1
|
Geißler A, Junca H, Kany AM, Daumann LJ, Hirsch AKH, Pieper DH, Sieber SA. Isocyanides inhibit bacterial pathogens by covalent targeting of essential metabolic enzymes. Chem Sci 2024; 15:11946-11955. [PMID: 39092115 PMCID: PMC11290450 DOI: 10.1039/d4sc01940g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
Isonitrile natural products, also known as isocyanides, demonstrate potent antimicrobial activities, yet our understanding of their molecular targets remains limited. Here, we focus on the so far neglected group of monoisonitriles to gain further insights into their antimicrobial mode of action (MoA). Screening a focused monoisonitrile library revealed a potent S. aureus growth inhibitor with a different MoA compared to previously described isonitrile antibiotics. Chemical proteomics via competitive cysteine reactivity profiling, uncovered covalent modifications of two essential metabolic enzymes involved in the fatty acid biosynthetic process (FabF) and the hexosamine pathway (GlmS) at their active site cysteines. In-depth studies with the recombinant enzymes demonstrated concentration-dependent labeling, covalent binding to the catalytic site and corresponding functional inhibition by the isocyanide. Thermal proteome profiling and full proteome studies of compound-treated S. aureus further highlighted the destabilization and dysregulation of proteins related to the targeted pathways. Cytotoxicity and the inhibition of cytochrome P450 enzymes require optimization of the hit molecule prior to therapeutic application. The here described novel, covalent isocyanide MoA highlights the versatility of the functional group, making it a useful tool and out-of-the-box starting point for the development of innovative antibiotics.
Collapse
Affiliation(s)
- Alexandra Geißler
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Lena J Daumann
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Saarland University, Department of Pharmacy 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| |
Collapse
|
2
|
Nigo F, Nakagawa R, Hirai Y, Imai L, Suzuki Y, Furuta K, Kaito C. Staphylococcus aureus MazG hydrolyzes oxidized guanine nucleotides and contributes to oxidative stress resistance. Biochimie 2023; 209:52-60. [PMID: 36746255 DOI: 10.1016/j.biochi.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
We previously reported that knockout of the mazG (SA1292) gene decreases Staphylococcus aureus killing activity against silkworms. S. aureus MazG (SaMazG) has a nucleotide pyrophosphatase domain conserved among MazG family proteins, but its biochemical characteristics are unknown. In the present study, we purified recombinant N-terminal His-tagged SaMazG protein and examined its biochemical activity. SaMazG hydrolyzed GTP, UTP, dGTP, and TTP into nucleoside monophosphates. Hydrolytic activity of SaMazG against ATP, CTP, dATP, and dCTP was low or not detected. SaMazG exhibited high hydrolytic activity against 8-oxo-GTP and 8-oxo-dGTP, oxidized guanine nucleotides, with a Vmax/Km ratio more than 15-fold that of GTP. Furthermore, the S. aureus mazG knockout mutant was sensitive to hydrogen peroxide compared with the parent strain. These results suggest that SaMazG is a nucleotide pyrophosphatase hydrolyzing oxidized guanine nucleotides that contributes to the oxidative stress resistance of S. aureus.
