1
|
Xu X, Song H, Wu H, Zhang L, Lin F, Chen C, Zhang X, Liu Y, Li C, Fu Q. Effects of Environmentally Friendly Aquaculture Chamber Coatings on Enzyme Activities, Histology, and Transcriptome in the Liver of Larimichthys crocea. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:78. [PMID: 40293578 DOI: 10.1007/s10126-025-10453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Aquaculture vessels have emerged as a sustainable alternative to traditional offshore aquaculture. However, the biological impacts of protective coatings used for vessel interiors are still poorly understood. This study assessed acute stress responses of Larimichthys crocea to epoxy-based aquaculture coatings using actual culture (1-fold) and high-exposure (80-fold) concentrations. Liver analyses included antioxidant enzymes, histopathology, and transcriptomics over 12-96 h. Firstly, the effect of the 80-fold concentration group on the activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) was more significant in the liver of L. crocea compared to the 1-fold concentration group. Similarly, histological observations revealed that the 80-fold concentration group produced more significant pathological changes in the liver than the 1-fold concentration group, including hepatocyte damage and vacuolization. Subsequently, through high-throughput sequencing, a total of 714.02 million clean reads were obtained, with 693.71 million of these reads successfully mapped onto the reference genome of L. crocea, identifying 13,709 differentially expressed genes (DEGs). KEGG pathway enrichment analysis showed that many DEGs following coating-treated were involved in protein processing in endoplasmic reticulum, oxidative phosphorylation, cytokine-cytokine receptor interaction, FoxO signaling pathway, and toll-like receptor signaling pathway. Finally, fifteen DEGs were selected for quantitative real-time PCR (qRT-PCR) analysis, and the results showed a significant correlation with RNA-seq results, verifying the reliability and accuracy of the high-throughput sequencing data. This study preliminarily revealed the stress responses induced by aquaculture vessel coatings in L. crocea and provided fundamental data into the scientific use of coatings on aquaculture vessels.
Collapse
Affiliation(s)
- Xuan Xu
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huayu Song
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China.
| | - Huicai Wu
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China
| | - Lu Zhang
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China
| | - Fengjun Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chonghui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China.
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Xu YL, Peng L, Li JJ, Chen WF. Molecular and functional characterization of Accl(2)efl: A biomarker for heavy metal stress in Apis cerana cerana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117676. [PMID: 39765119 DOI: 10.1016/j.ecoenv.2025.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
The expanded lethal (2) essential for life [l(2)efl] gene family is responsive to proteostatic stresses. Their protein products are core components of the stress response mechanism and are emerging as promising biomarkers for cellular stress in Apis mellifera. However, l(2)efl (LOC410857) uniquely remains unresponsive to heat stress within this gene family, and research examining its role in adaptation to other types of stress across diverse bee species is scarce. To address this knowledge gap, we cloned the l(2)efl gene from Apis cerana cerana [Accl(2)efl] and conducted a bioinformatics analysis on the encoded protein, aiming to elucidate the potential functions of Accl(2)efl. Our study encompassed assessing the role of Accl(2)efl in the response of bees to various stressful environments and its involvement in tolerance to heavy metals (Cd and Hg). Furthermore, we employed the RNAi technology to delve into the response mechanisms of Accl(2)efl under Cd and Hg stress. Our findings revealed that Accl(2)efl was activated when exposed to CdCl2 or HgCl2. Following the knockdown of Accl(2)efl, we observed that genes, such as defensins, were upregulated through the activation of the Toll signaling pathway. Conversely, the peroxisome signaling pathway was inhibited, resulting in a notable decrease in antioxidant enzyme activity. This led to a substantial elevation in Cd and Hg concentrations within hemolymph, accompanied by an increased mortality rate among bees re-exposed to CdCl2 or HgCl2. Combined, our data indicated that Accl(2)efl may plays a role in the tolerance of Apis cerana cerana to Cd/Hg stress. These findings provide a scientific basis for the further exploration of the role of Accl(2)efl in the response of bees to Cd/Hg stress and for enhancing the anti-Cd/Hg stress signaling network. They further lay a theoretical foundation for identifying new stress biomarkers for bees as well as indicators for the detection of environmental pollution.
