1
|
Gao J, Mang Q, Sun Y, Xu G. Short-Chain Fatty Acids (SCFAs) Modulate the Hepatic Glucose and Lipid Metabolism of Coilia nasus via the FFAR/AMPK Signaling Pathway In Vitro. Int J Mol Sci 2025; 26:3654. [PMID: 40332278 PMCID: PMC12027798 DOI: 10.3390/ijms26083654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
The expansion of intensive aquaculture has heightened metabolic dysregulation in fish caused by high-glucose and high-lipid (HG-HL) diets, contributing to growth retardation and hepatic pathologies. Using Coilia nasus hepatocytes, this study investigated the regulatory effects of short-chain fatty acids (SCFAs) on glucose-lipid metabolism. In vitro HG-HL exposure elevated intracellular glucose, triglycerides (TG), and cholesterol; suppressed catalase (CAT) and superoxide dismutase (SOD); and dysregulated metabolic genes (upregulated phosphoenolpyruvate carboxykinase and acetyl-CoA carboxylase; downregulated glucokinase and hormone-sensitive lipase). Co-treatment with acetate and propionate reversed these anomalies, reducing TG and cholesterol, restoring antioxidant capacity (SOD and CAT), and normalizing gene expression patterns. Molecular docking suggested potential binding interactions between SCFAs and free fatty acid receptor (FFAR2/3). This study provided initial evidence suggesting SCFAs might attenuate HG-HL-induced metabolic stress in a teleost model, potentially involving FFAR-related pathways and AMPK-associated responses. The findings contribute to understanding SCFA-mediated metabolic regulation in fish, offering preliminary support for developing dietary interventions to manage aquacultural metabolic syndromes.
Collapse
Affiliation(s)
- Jun Gao
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Y.S.)
| | - Qi Mang
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China;
| | - Yi Sun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Y.S.)
| | - Gangchun Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Y.S.)
| |
Collapse
|
2
|
Toyonaga T, Kato T, Kawamoto A, Miyata T, Kawakami K, Fujita J, Hamaguchi T, Namba K, Miyata M. Dimeric assembly of F 1-like ATPase for the gliding motility of Mycoplasma. SCIENCE ADVANCES 2025; 11:eadr9319. [PMID: 40009674 PMCID: PMC11864180 DOI: 10.1126/sciadv.adr9319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Rotary ATPases, including F1FO-, V1VO-, and A1AO-ATPases, are molecular motors that exhibit rotational movements for energy conversion. In the gliding bacterium, Mycoplasma mobile, a dimeric F1-like ATPase forms a chain structure within the cell, which is proposed to drive the gliding motility. However, the mechanisms of force generation and transmission remain unclear. We determined the electron cryomicroscopy (cryo-EM) structure of the dimeric F1-like ATPase complex. The structure revealed an assembly distinct from those of dimeric F1FO-ATPases. The F1-like ATPase unit associated by two subunits GliD and GliE was named G1-ATPase as an R1 domain of rotary ATPases. G1-β subunit, a homolog of the F1-ATPase catalytic subunit, exhibited a specific N-terminal region that incorporates the glycolytic enzyme, phosphoglycerate kinase into the complex. Structural features of the ATPase displayed strong similarities to F1-ATPase, suggesting a rotation based on the rotary catalytic mechanism. Overall, the cryo-EM structure provides insights into the mechanism through which G1-ATPase drives the Mycoplasma gliding motility.