Collapse
Affiliation(s)
- Fuki Nigo
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| | - Ryosuke Nakagawa
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| | - Yuuki Hirai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Lina Imai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| |
Collapse
|
3
|
Panthee S, Hamamoto H, Paudel A, Kaito C, Suzuki Y, Sekimizu K. Hybrid assembly using long reads resolves repeats and completes the genome sequence of a laboratory strain of Staphylococcus aureus subsp. Aureus RN4220. Heliyon 2022; 8:e11376. [PMID: 36387480 PMCID: PMC9660545 DOI: 10.1016/j.heliyon.2022.e11376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/30/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Staphylococcus aureus RN4220 has been extensively used by staphylococcal researchers as an intermediate strain for genetic manipulation due to its ability to accept foreign DNA. Despite its wide use in laboratories, its complete genome is not available. In this study, we used a hybrid genome assembly approach using minION long reads and Illumina short reads to sequence the complete genome of S. aureus RN4220. The comparative analysis of the annotated complete genome showed the presence of 39 genes fragmented in the previous assembly, many of which were located near the repeat regions. Using RNA-Seq reads, we showed that a higher number of reads could be mapped to the complete genome than the draft genome and the gene expression profile obtained using the complete genome also differs from that obtained from the draft genome. Furthermore, by comparative transcriptomic analysis, we showed the correlation between expression levels of staphyloxanthin biosynthetic genes and the production of yellow pigment. This study highlighted the importance of long reads in completing microbial genomes, especially those possessing repetitive elements. S. aureus RN4220 is used as an intermediate strain for genetic manipulation. We completed its genome and found 39 fragmented genes in previous genome assembly. RNA-Seq analysis improved mapping of the reads with the use of complete genome. Expression of staphyloxanthin biosynthetic genes was correlated with its production.
Collapse
|
4
|
Peanut triacylglycerols activate innate immunity both in insects and mammals. Sci Rep 2022; 12:7464. [PMID: 35523841 PMCID: PMC9076670 DOI: 10.1038/s41598-022-11494-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, we investigated immunoreactivity of peanut (Arachis hypogaea) oil using the silkworm (Bombyx mori) model. The peanut oil induced melanin formation when injected to the silkworm hemocoel. We then purified the active substance and identified the triacylglycerols (TAGs) as the responsible molecule for the melanin-forming effect of peanut oil. Also, the peanut TAGs induced the muscle contraction of the silkworm (i.e., cleavage of the insect cytokine BmPP) and the TNF-α production by cultured mouse macrophage cells. The muscle contraction activity of the peanut TAGs was reduced by saponification reaction, indicating that the TAG (not the degraded fatty acids) moiety is responsible for the activity. The muscle contraction effects of other TAGs of olive, lard, and beef oil were comparable with that of peanut TAGs. Nevertheless, for the melanin formation, the effect of peanut TAGs was outstanding. The fatty acid composition of peanut TAGs was distinct from that of olive TAGs. These results suggest that TAGs are immunoreactive and induces cytokines both in insect and mammalian immune systems. Also, the differential effects of peanut and olive TAGs for the melanin formation may suggest that TAGs with different fatty acid compositions are distinguished by the immune system.
Collapse
|
5
|
de Sousa-d'Auria C, Constantinesco F, Bayan N, Constant P, Tropis M, Daffé M, Graille M, Houssin C. Cg1246, a new player in mycolic acid biosynthesis in Corynebacterium glutamicum. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394419 DOI: 10.1099/mic.0.001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycolic acids are key components of the complex cell envelope of Corynebacteriales. These fatty acids, conjugated to trehalose or to arabinogalactan form the backbone of the mycomembrane. While mycolic acids are essential to the survival of some species, such as Mycobacterium tuberculosis, their absence is not lethal for Corynebacterium glutamicum, which has been extensively used as a model to depict their biosynthesis. Mycolic acids are first synthesized on the cytoplasmic side of the inner membrane and transferred onto trehalose to give trehalose monomycolate (TMM). TMM is subsequently transported to the periplasm by dedicated transporters and used by mycoloyltransferase enzymes to synthesize all the other mycolate-containing compounds. Using a random transposition mutagenesis, we recently identified a new uncharacterized protein (Cg1246) involved in mycolic acid metabolism. Cg1246 belongs to the DUF402 protein family that contains some previously characterized nucleoside phosphatases. In this study, we performed a functional and structural characterization of Cg1246. We showed that absence of the protein led to a significant reduction in the pool of TMM in C. glutamicum, resulting in a decrease in all other mycolate-containing compounds. We found that, in vitro, Cg1246 has phosphatase activity on organic pyrophosphate substrates but is most likely not a nucleoside phosphatase. Using a computational approach, we identified important residues for phosphatase activity and constructed the corresponding variants in C. glutamicum. Surprisingly complementation with these non-functional proteins fully restored the defect in TMM of the Δcg1246 mutant strain, suggesting that in vivo, the phosphatase activity is not involved in mycolic acid biosynthesis.