Collapse
Affiliation(s)
- Yu-Lin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Ling Peng
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Jun-Jie Li
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Wen-Feng Chen
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China.
| |
Collapse
|
3
|
Shashank CG, Sejian V, Silpa MV, Devaraj C, Madhusoodan AP, Rebez EB, Kalaignazhal G, Sahoo A, Dunshea FR. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BIOTECH 2024; 13:49. [PMID: 39584906 PMCID: PMC11586948 DOI: 10.3390/biotech13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
The livestock sector, essential for maintaining food supply and security, encounters numerous obstacles as a result of climate change. Rising global populations exacerbate competition for natural resources, affecting feed quality and availability, heightening livestock disease risks, increasing heat stress, and contributing to biodiversity loss. Although various management and dietary interventions exist to alleviate these impacts, they often offer only short-lived solutions. We must take a more comprehensive approach to understanding how animals adapt to and endure their environments. One such approach is quantifying transcriptomes under different environments, which can uncover underlying pathways essential for livestock adaptation. This review explores the progress and techniques in studies that apply gene expression analysis to livestock production systems, focusing on their adaptation to climate change. We also attempt to identify various biomarkers and transcriptomic differences between species and pure/crossbred animals. Looking ahead, integrating emerging technologies such as spatialomics could further accelerate genetic improvements, enabling more thermoresilient and productive livestock in response to future climate fluctuations. Ultimately, insights from these studies will help optimize livestock production systems by identifying thermoresilient/desired animals for use in precise breeding programs to counter climate change.
Collapse
Affiliation(s)
- Chikamagalore Gopalakrishna Shashank
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Veerasamy Sejian
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | | | - Chinnasamy Devaraj
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | | | - Ebenezer Binuni Rebez
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | - Gajendirane Kalaignazhal
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, India;
| | - Artabandhu Sahoo
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Faculty of Biological Science, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Hersperger F, Meyring T, Weber P, Chhatbar C, Monaco G, Dionne MS, Paeschke K, Prinz M, Groß O, Classen AK, Kierdorf K. DNA damage signaling in Drosophila macrophages modulates systemic cytokine levels in response to oxidative stress. eLife 2024; 12:RP86700. [PMID: 38189792 PMCID: PMC10945508 DOI: 10.7554/elife.86700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Environmental factors, infection, or injury can cause oxidative stress in diverse tissues and loss of tissue homeostasis. Effective stress response cascades, conserved from invertebrates to mammals, ensure reestablishment of homeostasis and tissue repair. Hemocytes, the Drosophila blood-like cells, rapidly respond to oxidative stress by immune activation. However, the precise signals how they sense oxidative stress and integrate these signals to modulate and balance the response to oxidative stress in the adult fly are ill-defined. Furthermore, hemocyte diversification was not explored yet on oxidative stress. Here, we employed high-throughput single nuclei RNA-sequencing to explore hemocytes and other cell types, such as fat body, during oxidative stress in the adult fly. We identified distinct cellular responder states in plasmatocytes, the Drosophila macrophages, associated with immune response and metabolic activation upon oxidative stress. We further define oxidative stress-induced DNA damage signaling as a key sensor and a rate-limiting step in immune-activated plasmatocytes controlling JNK-mediated release of the pro-inflammatory cytokine unpaired-3. We subsequently tested the role of this specific immune activated cell stage during oxidative stress and found that inhibition of DNA damage signaling in plasmatocytes, as well as JNK or upd3 overactivation, result in a higher susceptibility to oxidative stress. Our findings uncover that a balanced composition and response of hemocyte subclusters is essential for the survival of adult Drosophila on oxidative stress by regulating systemic cytokine levels and cross-talk to other organs, such as the fat body, to control energy mobilization.
Collapse
Affiliation(s)
- Fabian Hersperger
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Tim Meyring
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
| | - Pia Weber
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
| | - Chintan Chhatbar
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
| | - Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of FreiburgFreiburgGermany
| | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Katrin Paeschke
- Department of Oncology, Haematology and Rheumatology, University Hospital BonnBonnGermany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital BonnBonnGermany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, Faculty of Biology, University of FreiburgFreiburgGermany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburgGermany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
5
|
Ferguson LV, Adamo SA. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol 2023; 226:288412. [PMID: 36825944 DOI: 10.1242/jeb.244911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
6
|
Adamo S. The Integrated Defense System: Optimizing Defense against Predators, Pathogens, and Poisons. Integr Comp Biol 2022; 62:1536-1546. [PMID: 35511215 DOI: 10.1093/icb/icac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Insects, like other animals, have evolved defense responses to protect against predators, pathogens, and poisons (i.e., toxins). This paper provides evidence that these three defense responses (i.e., fight-or-flight, immune, and detoxification responses) function together as part of an Integrated Defense System (IDS) in insects. The defense responses against predators, pathogens, and poisons are deeply intertwined. They share organs, resources, and signaling molecules. By connecting defense responses into an IDS, animals gain flexibility, and resilience. Resources can be redirected across fight-or-flight, immune, and detoxification defenses to optimize an individual's response to the current challenges facing it. At the same time, the IDS reconfigures defense responses that are losing access to resources, allowing them to maintain as much function as possible despite decreased resource availability. An IDS perspective provides an adaptive explanation for paradoxical phenomena such as stress-induced immunosuppression, and the observation that exposure to a single challenge typically leads to an increase in the expression of genes for all three defense responses. Further exploration of the IDS will require more studies examining how defense responses to a range of stressors are interconnected in a variety of species. Such studies should target pollinators and agricultural pests. These studies will be critical for predicting how insects will respond to multiple stressors, such as simultaneous anthropogenic threats, for example, climate change and pesticides.