Collapse
Affiliation(s)
- Takuma Toyonaga
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Kawakami
- Biostructual Mechanism Laboratory, RIKEN, SPring-8 Center, 1-1-1, Kouto, Sayo, Hyogo 679-5148, Japan
| | - Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tasuku Hamaguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
3
|
Mang Q, Gao J, Li Q, Sun Y, Xu G, Xu P. Probiotics Enhance Coilia nasus Growth Performance and Nutritional Value by Regulating Glucolipid Metabolism via the Gut-Liver Axis. Int J Mol Sci 2024; 25:12196. [PMID: 39596262 PMCID: PMC11594500 DOI: 10.3390/ijms252212196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Large-scale intensive feeding triggered reduced growth performance and nutritional value. Exogenous probiotics can promote the growth performance and nutritional value of fish through improving the intestinal microbiota. However, detailed research on the correlation between the intestinal microbiota, growth performance, and nutritional value remains to be elucidated. Therefore, we performed metagenomic and metabolomic analysis to investigate the effects of probiotic addition to basal diet (1.0 × 108 CFU/g) (PF) and water (1.0 × 108 CFU/g) (PW) on the growth performance, muscle nutritional value, intestinal microbiota and their metabolites, and glucolipid metabolism in Coilia nasus. The results showed that FBW, BL, and SGR were enhanced in PF and PW groups. The concentrations of EAAs, TAAs, SFAs, MUFAs, and PUFAs were increased in PF and PW groups. Metagenomic and metabolic analyses revealed that bacterial community structure and metabolism were changed in the PF and PW groups. Moreover, adding probiotics to diet and water increased SCFAs and bile acids in the intestine. The gene expression associated with lipolysis and oxidation (hsl, pparα, cpt1, and acadm) and glycolysis (gck and pfk) was upregulated, while the gene expression associated with lipid synthesis (srebp1, acc, dgat, and elovl6) and gluconeogenesis (g6pca1, g6pca2, and pck) was downregulated in the liver. Correlation analysis displayed that hepatic glucolipid metabolism was regulated through the microbiota-gut-liver axis. Mantel test analysis showed that growth performance and muscle nutritional value were improved by the gut-liver axis. Our findings offered novel insights into the mechanisms that underlie the enhancement of growth performance and nutritional value in C. nasus and other fish by adding probiotics.
Collapse
Affiliation(s)
- Qi Mang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| |
Collapse
|
4
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
5
|
Mericskay M. Preventing the Fatty Acid-Transporter CD36 From Taking its Toll on the Heart. Circ Res 2024; 134:526-528. [PMID: 38422178 DOI: 10.1161/circresaha.123.323945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Mathias Mericskay
- INSERM CARPAT Signalling and Cardiovascular Pathophysiology UMR_S-1180, Faculty of Pharmacy, Paris-Saclay University, Orsay, France
| |
Collapse
|
6
|
Wang S, Han Y, Liu R, Hou M, Neumann D, Zhang J, Wang F, Li Y, Zhao X, Schianchi F, Dai C, Liu L, Nabben M, Glatz JF, Wu X, Lu X, Li X, Luiken JJ. Glycolysis-Mediated Activation of v-ATPase by Nicotinamide Mononucleotide Ameliorates Lipid-Induced Cardiomyopathy by Repressing the CD36-TLR4 Axis. Circ Res 2024; 134:505-525. [PMID: 38422177 PMCID: PMC10906217 DOI: 10.1161/circresaha.123.322910] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.
Collapse
Affiliation(s)
- Shujin Wang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
| | - Yinying Han
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Y.H.)
| | - Ruimin Liu
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, China (R.L.)
| | - Mengqian Hou
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
| | - Dietbert Neumann
- Department of Pathology (D.N.), Maastricht University Medical Center+, the Netherlands
| | - Jun Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
| | - Fang Wang
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China (Y.L., X.W.)
| | - Xueya Zhao
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China (Y.L., X.W.)
| | - Francesco Schianchi
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
| | - Chao Dai
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China (C.D., X.W.)
| | - Lizhong Liu
- Department of Physiology, Shenzhen University Medical School, Shenzhen University, China (L.L.)
| | - Miranda Nabben
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
- Department of Clinical Genetics (M.N., J.F.C.G., J.J.F.P.L.), Maastricht University Medical Center+, the Netherlands
- Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht, the Netherlands (M.N.)