Collapse
Affiliation(s)
- Célia de Sousa-d'Auria
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florence Constantinesco
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau Cedex, Paris, France
| | - Christine Houssin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
6
|
Paudel A, Panthee S, Hamamoto H, Grunert T, Sekimizu K. YjbH regulates virulence genes expression and oxidative stress resistance in Staphylococcus aureus. Virulence 2021; 12:470-480. [PMID: 33487122 PMCID: PMC7849776 DOI: 10.1080/21505594.2021.1875683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
We previously reported that disruption of the yjbI gene reduced virulence of Staphylococcus aureus. In this study, we found virulence in both silkworms and mice was restored by introducing the yjbH gene but not the yjbI gene to both yjbI and yjbH genes-disrupted mutants, suggesting that yjbH, the gene downstream to the yjbI gene in a two-gene operon-yjbIH, is responsible for this phenomenon. We further observed a decrease in various surface-associated proteins and changes in cell envelope glycostructures in the mutants. RNA-seq analysis revealed that disruption of the yjbI and the yjbH genes resulted in differential expression of a broad range of genes, notably, significant downregulation of genes involved in virulence and oxidative stress. Administration of N-acetyl-L-cysteine, a free-radical scavenger, restored the virulence in both the mutants. Our findings suggested that YjbH plays a role in staphylococcal pathogenicity by regulating virulence gene expression, affecting the bacterial surface structure, and conferring resistance to oxidative stress in a host.
Collapse
Affiliation(s)
- Atmika Paudel
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Suresh Panthee
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| |
Collapse
|
7
|
Wang Z, Shen H, He B, Teng M, Guo Q, Li X. The structural mechanism for the nucleoside tri- and diphosphate hydrolysis activity of Ntdp from Staphylococcus aureus. FEBS J 2021; 288:6019-6034. [PMID: 33955674 DOI: 10.1111/febs.15911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Staphylococcus aureus is a well-known clinical pathogenic bacterium. In recent years, due to the emergence of multiple drug-resistant strains of S. aureus in clinical practice, S. aureus infections have become an increasingly severe clinical problem. Ntdp (nucleoside tri- and diphosphatase, also known as Sa1684) is a nucleotide phosphatase that has a significant effect on the proliferation of S. aureus colonies and the killing ability of the host. Here, we identified the nucleoside tri- and diphosphate hydrolysis activity of Ntdp and obtained the three-dimensional structures of apo-Ntdp and three substrate analog (ATPγ S, GDPβ S, and GTPγ S) complexes of Ntdp. Through structural analysis and biochemical verification, we illustrated the structural basis for the divalent cation selectivity, substrate recognition model, and catalytic mechanism of Ntdp. We also revealed a possible basal functional pattern of the DUF402 domain and hypothesized the potential pathways by which the protein regulates the expression of the two-component regulatory factor agr and the downstream virulence factors. Overall, the above findings provide crucial insights into our understanding of the Ntdp functional mechanism in the infection process.