Collapse
Affiliation(s)
- Shelley Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Rigal J, Martin Anduaga A, Bitman E, Rivellese E, Kadener S, Marr MT. Artificially stimulating retrotransposon activity increases mortality and accelerates a subset of aging phenotypes in Drosophila. eLife 2022; 11:80169. [PMID: 35980024 PMCID: PMC9427105 DOI: 10.7554/elife.80169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are mobile sequences of DNA that can become transcriptionally active as an animal ages. Whether TE activity is simply a by-product of heterochromatin breakdown or can contribute toward the aging process is not known. Here, we place the TE gypsy under the control of the UAS GAL4 system to model TE activation during aging. We find that increased TE activity shortens the life span of male Drosophila melanogaster. The effect is only apparent in middle-aged animals. The increase in mortality is not seen in young animals. An intact reverse transcriptase is necessary for the decrease in life span, implicating a DNA-mediated process in the effect. The decline in life span in the active gypsy flies is accompanied by the acceleration of a subset of aging phenotypes. TE activity increases sensitivity to oxidative stress and promotes a decline in circadian rhythmicity. The overexpression of the Forkhead-box O family (FOXO) stress response transcription factor can partially rescue the detrimental effects of increased TE activity on life span. Our results provide evidence that active TEs can behave as effectors in the aging process and suggest a potential novel role for dFOXO in its promotion of longevity in D. melanogaster.
Collapse
Affiliation(s)
- Joyce Rigal
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Elena Bitman
- Department of Biology, Brandeis University, Waltham, United States
| | - Emma Rivellese
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
8
|
Strilbytska O, Strutynska T, Semaniuk U, Burdyliyk N, Bubalo V, Lushchak O. Dietary Sucrose Determines Stress Resistance, Oxidative Damages, and Antioxidant Defense System in Drosophila. SCIENTIFICA 2022; 2022:7262342. [PMID: 35547569 PMCID: PMC9085363 DOI: 10.1155/2022/7262342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Varied nutritional interventions affect lifespan and metabolic health. Abundant experimental evidence indicates that the carbohydrate restriction in the diet induces changes to support long-lived phenotypes. Reactive oxygen species (ROS) are among the main mechanisms that mediate the effect of nutrient consumption on the aging process. Here, we tested the influence of sucrose concentration in the diet on stress resistance, antioxidant defense systems, and oxidative stress markers in D. melanogaster. We found that high sucrose concentration in the fly medium leads to enhanced resistance to starvation, oxidative, heat, and cold stresses. However, flies that were raised on low sucrose food displayed increased levels of low-molecular-mass thiols, lipid peroxides in females, and higher activity of antioxidant enzymes, indicating that the consumption of a low carbohydrate diet could induce oxidative stress in the fruit fly. We found that the consumption of sucrose-enriched diet increased protein carbonyl level, which may indicate about the activation of glycation processes. The results highlight a strong dependence of oxidative metabolism in D. melanogaster from dietary carbohydrates.
Collapse
Affiliation(s)
- Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Tetiana Strutynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia Burdyliyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Volodymyr Bubalo
- Laboratory of Experimental Toxicology and Mutagenesis, L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, Kyiv, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
9
|
Lim JJ, Hyun S. Minocycline treatment improves proteostasis during Drosophila aging via autophagy mediated by FOXO and Hsp70. Biomed Pharmacother 2022; 149:112803. [PMID: 35286967 DOI: 10.1016/j.biopha.2022.112803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022] Open
Abstract
Minocycline is a semi-synthetic tetracycline derivative antibiotic that has been examined for its non-antibiotic properties, such as anti-inflammatory, tumor-suppressive, and neuroprotective effects. In this study, we found that feeding minocycline to Drosophila improves proteostasis during organismal aging. Poly-ubiquitinated protein aggregates increase in the flight muscles as flies age, which are reduced in response to minocycline feeding. Minocycline feeding increases the expression of several autophagy genes and the activity of the autophagy/lysosomal pathway in Drosophila muscles. Interestingly, mutant flies lacking either FOXO or Hsp70 showed increased levels of poly-ubiquitinated protein aggregates with reduced autophagy/lysosomal activity, which was not reversed by minocycline feeding. Our findings suggest that minocycline may improve proteostasis in aging tissues via FOXO-Hsp70 axis, which highlights the multifaceted effects of minocycline as a therapeutic agent in age-associated features.