| | - Jan F.C. Glatz
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
- Department of Clinical Genetics (M.N., J.F.C.G., J.J.F.P.L.), Maastricht University Medical Center+, the Netherlands
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China (C.D., X.W.)
| | - Xifeng Lu
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, China (X. Lu)
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
| | - Joost J.F.P. Luiken
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
- Department of Clinical Genetics (M.N., J.F.C.G., J.J.F.P.L.), Maastricht University Medical Center+, the Netherlands
| |
Collapse
|
7
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
8
|
Endosomal v-ATPase as a Sensor Determining Myocardial Substrate Preference. Metabolites 2022; 12:metabo12070579. [PMID: 35888703 PMCID: PMC9316095 DOI: 10.3390/metabo12070579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The heart is a metabolically flexible omnivore that can utilize a variety of substrates for energy provision. To fulfill cardiac energy requirements, the healthy adult heart mainly uses long-chain fatty acids and glucose in a balanced manner, but when exposed to physiological or pathological stimuli, it can switch its substrate preference to alternative substrates such as amino acids (AAs) and ketone bodies. Using the failing heart as an example, upon stress, the fatty acid/glucose substrate balance is upset, resulting in an over-reliance on either fatty acids or glucose. A chronic fuel shift towards a single type of substrate is linked with cardiac dysfunction. Re-balancing myocardial substrate preference is suggested as an effective strategy to rescue the failing heart. In the last decade, we revealed that vacuolar-type H+-ATPase (v-ATPase) functions as a key regulator of myocardial substrate preference and, therefore, as a novel potential treatment approach for the failing heart. Fatty acids, glucose, and AAs selectively influence the assembly state of v-ATPase resulting in modulation of its proton-pumping activity. In this review, we summarize these novel insights on v-ATPase as an integrator of nutritional information. We also describe its exploitation as a therapeutic target with focus on supplementation of AA as a nutraceutical approach to fight lipid-induced insulin resistance and contractile dysfunction of the heart.
Collapse
|
9
|
Yu W, Zhu Y, Zhu R, Bai J, Qiu J, Wu Y, Zhong K, Gao H. Insight into the characteristics of cider fermented by single and co-culture with Saccharomyces cerevisiae and Schizosaccharomyces pombe based on metabolomic and transcriptomic approaches. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abstract
Mycoplasma mobile, a fish pathogen, exhibits gliding motility using ATP hydrolysis on solid surfaces, including animal cells. The gliding machinery can be divided into surface and internal structures. The internal structure of the motor is composed of 28 so-called “chains” that are each composed of 17 repeating protein units called “particles.” These proteins include homologs of the catalytic α and β subunits of F1-ATPase. In this study, we isolated the particles and determined their structures using negative-staining electron microscopy and high-speed atomic force microscopy. The isolated particles were composed of five proteins, MMOB1660 (α-subunit homolog), -1670 (β-subunit homolog), -1630, -1620, and -4530, and showed ATP hydrolyzing activity. The two-dimensional (2D) structure, with dimensions of 35 and 26 nm, showed a dimer of hexameric ring approximately 12 nm in diameter, resembling F1-ATPase catalytic (αβ)3. We isolated the F1-like ATPase unit, which is composed of MMOB1660, -1670, and -1630. Furthermore, we isolated the chain and analyzed the three-dimensional (3D) structure, showing that dimers of mushroom-like structures resembling F1-ATPase were connected and aligned along the dimer axis at 31-nm intervals. An atomic model of F1-ATPase catalytic (αβ)3 from Bacillus PS3 was successfully fitted to each hexameric ring of the mushroom-like structure. These results suggest that the motor for M. mobile gliding shares an evolutionary origin with F1-ATPase. Based on the obtained structure, we propose possible force transmission processes in the gliding mechanism.