Collapse
Affiliation(s)
- Zhenhua Wang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hui Shen
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Binbin He
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Maikun Teng
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiong Guo
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xu Li
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Paudel A, Hamamoto H, Panthee S, Matsumoto Y, Sekimizu K. Large-Scale Screening and Identification of Novel Pathogenic Staphylococcus aureus Genes Using a Silkworm Infection Model. J Infect Dis 2021; 221:1795-1804. [PMID: 31912866 DOI: 10.1093/infdis/jiaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
The regulatory network of virulence factors produced by the opportunistic pathogen Staphylococcus aureus is unclear and the functions of many uncharacterized genes in its genome remain to be elucidated. In this study, we screened 380 genes whose function was unassigned, utilizing gene-disrupted transposon mutants of the community-acquired methicillin-resistant S. aureus USA300 for pathogenicity in silkworms. We identified 10 strains with reduced silkworm killing ability. Among them, 8 displayed reduced virulence in a mouse model as evidenced by reduced colony-forming units in organs of infected mice. The role of each gene in pathogenicity was further confirmed by complementation and pathogenicity tests in silkworms, where we found that the phenotype was not restored in 1 strain. Additionally, some of the mutants displayed reduced hemolysis, proteolysis, pigment production, and survival in murine RAW 264.7 monocyte-macrophage cells. These newly identified genes involved in virulence will enhance our understanding of the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Atmika Paudel
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | | | - Suresh Panthee
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | | | | |
Collapse
|
9
|
Haim MS, Zaheer R, Bharat A, Di Gregorio S, Di Conza J, Galanternik L, Lubovich S, Golding GR, Graham MR, Van Domselaar G, Cardona ST, Mollerach M. Comparative genomics of ST5 and ST30 methicillin-resistant Staphylococcus aureus sequential isolates recovered from paediatric patients with cystic fibrosis. Microb Genom 2021; 7:mgen000510. [PMID: 33599606 PMCID: PMC8190608 DOI: 10.1099/mgen.0.000510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus chronic airway infection in patients with cystic fibrosis (CF) allows this pathogen to adapt over time in response to different selection pressures. We have previously shown that the main sequence types related to community-acquired methicillin-resistant S. aureus (MRSA) infections in Argentina - ST5 and ST30 - are also frequently isolated from the sputum of patients with CF, but in these patients they usually display multi-drug antimicrobial resistance. In this study, we sequenced the genomes of MRSA from four paediatric CF patients with the goal of identifying mutations among sequential isolates, especially those possibly related to antimicrobial resistance and virulence, which might contribute to the adaptation of the pathogen in the airways of patients with CF. Our results revealed genetic differences in sequential MRSA strains isolated from patients with CF in both their core and accessory genomes. Although the genetic adaptation of S. aureus was distinct in different hosts, we detected independent mutations in thyA, htrA, rpsJ and gyrA - which are known to have crucial roles in S. aureus virulence and antimicrobial resistance - in isolates recovered from multiple patients. Moreover, we identified allelic variants that were detected in all of the isolates recovered after a certain time point; these non-synonymous mutations were in genes associated with antimicrobial resistance, virulence, iron scavenging and oxidative stress resistance. In conclusion, our results provide evidence of genetic variability among sequential MRSA isolates that could be implicated in the adaptation of these strains during chronic CF airway infection.
Collapse
Affiliation(s)
- María Sol Haim
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rahat Zaheer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Sabrina Di Gregorio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Silvina Lubovich
- Hospital de Niños 'Dr Ricardo Gutiérrez', Buenos Aires, Argentina
| | - George R. Golding
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Morag R. Graham
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Silvia T. Cardona
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Exploiting biofilm phenotypes for functional characterization of hypothetical genes in Enterococcus faecalis. NPJ Biofilms Microbiomes 2019; 5:23. [PMID: 31552139 PMCID: PMC6753144 DOI: 10.1038/s41522-019-0099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is a commensal organism as well as an important nosocomial pathogen, and its infections are typically linked to biofilm formation. Nearly 25% of the E. faecalis OG1RF genome encodes hypothetical genes or genes of unknown function. Elucidating their function and how these gene products influence biofilm formation is critical for understanding E. faecalis biology. To identify uncharacterized early biofilm determinants, we performed a genetic screen using an arrayed transposon (Tn) library containing ~2000 mutants in hypothetical genes/intergenic regions and identified eight uncharacterized predicted protein-coding genes required for biofilm formation. We demonstrate that OG1RF_10435 encodes a phosphatase that modulates global protein expression and arginine catabolism and propose renaming this gene bph (biofilm phosphatase). We present a workflow for combining phenotype-driven experimental and computational evaluation of hypothetical gene products in E. faecalis, which can be used to study hypothetical genes required for biofilm formation and other phenotypes of diverse bacteria.