Collapse
Affiliation(s)
- Jin Ju Lim
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
10
|
Shih SR, Bach DM, Rondeau NC, Sam J, Lovinger NL, Lopatkin AJ, Snow JW. Honey bee sHSP are responsive to diverse proteostatic stresses and potentially promising biomarkers of honey bee stress. Sci Rep 2021; 11:22087. [PMID: 34764357 PMCID: PMC8586346 DOI: 10.1038/s41598-021-01547-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
The pollination services provided by the honey bee are critical in both natural and agricultural ecosystems. Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. Defining specific common cellular processes and cellular stress responses impacted by multiple stressors represent a key step in understanding these synergies. Proteotoxic stresses negatively impact protein synthesis, folding, and degradation. Diverse proteotoxic stresses induce expression of genes encoding small heat shock proteins (sHSP) of the expanded lethal (2) essential for life (l(2)efl) gene family. In addition to upregulation by the Integrated Stress Response (ISR), the Heat Shock Response (HSR), and the Oxidative Stress Response (OSR), our data provide first evidence that sHSP genes are upregulated by the Unfolded Protein Response (UPR). As these genes appear to be part of a core stress response that could serve as a useful biomarker for cellular stress in honey bees, we designed and tested an RT-LAMP assay to detect increased l(2)efl gene expression in response to heat-stress. While this assay provides a powerful proof of principle, further work will be necessary to link changes in sHSP gene expression to colony-level outcomes, to adapt our preliminary assay into a Point of Care Testing (POCT) assay appropriate for use as a diagnostic tool for use in the field, and to couple assay results to management recommendations.
Collapse
Affiliation(s)
- Samantha R Shih
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Dunay M Bach
- Biology Department, Barnard College, New York, NY, 10027, USA
| | | | - Jessica Sam
- Biology Department, Barnard College, New York, NY, 10027, USA
| | | | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
11
|
Mota A, Waxman HK, Hong R, Lagani GD, Niu SY, Bertherat FL, Wolfe L, Malicdan CM, Markello TC, Adams DR, Gahl WA, Cheng CS, Beffert U, Ho A. FOXR1 regulates stress response pathways and is necessary for proper brain development. PLoS Genet 2021; 17:e1009854. [PMID: 34723967 PMCID: PMC8559929 DOI: 10.1371/journal.pgen.1009854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
The forkhead box (Fox) family of transcription factors are highly conserved and play essential roles in a wide range of cellular and developmental processes. We report an individual with severe neurological symptoms including postnatal microcephaly, progressive brain atrophy and global developmental delay associated with a de novo missense variant (M280L) in the FOXR1 gene. At the protein level, M280L impaired FOXR1 expression and induced a nuclear aggregate phenotype due to protein misfolding and proteolysis. RNAseq and pathway analysis showed that FOXR1 acts as a transcriptional activator and repressor with central roles in heat shock response, chaperone cofactor-dependent protein refolding and cellular response to stress pathways. Indeed, FOXR1 expression is increased in response to cellular stress, a process in which it directly controls HSPA6, HSPA1A and DHRS2 transcripts. The M280L mutant compromises FOXR1's ability to respond to stress, in part due to impaired regulation of downstream target genes that are involved in the stress response pathway. Quantitative PCR of mouse embryo tissues show Foxr1 expression in the embryonic brain. Using CRISPR/Cas9 gene editing, we found that deletion of mouse Foxr1 leads to a severe survival deficit while surviving newborn Foxr1 knockout mice have reduced body weight. Further examination of newborn Foxr1 knockout brains revealed a decrease in cortical thickness and enlarged ventricles compared to littermate wild-type mice, suggesting that loss of Foxr1 leads to atypical brain development. Combined, these results suggest FOXR1 plays a role in cellular stress response pathways and is necessary for normal brain development.
Collapse
Affiliation(s)
- Andressa Mota
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Hannah K. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Rui Hong
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Gavin D. Lagani
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Sheng-Yong Niu
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Féodora L. Bertherat
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine May Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine S. Cheng
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
13
|
Zatsepina OG, Nikitina EA, Shilova VY, Chuvakova LN, Sorokina S, Vorontsova JE, Tokmacheva EV, Funikov SY, Rezvykh AP, Evgen'ev MB. Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster. Cell Stress Chaperones 2021; 26:575-594. [PMID: 33829398 PMCID: PMC8065088 DOI: 10.1007/s12192-021-01203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins, in particular Hsp70, play a central role in proteostasis in eukaryotic cells. Due to its chaperone properties, Hsp70 is involved in various processes after stress and under normal physiological conditions. In contrast to mammals and many Diptera species, inducible members of the Hsp70 family in Drosophila are constitutively synthesized at a low level and undergo dramatic induction after temperature elevation or other forms of stress. In the courtship suppression paradigm used in this study, Drosophila males that have been repeatedly rejected by mated females during courtship are less likely than naive males to court other females. Although numerous genes with known function were identified to play important roles in long-term memory, there is, to the best of our knowledge, no direct evidence implicating Hsp70 in this process. To elucidate a possible role of Hsp70 in memory formation, we used D. melanogaster strains containing different hsp70 copy numbers, including strains carrying a deletion of all six hsp70 genes. Our investigations exploring the memory of courtship rejection paradigm demonstrated that a low constitutive level of Hsp70 is apparently required for learning and the formation of short and long-term memories in males. The performed transcriptomic studies demonstrate that males with different hsp70 copy numbers differ significantly in the expression of a few definite groups of genes involved in mating, reproduction, and immunity in response to rejection. Specifically, our analysis reveals several major pathways that depend on the presence of hsp70 in the genome and participate in memory formation and consolidation, including the cAMP signaling cascade.