Collapse
|
11
|
Jaskolka MC, Winkley SR, Kane PM. RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification. Front Cell Dev Biol 2021; 9:698190. [PMID: 34249946 PMCID: PMC8264551 DOI: 10.3389/fcell.2021.698190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The yeast RAVE (Regulator of H+-ATPase of Vacuolar and Endosomal membranes) complex and Rabconnectin-3 complexes of higher eukaryotes regulate acidification of organelles such as lysosomes and endosomes by catalyzing V-ATPase assembly. V-ATPases are highly conserved proton pumps consisting of a peripheral V1 subcomplex that contains the sites of ATP hydrolysis, attached to an integral membrane Vo subcomplex that forms the transmembrane proton pore. Reversible disassembly of the V-ATPase is a conserved regulatory mechanism that occurs in response to multiple signals, serving to tune ATPase activity and compartment acidification to changing extracellular conditions. Signals such as glucose deprivation can induce release of V1 from Vo, which inhibits both ATPase activity and proton transport. Reassembly of V1 with Vo restores ATP-driven proton transport, but requires assistance of the RAVE or Rabconnectin-3 complexes. Glucose deprivation triggers V-ATPase disassembly in yeast and is accompanied by binding of RAVE to V1 subcomplexes. Upon glucose readdition, RAVE catalyzes both recruitment of V1 to the vacuolar membrane and its reassembly with Vo. The RAVE complex can be recruited to the vacuolar membrane by glucose in the absence of V1 subunits, indicating that the interaction between RAVE and the Vo membrane domain is glucose-sensitive. Yeast RAVE complexes also distinguish between organelle-specific isoforms of the Vo a-subunit and thus regulate distinct V-ATPase subpopulations. Rabconnectin-3 complexes in higher eukaryotes appear to be functionally equivalent to yeast RAVE. Originally isolated as a two-subunit complex from rat brain, the Rabconnectin-3 complex has regions of homology with yeast RAVE and was shown to interact with V-ATPase subunits and promote endosomal acidification. Current understanding of the structure and function of RAVE and Rabconnectin-3 complexes, their interactions with the V-ATPase, their role in signal-dependent modulation of organelle acidification, and their impact on downstream pathways will be discussed.
Collapse
Affiliation(s)
- Michael C Jaskolka
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Samuel R Winkley
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
12
|
Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021; 15:662242. [PMID: 33994936 PMCID: PMC8113697 DOI: 10.3389/fnins.2021.662242] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. Despite decades of research, the etiology and pathogenesis of AD are not well understood. Brain glucose hypometabolism has long been recognized as a prominent anomaly that occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism, the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the development of AD. Glycolysis is essential for a variety of neural activities in the brain, including energy production, synaptic transmission, and redox homeostasis. Decreased glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology in both preclinical and clinical AD patients. Moreover, increased glucose accumulation found in the brains of AD patients supports the hypothesis that glycolytic deficit may be a contributor to the development of this phenotype. Brain hyperglycemia also provides a plausible explanation for the well-documented link between AD and diabetes. Humans possess three primary variants of the apolipoprotein E (ApoE) gene - ApoE∗ϵ2, ApoE∗ϵ3, and ApoE∗ϵ4 - that confer differential susceptibility to AD. Recent findings indicate that neuronal glycolysis is significantly affected by human ApoE isoforms and glycolytic robustness may serve as a major mechanism that renders an ApoE2-bearing brain more resistant against the neurodegenerative risks for AD. In addition to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, strengthening the concept of glycolytic dysfunction as a common pathway leading to neurodegeneration. Taken together, these advances highlight a promising translational opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by such to alter the course of brain aging or disease development to prevent or reduce the risks for not only AD but also other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Nadine Alshakhshir
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
13
|