Collapse
|
11
|
Identification of 2H phosphoesterase superfamily proteins with 2'-CPDase activity. Biochimie 2019; 165:235-244. [PMID: 31422053 DOI: 10.1016/j.biochi.2019.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
The 2H phosphoesterase superfamily (2H family) proteins are widely conserved among organisms. The 2H family is classified into several subgroups, including YjcG-like proteins whose enzymatic activity has not been reported. In the present study, we found that two YjcG-like proteins (Staphylococcus aureus SA0873 and Bacillus subtilis YjcG) have 2'-CPDase activity that hydrolyzes a 2',3'-cyclic nucleotide, thereby producing a nucleotide with a 3'-phosphate. The SA0873 protein selectively hydrolyzes a 2',3'-cyclic nucleotide with a purine base. Four SA0873 mutant proteins (H34A, T36A, H115A, and T117A), in which alanine was substituted for amino acid residues in the HxT/Sx motifs that are conserved in the 2H family, abolished the 2'-CPDase activity. Comparison of three-dimensional structures between the YjcG-like proteins with 2'-CPDase activity and another 2H family subgroup, LigT/2'-5' RNA ligase-like proteins with 3'-CPDase activity, revealed that the orientation of the substrate binding pocket is reversed between the two groups. Our findings revealed that YjcG-like proteins not only have a substrate-binding pocket different from that of LigT/2'-5' RNA ligase-like proteins, but they also have 2'-CPDase activity.
Collapse
|
12
|
Matsumoto Y, Sekimizu K. Silkworm as an experimental animal for research on fungal infections. Microbiol Immunol 2019; 63:41-50. [PMID: 30666711 PMCID: PMC6594098 DOI: 10.1111/1348-0421.12668] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/13/2019] [Indexed: 12/26/2022]
Abstract
Silkworm, Bombyx mori, has various advantages as an experimental animal, such as the low cost for rearing and fewer ethical problems. Models utilizing silkworms of infection with pathogenic bacteria have been established for identification of genes encoding virulence factors by large-scale in vivo screening. In this review, we describe recent progress in the study of silkworm infection models for elucidating the mechanisms of fungi infection. Silkworm infection models have been established for Candida albicans, Candida tropicalis, Candida glabrata and Cryptococcus neoformans, which are yeast type fungi, and Aspergillus fumigatus, Arthroderma vanbreuseghemii, Arthroderma benhamiae, Microsporum canis, Trichophyton rubrum, and Rhizopus oryzae, which are filamentous fungi. Novel genes encoding virulence factors in C. albicans and C. glabrata have been identified by using the silkworm infection models. We here outline the benefits of using silkworm infection models and a strategy for identifying the genes responsible for pathogenicity of microorganisms such as fungi. © 2019 The Authors. Microbiology and Immunology Published by The Societies and John Wiley & Sons Australia, Ltd.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Teikyo University Institute of Medical Mycology359 OtsukaHachiojiTokyo 192‐0395Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology359 OtsukaHachiojiTokyo 192‐0395Japan
- Genome Pharmaceuticals Institute102 Next Building, 3‐24‐17 HongoBunkyo‐kuTokyo 113‐0033Japan
| |
Collapse
|
13
|