Collapse
Affiliation(s)
- O G Zatsepina
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - E A Nikitina
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University, St. Petersburg, Russia
| | - V Y Shilova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S Sorokina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - E V Tokmacheva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
14
|
Lin YH, Maaroufi HO, Kucerova L, Rouhova L, Filip T, Zurovec M. Adenosine Receptor and Its Downstream Targets, Mod(mdg4) and Hsp70, Work as a Signaling Pathway Modulating Cytotoxic Damage in Drosophila. Front Cell Dev Biol 2021; 9:651367. [PMID: 33777958 PMCID: PMC7994771 DOI: 10.3389/fcell.2021.651367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Adenosine (Ado) is an important signaling molecule involved in stress responses. Studies in mammalian models have shown that Ado regulates signaling mechanisms involved in “danger-sensing” and tissue-protection. Yet, little is known about the role of Ado signaling in Drosophila. In the present study, we observed lower extracellular Ado concentration and suppressed expression of Ado transporters in flies expressing mutant huntingtin protein (mHTT). We altered Ado signaling using genetic tools and found that the overexpression of Ado metabolic enzymes, as well as the suppression of Ado receptor (AdoR) and transporters (ENTs), were able to minimize mHTT-induced mortality. We also identified the downstream targets of the AdoR pathway, the modifier of mdg4 (Mod(mdg4)) and heat-shock protein 70 (Hsp70), which modulated the formation of mHTT aggregates. Finally, we showed that a decrease in Ado signaling affects other Drosophila stress reactions, including paraquat and heat-shock treatments. Our study provides important insights into how Ado regulates stress responses in Drosophila.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomas Filip
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
15
|
Lee J, Lee S, Son J, Lim H, Kim E, Kim D, Ha S, Hur T, Lee S, Choi I. Analysis of circulating-microRNA expression in lactating Holstein cows under summer heat stress. PLoS One 2020; 15:e0231125. [PMID: 32866172 PMCID: PMC7458322 DOI: 10.1371/journal.pone.0231125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Korean peninsula weather is rapidly becoming subtropical due to global warming. In summer 2018, South Korea experienced the highest temperatures since the meteorological observations recorded in 1907. Heat stress has a negative effect on Holstein cows, the most popular breed of dairy cattle in South Korea, which is susceptible to heat. To examine physiological changes in dairy cows under heat stress conditions, we analyzed the profiles circulating microRNAs isolated from whole blood samples collected under heat stress and non-heat stress conditions using small RNA sequencing. We compared the expression profiles in lactating cows under heat stress and non-heat stress conditions to understand the regulation of biological processes in heat-stressed cows. Moreover, we measured several heat stress indicators, such as rectal temperature, milk yield, and average daily gain. All these assessments showed that pregnant cows were more susceptible to heat stress than non-pregnant cows. In addition, we found the differential expression of 11 miRNAs (bta-miR-19a, bta-miR-19b, bta-miR-30a-5p, and several from the bta-miR-2284 family) in both pregnant and non-pregnant cows under heat stress conditions. In target gene prediction and gene set enrichment analysis, these miRNAs were found to be associated with the cytoskeleton, cell junction, vasculogenesis, cell proliferation, ATP synthesis, oxidative stress, and immune responses involved in heat response. These miRNAs can be used as potential biomarkers for heat stress.
