew Stevenson
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Cyrus Mowdawalla
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
32
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
33
|
Rogers EH, Hunt JA, Pekovic-Vaughan V. Adult stem cell maintenance and tissue regeneration around the clock: do impaired stem cell clocks drive age-associated tissue degeneration? Biogerontology 2018; 19:497-517. [PMID: 30374678 PMCID: PMC6223734 DOI: 10.1007/s10522-018-9772-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Human adult stem cell research is a highly prolific area in modern tissue engineering as these cells have significant potential to provide future cellular therapies for the world's increasingly aged population. Cellular therapies require a smart biomaterial to deliver and localise the cell population; protecting and guiding the stem cells toward predetermined lineage-specific pathways. The cells, in turn, can provide protection to biomaterials and increase its longevity. The right combination of stem cells and biomaterials can significantly increase the therapeutic efficacy. Adult stem cells are utilised to target many changes that negatively impact tissue functions with age. Understanding the underlying mechanisms that lead to changes brought about by the ageing process is imperative as ageing leads to many detrimental effects on stem cell activation, maintenance and differentiation. The circadian clock is an evolutionarily conserved timing mechanism that coordinates physiology, metabolism and behavior with the 24 h solar day to provide temporal tissue homeostasis with the external environment. Circadian rhythms deteriorate with age at both the behavioural and molecular levels, leading to age-associated changes in downstream rhythmic tissue physiology in humans and rodent models. In this review, we highlight recent advances in our knowledge of the role of circadian clocks in adult stem cell maintenance, driven by both cell-autonomous and tissue-specific factors, and the mechanisms by which they co-opt various cellular signaling pathways to impose temporal control on stem cell function. Future research investigating pharmacological and lifestyle interventions by which circadian rhythms within adult stem niches can be manipulated will provide avenues for temporally guided cellular therapies and smart biomaterials to ameliorate age-related tissue deterioration and reduce the burden of chronic disease.
Collapse
Affiliation(s)
- Eve H Rogers
- Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - John A Hunt
- School of Science and Technology, Nottingham Trent University, Clifton Campus, College Drive, Nottingham, NG11 8NS, UK
| | - Vanja Pekovic-Vaughan
- Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
34
|
Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 2018; 8:916-931. [PMID: 30034931 PMCID: PMC6048407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023] Open
Abstract
Iron as an important element plays crucial roles in various physiological and pathological processes. Iron metabolism behaves in systemic and cellular two levels that usually are in balance conditions. The disorders of the iron metabolism balances relate with many kinds of diseases including Alzheimer's disease, osteoporosis and various cancers. In systemic iron metabolism that is regulated by hepcidin-ferroportin axis, plasma iron is bound with transferrin (TF) which has two high-affinity binding sites for ferric iron. The generic cellular iron metabolism consists of iron intake, utilization and efflux. During the iron intake process in generic cells, transferrin receptors (TFRs) act as the most important receptor mediated controls. TFR1 and TFR2 are two subtypes of TFRs those bind with iron-transferrin complex to facilitate iron into cells. TFR1 is ubiquitously expressed on the surfaces of generic cells, whereas TFR2 is specially expressed in liver cells. TFR1 has attracted more attention than TFR2 by having diverse functions in both invertebrates and vertebrates. Recently reports showed that TFR1 involved in many kinds of diseases including anemia, neurodegenerative diseases and cancers. Most importantly, TFR1 has been verified to be abnormally expressed in various cancers. Some experimental and clinical drugs and antibodies targeting TFR1 have showed strong anti-tumor effects, herein TFR1 probably become a potential molecular target for diagnosis and treatment for cancer therapy. This paper reviewed the research progresses of the roles of TFR1 in the tumorigenesis and cancer progression, the regulations of TFR1, and the therapeutic effects of targeting TFR1 on many kinds of cancers.