Giovanini AF, Priesnitz TF, Til B, Reisdoerfer G, do Nascimento TCDL, Sobreiro B, de Siqueira AS, Pinheiro JDJV. Immunolocalization of IP3R and V-ATPase in Ameloblastomas. Head Neck Pathol 2019; 14:392-398. [PMID: 31183746 PMCID: PMC7235139 DOI: 10.1007/s12105-019-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
Abstract
The goal of this study was to investigate the immunolocalization of inositol 1,4,5-trisphosphate receptor (IP3R) and vacuolar ATPase (V-ATPase) in ameloblastomas with special attention to the invasive front. Thirty-seven cases of previously diagnosed formalin-fixed paraffin-embedded (FFPE) human ameloblastoma samples were selected for this study. The samples were grouped according to the predominant histologic pattern and comprised twelve plexiform, eighteen follicular, and seven unicystic ameloblastomas. Of the unicystic variants, six demonstrated purely luminal and intraluminal growth, and one displayed mural extension. One granular cell variant was included in the follicular ameloblastoma group. All specimens were evaluated for IP3R and V-ATPase expression by immunohistochemistry (IHC). IP3R was positive in columnar cells, similar to ameloblasts, and non-peripheral cells in all samples. In the area of tumor protrusion and front of invasion, membranous and cystoplasmic IP3R expression was observed. In contrast, areas adjacent to tumoral protrusion demonstrated only membranous staining patterns. V-ATPase was not expressed in peripheral columnar cells of the unicystic and granular cell variants of ameloblastoma; however, strong staining was present in these cells in plexiform ameloblastomas, follicular ameloblastomas, and areas of mural growth of unicystic ameloblastomas. In areas of tumor protrusion, reactivity for V-ATPase was observed with both membranous and cytoplasmic staining, while other areas showed only membranous V-ATPase. These findings suggest that concomitant immunolocalization of IP3R and V-ATPase, with both cytoplasmic and membranous expression in the peripheral columnar cells, may indicate the invasive potential of ameloblastomas. Furthermore, these results suggest the tumoral spread of ameloblastomas may be correlated with the autophagy process and channelopathy. The expression of these proteins could establish a baseline for future research and provide therapeutic targets for treatment of ameloblastomas.
Collapse
Affiliation(s)
- Allan Fernando Giovanini
- Medical School, Positivo University Curitiba, R Pedro Viriato Parigot de Souza, 5300 Campo Comprido, Curitiba, Paraná, 81280-330, Brazil.
| | | | - Bruna Til
- Dentistry School, Positivo University Curitiba, Curitiba, Paraná, Brazil
| | - Gisele Reisdoerfer
- Dentistry School, Positivo University Curitiba, Curitiba, Paraná, Brazil
| | | | - Bernardo Sobreiro
- Medical School, Positivo University Curitiba, R Pedro Viriato Parigot de Souza, 5300 Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | | | | |
Collapse
|
14
|
Hayek SR, Rane HS, Parra KJ. Reciprocal Regulation of V-ATPase and Glycolytic Pathway Elements in Health and Disease. Front Physiol 2019; 10:127. [PMID: 30828305 PMCID: PMC6384264 DOI: 10.3389/fphys.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
The ability of cells to adapt to fluctuations in glucose availability is crucial for their survival and involves the vacuolar proton-translocating ATPase (V-ATPase), a proton pump found in all eukaryotes. V-ATPase hydrolyzes ATP via its V1 domain and uses the energy released to transport protons across membranes via its Vo domain. This activity is critical for pH homeostasis and generation of a membrane potential that drives cellular metabolism. A number of stimuli have been reported to alter V-ATPase assembly in yeast and higher eukaryotes. Glucose flux is one of the strongest and best-characterized regulators of V-ATPase; this review highlights current models explaining how glycolysis and V-ATPase are coordinated in both the Saccharomyces cerevisiae model fungus and in mammalian systems. Glucose-dependent assembly and trafficking of V-ATPase, V-ATPase-dependent modulations in glycolysis, and the recent discovery that glucose signaling through V-ATPase acts as a molecular switch to dictate anabolic versus catabolic metabolism are discussed. Notably, metabolic plasticity and altered glycolytic flux are critical drivers of numerous human pathologies, and the expression and activity of V-ATPase is often altered in disease states or can be pharmacologically manipulated as treatment. This overview will specifically discuss connections between V-ATPase and glycolysis in cancer.