Collapse
Affiliation(s)
- Jihwan Lee
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Soohyun Lee
- Department of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Junkyu Son
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Hyeonju Lim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Euntae Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Donghyun Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Seungmin Ha
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Taiyoung Hur
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Seunghwan Lee
- Department of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (IC); (SL)
| | - Inchul Choi
- Department of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (IC); (SL)
| |
Collapse
|
16
|
Bayliak MM, Demianchuk OI, Gospodaryov DV, Abrat OB, Lylyk MP, Storey KB, Lushchak VI. Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110746. [PMID: 32579905 DOI: 10.1016/j.cbpa.2020.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
The transcription factor Nrf2 and its negative regulator Keap1 play important roles in the maintenance of redox homeostasis in animal cells. Nrf2 activates defenses against oxidative stress and xenobiotics. Homologs of Nrf2 and Keap1 are present in Drosophila melanogaster (CncC and dKeap1, respectively). The aim of this study was to explore effects of CncC deficiency (due to mutation in the cnc gene) or enhanced activity (due to mutation in the dKeap1 gene) on redox status and energy metabolism of young adult flies in relation to behavioral traits and resistance to a number of stressors. Deficiency in either CncC or dKeap1 delayed pupation and increased climbing activity and heat stress resistance in 2-day-old adult flies. Males and females of the ∆keap1 line shared some similarities such as elevated antioxidant defense as well as lower triacylglyceride and higher glucose levels. Males of the ∆keap1 line also had a higher activity of hexokinase, whereas ∆keap1 females showed higher glycogen levels and lower values of respiratory control and ATP production than flies of the control line. Mutation of cnc gene in allele cncEY08884 caused by insertion of P{EPgy2} transposon in cnc promotor did not affect significantly the levels of metabolites and redox parameters, and even activated some components of antioxidant defense. These data suggest that the mutation can be hypomorphic as well as CncC protein can be dispensable for adult fruit flies under physiological conditions. In females, CncC mutation led to lower mitochondrial respiration, higher hexokinase activity and higher fecundity as compared with the control line. Either CncC activation or its deficiency affected stress resistance of flies.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Oleksandra B Abrat
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Maria P Lylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
17
|
Kwon SY, Massey K, Watson MA, Hussain T, Volpe G, Buckley CD, Nicolaou A, Badenhorst P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. Life Sci Alliance 2020; 3:3/2/e201900356. [PMID: 31992650 PMCID: PMC6988086 DOI: 10.26508/lsa.201900356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023] Open
Abstract
Obesity-induced inflammation, or meta-inflammation, plays key roles in metabolic syndrome and is a significant risk factor in diabetes and cardiovascular disease. To investigate causal links between obesity, meta-inflammation, and insulin signaling we established a Drosophila model to determine how elevated dietary fat and changes in the levels and balance of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) influence inflammation. We observe negligible effect of saturated fatty acid on inflammation but marked enhancement or suppression by omega-6 and omega-3 PUFAs, respectively. Using combined lipidomic and genetic analysis, we show omega-6 PUFA enhances meta-inflammation by producing linoleic acid-derived lipid mediator 9-hydroxy-octadecadienoic acid (9-HODE). Transcriptome analysis reveals 9-HODE functions by regulating FOXO family transcription factors. We show 9-HODE activates JNK, triggering FOXO nuclear localisation and chromatin binding. FOXO TFs are important transducers of the insulin signaling pathway that are normally down-regulated by insulin. By activating FOXO, 9-HODE could antagonise insulin signaling providing a molecular conduit linking changes in dietary fatty acid balance, meta-inflammation, and insulin resistance.
Collapse
Affiliation(s)
- So Yeon Kwon
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Karen Massey
- Bradford School of Pharmacy, University of Bradford, Bradford, UK
| | - Mark A Watson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Tayab Hussain
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Giacomo Volpe
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, Centre for Translational Inflammation Research, Queen Elizabeth Hospital, Edgbaston, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anna Nicolaou
- Bradford School of Pharmacy, University of Bradford, Bradford, UK.,Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul Badenhorst
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
18
|
Yuan F, Yang Z, Tang T, Xie S, Liu F. A 28.6-kD small heat shock protein (MnHSP28.6) protects Macrobrachium nipponense against heavy metal toxicity and oxidative stress by virtue of its anti-aggregation activity. FISH & SHELLFISH IMMUNOLOGY 2019; 95:635-643. [PMID: 31678183 DOI: 10.1016/j.fsi.2019.10.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones and involved into various physiological and stress processes. In the present study, a 28.6-kD sHSP coding gene, MnHSP28.6, was cloned and characterized from the oriental river prawn Macrobrachium nipponense. Tissue distribution analysis via qPCR and western blot revealed that MnHSP28.6 predominantly expressed in muscle. The temporal transcription of MnHSP28.6 in muscle after bacterial challenge, heavy metal exposure and doxorubicin (DOX) injection was investigated by qPCR. The results showed that the expression of MnHSP28.6 were strongly enhanced by both Cd2+ and Cu2+ exposure, as well as DOX injection, but not by bacterial infection. Aggregation assays showed that recombinant MnHSP28.6 could effectively prevent temperature-induced aggregation of citrate synthase, and reduction-induced aggregation of insulin in vitro. MnHSP28.6 also could protect muscle extracts from heat-induced protein denaturation and superoxide dismutase (SOD) inactivation. Expressing MnHSP28.6 in E. coli conferred host cell impressive protection against H2O2 compared to control. These results suggest a protective role of MnHSP28.6 in maintaining protein homeostasis, preventing aggregation, promoting resistance to heavy metal and keeping redox balance.