Collapse
Affiliation(s)
- Ying Shen
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Xin Li
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Dandan Dong
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Bin Zhang
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Yanru Xue
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Peng Shang
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| |
Collapse
|
35
|
Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics 2018; 9:1367-1375. [PMID: 28671201 DOI: 10.1039/c7mt00143f] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transferrin receptor (TfR1), which mediates cellular iron uptake through clathrin-dependent endocytosis of iron-loaded transferrin, plays a key role in iron homeostasis. Since the number of TfR1 molecules at the cell surface is the rate-limiting step for iron entry into cells and is essential to prevent iron overload, TfR1 expression is precisely controlled at multiple levels. In this review, we have discussed the latest advances in the molecular regulation of TfR1 expression and we have considered current understanding of TfR1 function beyond its canonical role in providing iron for erythroid precursors and rapidly proliferating cells.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
36
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
37
|
Okazaki F, Matsunaga N, Hamamura K, Suzuki K, Nakao T, Okazaki H, Kutsukake M, Fukumori S, Tsuji Y, To H. Administering xCT Inhibitors Based on Circadian Clock Improves Antitumor Effects. Cancer Res 2017; 77:6603-6613. [PMID: 29038345 DOI: 10.1158/0008-5472.can-17-0720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/22/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Clock genes encoding transcription factors that regulate circadian rhythms may inform chronomodulated chemotherapy, where time-dependent dose alterations might affect drug efficacy and reduce side effects. For example, inhibiting the essential cystine transporter xCT with sulfasalazine induces growth arrest in cancer cells. Although the anticancer effects of sulfasalazine have been studied extensively, its effects on transcriptional control of xCT expression have not been studied. Here, we show that sulfasalazine administration during the period of increased xCT expression improves its anticancer effects and that the Clock gene itself induces xCT expression and regulates its circadian rhythm. Our findings highlight the clinical potential of chronomodulated chemotherapy and the importance of xCT-mediated transcriptional regulation in the utility of such strategies. Cancer Res; 77(23); 6603-13. ©2017 AACR.
Collapse
Affiliation(s)
- Fumiyasu Okazaki
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Naoya Matsunaga
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kengo Hamamura
- Department of Chemical Pharmacology, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kayoko Suzuki
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takaharu Nakao
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Okazaki
- Department of Molecular Biology, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Masahiko Kutsukake
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shiro Fukumori
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yasuhiro Tsuji
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hideto To
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
38
|
Fan W, Caiyan L, Ling Z, Jiayun Z. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas. Oncotarget 2017; 8:77809-77818. [PMID: 29100427 PMCID: PMC5652816 DOI: 10.18632/oncotarget.20835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/17/2017] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.
Collapse
Affiliation(s)
- Wang Fan
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| | - Li Caiyan
- The Center of Cancer Prevention, The Second People's Hospital of Jingmen, Jingmen 448000, China
| | - Zhu Ling
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| | - Zhao Jiayun
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| |
Collapse
|
39
|
Recalcati S, Gammella E, Buratti P, Cairo G. Molecular regulation of cellular iron balance. IUBMB Life 2017; 69:389-398. [PMID: 28480557 DOI: 10.1002/iub.1628] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022]
Abstract
Handling a life-supporting yet redox-active metal like iron represents a significant challenge to cells and organisms that must not only tightly balance intra- and extracellular iron concentrations but also chaperone it during its journey from its point of entry to final destinations, to prevent inappropriate generation of damaging reactive oxygen species. Accordingly, regulatory mechanisms have been developed to maintain appropriate cellular and body iron levels. In intracellular compartments, about 95% of iron is protein-bound and the expression of the major proteins of iron metabolism is controlled by an integrated and dynamic system involving multilayered levels of regulation. However, dysregulation of iron homeostasis, which could result from both iron-related and unrelated effectors, may occur and have important pathological consequences in a number of human disorders. In this review, we describe the current understanding of the mechanisms that keep cellular iron balance and outline recent advances that increased our knowledge of the molecular physiology of iron metabolism. © 2017 IUBMB Life, 69(6):389-398, 2017.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| |
Collapse
|
40
|
Liu Z, Gan L, Luo D, Sun C. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue. J Pineal Res 2017; 62. [PMID: 27987529 DOI: 10.1111/jpi.12383] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022]
Abstract
Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity.
Collapse
Affiliation(s)
- Zhenjiang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|