Collapse
Affiliation(s)
- Summer R Hayek
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Hallie S Rane
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
15
|
Wu L, Zhang X, Zhao L. Human ApoE Isoforms Differentially Modulate Brain Glucose and Ketone Body Metabolism: Implications for Alzheimer's Disease Risk Reduction and Early Intervention. J Neurosci 2018; 38:6665-6681. [PMID: 29967007 PMCID: PMC6067075 DOI: 10.1523/jneurosci.2262-17.2018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 01/16/2023] Open
Abstract
Humans possess three genetic isoforms of apolipoprotein E (ApoE)-ApoE2, ApoE3, and ApoE4-that confer differential risk for Alzheimer's disease (AD); however, the underlying mechanisms are poorly understood. This study sought to investigate the impact of human ApoE isoforms on brain energy metabolism, an area significantly perturbed in preclinical AD. A TaqMan custom array was performed to examine the expression of a total of 43 genes involved in glucose and ketone body transport and metabolism, focusing on pathways leading to the generation of acetyl-CoA, in human ApoE gene-targeted replacement female mice. Consistent with our previous findings, brains expressing ApoE2 exhibited the most robust profile, whereas brains expressing ApoE4 displayed the most deficient profile on the uptake and metabolism of glucose, the primary fuel for the brain. Specifically, the three ApoE brains differed significantly in facilitated glucose transporters, which mediate the entry of glucose into neurons, and hexokinases, which act as the "gateway enzyme" in glucose metabolism. Interestingly, on the uptake and metabolism of ketone bodies, the secondary energy source for the brain, ApoE2 and ApoE4 brains showed a similar level of robustness, whereas ApoE3 brains presented a relatively deficient profile. Further, ingenuity pathway analysis indicated that the PPAR-γ/PGC-1α signaling pathway could be activated in the ApoE2 brain and inhibited in the ApoE4 brain. Notably, PGC-1α overexpression ameliorated ApoE4-induced deficits in glycolysis and mitochondrial respiration. Overall, our data provide additional evidence that human ApoE isoforms differentially modulate brain bioenergetic metabolism, which could serve as a potential mechanism contributing to their discrete risk impact in AD.SIGNIFICANCE STATEMENT We uncovered hexokinase as a key cytosolic point in the glucose metabolism that is differentially modulated by the three ApoE genotypes. The differences in hexokinase expression and activity exhibited in the three ApoE brains may underlie their distinct impact on brain glucose utilization and further susceptibility to AD. Therefore, a therapeutic approach that could circumvent the deficiencies in the cytosolic metabolism of glucose by providing glucose metabolizing intermediates, e.g., pyruvate, may hold benefits for ApoE4 carriers, who are at high risk for AD. The bioenergetic robustness may translate into enhanced synaptic activity and, ultimately, reduces the risk of developing AD and/or delays the onset of clinical manifestation.
Collapse
Affiliation(s)
- Long Wu
- Department of Pharmacology and Toxicology, School of Pharmacy and
| | - Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy and
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy and
- Neuroscience Graduate Program, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
16
|
Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. MICROBIAL CELL 2018; 5:119-136. [PMID: 29487859 PMCID: PMC5826700 DOI: 10.15698/mic2018.03.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Elja Eskes
- Functional Biology, KU Leuven, Leuven, Belgium
| | | | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
17
|
Fu S. From glucose sensing to a unified model of AMPK and mTOR regulation. Sci Bull (Beijing) 2017; 62:1233-1234. [PMID: 36659449 DOI: 10.1016/j.scib.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Suneng Fu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|