Collapse
Affiliation(s)
- Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zilan Yang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
19
|
Matrine Protects Cardiomyocytes From Ischemia/Reperfusion Injury by Regulating HSP70 Expression Via Activation of the JAK2/STAT3 Pathway. Shock 2019; 50:664-670. [PMID: 29394239 DOI: 10.1097/shk.0000000000001108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies have shown that matrine showed cardiovascular protective effects; however, its role and mechanism in myocardial ischemia/reperfusion (I/R) injury remain unknown. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway activation and elevated heat shock protein (HSP) 70 are closely related to the prevention of myocardial I/R injury. The cardioprotective effects of matrine were determined in hypoxia/reoxygenation (H/R)-treated primary rat cardiomyocytes and left anterior descending coronary artery ligation and reperfusion animal models. The molecular mechanisms of matrine in myocardial I/R injury were focused on JAK2/STAT3 pathway activation and HSP70 expression. We found that matrine significantly increased H/R-induced the suppression of cell viability, decreased lactate dehydrogenase release, creatine kinase activity, and cardiomyocytes apoptosis in vitro. Moreover, matrine notably reduced the serum levels of creatine kinase-myocardial band (CK-MB) and cardiac troponin I, lessened the infarcted area of the heart, and decreased the apoptotic index of cardiomyocytes induced by I/R in vivo. Matrine activated the JAK2/STAT3 signaling, upregulated HSP70 expression both in vitro and in vivo. The cardioprotective effects of matrine were abrogated by AG490, a JAK2 inhibitor, and HSP70 siRNA. In addition, AG490 reduced HSP70 expression increased by matrine. In conclusion, matrine attenuates myocardial I/R injury by upregulating HSP70 expression via the activation of the JAK2/STAT3 pathway.
Collapse
|
20
|
Le Bourg E, Polesello C. Hypergravity increases resistance to heat in dFOXO Drosophila melanogaster mutants and can lower FOXO translocation in wild-type males. Biogerontology 2019; 20:883-891. [PMID: 31542843 DOI: 10.1007/s10522-019-09836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022]
Abstract
Severe stresses have deleterious effects, but mild stresses can have beneficial effects called hormetic effects. This study observed survival time of wild-type Drosophila melanogaster flies and dFOXO mutants exposed to 37 °C, a severe stress for flies, after they lived or not for 2 weeks in hypergravity (3 or 5 g), a mild stress with hormetic effects in flies. Hypergravity increased survival time of the mutants, this effect being less observed in wild-type flies. The heat stress increased dFOXO translocation similarly in all gravity groups in a wild-type strain, and hypergravity decreased dFOXO translocation similarly in heat-stressed or not heat-stressed males, no clear effect of the gravity level being observed in females. Because hypergravity increases resistance to heat in dFOXO mutants and the translocation is not tightly dependent on the gravity level, one can conclude that dFOXO does not mediate the effect of hypergravity on resistance to heat. A previous study showed that another mild stress, the cold, can increase survival time at 37 °C of wild-type D. melanogaster flies, but this was not observed in dFOXO mutants. Therefore, two mild stresses, cold and hypergravity, can increase resistance to heat but the pathways mediating this effect are seemingly different, as cold does not increase resistance in dFOXO mutants while hypergravity increases it.
Collapse
Affiliation(s)
- Eric Le Bourg
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI Toulouse), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Cédric Polesello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI Toulouse), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
21
|
Fasano C, Disciglio V, Bertora S, Lepore Signorile M, Simone C. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells 2019; 8:cells8091110. [PMID: 31546924 PMCID: PMC6769815 DOI: 10.3390/cells8091110] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5′-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions.
Collapse
Affiliation(s)
- Candida Fasano
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Vittoria Disciglio
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Stefania Bertora
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Martina Lepore Signorile
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy.
| | - Cristiano Simone
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
22
|
Tikhomirova TS, Galzitskaya OV. Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata. Mol Biol 2018. [DOI: 10.1134/s0026893318050138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Tan J, MacRae TH. Stress tolerance in diapausing embryos of Artemia franciscana is dependent on heat shock factor 1 (Hsf1). PLoS One 2018; 13:e0200153. [PMID: 29979776 PMCID: PMC6034868 DOI: 10.1371/journal.pone.0200153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Embryos of the crustacean, Artemia franciscana, may undergo oviparous development, forming encysted embryos (cysts) that are released from females and enter diapause, a state of suppressed metabolism and greatly enhanced stress tolerance. Diapause-destined embryos of A. franciscana synthesize three small heat shock proteins (sHsps), p26, ArHsp21 and ArHsp22, as well as artemin, a ferritin homologue, all lacking in embryos that develop directly into nauplii. Of these diapause-specific molecular chaperones, p26 and artemin are important contributors to the extraordinary stress tolerance of A. franciscana cysts, but how their synthesis is regulated is unknown. To address this issue, a cDNA for heat shock factor 1 (Hsf1), shown to encode a protein similar to Hsf1 from other organisms, was cloned from A. franciscana. Hsf1 was knocked down by RNA interference (RNAi) in nauplii and cysts of A. franciscana. Nauplii lacking Hsf1 died prematurely upon release from females, showing that this transcription factor is essential to the survival of nauplii. Diapause cysts with diminished amounts of Hsf1 were significantly less stress tolerant than cysts containing normal levels of Hsf1. Moreover, cysts deficient in Hsf1 possessed reduced amounts of p26, ArHsp21, ArHsp22 and artemin, revealing dependence on Hsf1 for expression of their genes and maximum stress tolerance. The results demonstrate an important role for Hsf1, likely in concert with other transcription factors, in the survival and growth of A. franciscana and in the developmentally regulated synthesis of proteins responsible for the stress tolerance of diapausing A. franciscana cysts.