Sato S, Miyanaga A, Kim SY, Kuzuyama T, Kudo F, Eguchi T. Biochemical and Structural Analysis of FomD That Catalyzes the Hydrolysis of Cytidylyl ( S)-2-Hydroxypropylphosphonate in Fosfomycin Biosynthesis. Biochemistry 2018; 57:4858-4866. [PMID: 30010320 DOI: 10.1021/acs.biochem.8b00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In fosfomycin biosynthesis, the hydrolysis of cytidylyl ( S)-2-hydroxypropylphosphonate [( S)-HPP-CMP] to afford ( S)-HPP is the only uncharacterized step. Because FomD is an uncharacterized protein with a DUF402 domain that is encoded in the fosfomycin biosynthetic gene cluster, FomD was hypothesized to be responsible for this reaction. In this study, FomD was found to hydrolyze ( S)-HPP-CMP to give ( S)-HPP and CMP efficiently in the presence of Mn2+ or Co2+. FomD also hydrolyzed cytidylyl 2-hydroxyethylphosphonate (HEP-CMP), which is a biosynthetic intermediate before C-methylation. The kcat/ KM value of FomD with ( S)-HPP-CMP was 10-fold greater than that with HEP-CMP, suggesting that FomD hydrolyzes ( S)-HPP-CMP rather than HEP-CMP in bacteria. The crystal structure of FomD showed that this protein adopts a barrel-like fold, which consists of a large twisted antiparallel β-sheet. This is a key structural feature of the DUF402 domain-containing proteins. Two metal cations are located between the FomD barrel and the two α-helices at the C-terminus and serve to presumably activate the phosphonate group of substrates for hydrolysis. Docking simulations with ( S)-HPP-CMP suggested that the methyl group at the C2 position of the HPP moiety is recognized by a hydrophobic interaction with Trp68. Further mutational analysis suggested that a conserved Tyr107 among the DUF402 domain family of proteins activates a water molecule to promote nucleophilic attack on the phosphorus atom of the phosphonate moiety. These findings provide mechanistic insights into the FomD reaction and lead to a complete understanding of the fosfomycin biosynthetic pathway in Streptomyces.
Collapse
Affiliation(s)
- Shusuke Sato
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | | | | | - Fumitaka Kudo
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Tadashi Eguchi
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| |
Collapse
|
14
|
Sato S, Kudo F, Kim SY, Kuzuyama T, Eguchi T. Methylcobalamin-Dependent Radical SAM C-Methyltransferase Fom3 Recognizes Cytidylyl-2-hydroxyethylphosphonate and Catalyzes the Nonstereoselective C-Methylation in Fosfomycin Biosynthesis. Biochemistry 2017; 56:3519-3522. [PMID: 28678474 DOI: 10.1021/acs.biochem.7b00472] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A methylcobalamin (MeCbl)-dependent radical S-adenosyl-l-methionine (SAM) methyltransferase Fom3 was found to catalyze the C-methylation of cytidylyl-2-hydroxyethylphosphonate (HEP-CMP) to give cytidylyl-2-hydroxypropylphosphonate (HPP-CMP), although it was originally proposed to catalyze the C-methylation of 2-hydroxyethylphosphonate to give 2-hydroxypropylphosphonate in the biosynthesis of a unique C-P bond containing antibiotic fosfomycin in Streptomyces. Unexpectedly, the Fom3 reaction product from HEP-CMP was almost a 1:1 diastereomeric mixture of HPP-CMP, indicating that the C-methylation is not stereoselective. Presumably, only the CMP moiety of HEP-CMP is critical for substrate recognition; on the other hand, the enzyme does not fix the 2-hydroxy group of the substrate and either of the prochiral hydrogen atoms at the C2 position can be abstracted by the 5'-deoxyadenosyl radical generated from SAM to form the substrate radical intermediates, which react with MeCbl to afford the corresponding products. This strict substrate recognition mechanism with no stereoselectivity of a MeCbl-dependent radical SAM methyltransferase is remarkable in natural product biosynthetic chemistry, because such a hidden clue for selective substrate recognition is likely to be found in the other biosynthetic pathways.
Collapse
Affiliation(s)
- Shusuke Sato
- Department of Chemistry, Tokyo Institute of Technology , 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology , 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Seung-Young Kim
- Biotechnology Research Center, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology , 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|