Collapse
Affiliation(s)
- Jiabo Tan
- Department of Biology, Dalhousie University, Halifax, N. S., Canada
| | - Thomas H. MacRae
- Department of Biology, Dalhousie University, Halifax, N. S., Canada
| |
Collapse
|
24
|
Gruntenko NE, Rauschenbach IY. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A mini-review. Gen Comp Endocrinol 2018; 258:134-139. [PMID: 28554733 DOI: 10.1016/j.ygcen.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
The endocrine stress response in Drosophila includes catecholamines, juvenile hormone (JH), 20-hydroxyecdysone (20E) and the insulin/insulin-like growth factor signalling pathway (IIS). Several changes in the IIS and hormonal status that occur under unfavourable conditions are universal and do not depend on the nature of stress exposure. The reviewed studies on the impact of different element of the Drosophila IIS, such as insulin-like receptor, the homologue of its substrate, CHICO, the transcription factor dFOXO and insulin like peptide 6, on the hormonal status suggest that the IIS controls catecholamine metabolism indirectly via JH, and there is a feedback loop in the interaction of JH and IIS. Moreover, at least one of the ways in which the IIS is involved in the control of stress resistance is mediated through JH/dopamine signalling.
Collapse
Affiliation(s)
- N E Gruntenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia.
| | - I Yu Rauschenbach
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
25
|
Alasiri G, Fan LYN, Zona S, Goldsbrough IG, Ke HL, Auner HW, Lam EWF. ER stress and cancer: The FOXO forkhead transcription factor link. Mol Cell Endocrinol 2018; 462:67-81. [PMID: 28572047 DOI: 10.1016/j.mce.2017.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Hui-Ling Ke
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holger Werner Auner
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
26
|
Borch Jensen M, Qi Y, Riley R, Rabkina L, Jasper H. PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila. eLife 2017; 6:26952. [PMID: 28891792 PMCID: PMC5614561 DOI: 10.7554/elife.26952] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) has been associated with long lifespan across metazoans. In Caenorhabditis elegans, mild developmental mitochondrial stress activates UPRmt reporters and extends lifespan. We show that similar developmental stress is necessary and sufficient to extend Drosophila lifespan, and identify Phosphoglycerate Mutase 5 (PGAM5) as a mediator of this response. Developmental mitochondrial stress leads to activation of FoxO, via Apoptosis Signal-regulating Kinase 1 (ASK1) and Jun-N-terminal Kinase (JNK). This activation persists into adulthood and induces a select set of chaperones, many of which have been implicated in lifespan extension in flies. Persistent FoxO activation can be reversed by a high-protein diet in adulthood, through mTORC1 and GCN-2 activity. Accordingly, the observed lifespan extension is prevented on a high-protein diet and in FoxO-null flies. The diet-sensitivity of this pathway has important implications for interventions that seek to engage the UPRmt to improve metabolic health and longevity.
Collapse
Affiliation(s)
| | - Yanyan Qi
- Buck Institute for Research on Aging, Novato, United States
| | - Rebeccah Riley
- Buck Institute for Research on Aging, Novato, United States
| | - Liya Rabkina
- Buck Institute for Research on Aging, Novato, United States
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, United States.,Immunology Discovery, Genentech, South San Francisco, United States
| |
Collapse
|
27
|
A mild cold stress that increases resistance to heat lowers FOXO translocation in Drosophila melanogaster. Biogerontology 2017; 18:791-801. [DOI: 10.1007/s10522-017-9722-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
|
28
|
Charmpilas N, Kyriakakis E, Tavernarakis N. Small heat shock proteins in ageing and age-related diseases. Cell Stress Chaperones 2017; 22:481-492. [PMID: 28074336 PMCID: PMC5465026 DOI: 10.1007/s12192-016-0761-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Small heat shock proteins (sHSPs) are gatekeepers of cellular homeostasis across species, preserving proteome integrity under stressful conditions. Nonetheless, recent evidence suggests that sHSPs are more than molecular chaperones with merely auxiliary role. In contrast, sHSPs have emerged as central lifespan determinants, and their malfunction has been associated with the manifestation of neurological disorders, cardiovascular disease and cancer malignancies. In this review, we focus on the role of sHSPs in ageing and age-associated diseases and highlight the most prominent paradigms, where impairment of sHSP function has been implicated in human pathology.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013, Heraklion, Crete, Greece
| | - Emmanouil Kyriakakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Department of Biomedicine, Laboratory for Signal Transduction, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013, Heraklion, Crete, Greece.
| |
Collapse
|