1
|
Chen X, Wang YJ, Mu TW. Proteostasis regulation of GABA A receptors in neuronal function and disease. Biomed Pharmacother 2025; 186:117992. [PMID: 40112516 PMCID: PMC12068001 DOI: 10.1016/j.biopha.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAARs) are ligand-gated anion channels that mediate fast inhibitory neurotransmission in the mammalian central nervous system. GABAARs form heteropentameric assemblies comprising two α1, two β2, and one γ2 subunits as the most common subtype in mammalian brains. Proteostasis regulation of GABAARs involves subunit folding within the endoplasmic reticulum, assembling into heteropentamers, receptor trafficking to the cell surface, and degradation of terminally misfolded subunits. As GABAARs are surface proteins, their trafficking to the plasma membrane is critical for proper receptor function. Thus, variants in the genes encoding GABAARs that disrupt proteostasis result in various neurodevelopmental disorders, ranging from intellectual disability to idiopathic generalized epilepsy. This review summarizes recent progress about how the proteostasis network regulates protein folding, assembly, degradation, trafficking, and synaptic clustering of GABAARs. Additionally, emerging pharmacological approaches that restore proteostasis of pathogenic GABAAR variants are presented, providing a promising strategy to treat related neurological diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Doerksen AH, Herath NN, Sanders SS. Fat traffic control: S-acylation in axonal transport. Mol Pharmacol 2025; 107:100039. [PMID: 40349611 DOI: 10.1016/j.molpha.2025.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Neuronal axons serve as a conduit for the coordinated transport of essential molecular cargo between structurally and functionally distinct subcellular compartments via axonal molecular machinery. Long-distance, efficient axonal transport of membrane-bound organelles enables signal transduction and neuronal homeostasis. Efficient axonal transport is conducted by dynein and kinesin ATPase motors that use a local ATP supply from metabolic enzymes tethered to transport vesicles. Molecular motor adaptor proteins promote the processive motility and cargo selectivity of fast axonal transport. Axonal transport impairments are directly causative or associated with many neurodegenerative diseases and neuropathologies. Cargo specificity, cargo-adaptor proteins, and posttranslational modifications of cargo, adaptor proteins, microtubules, or the motor protein subunits all contribute to the precise regulation of vesicular transit. One posttranslational lipid modification that is particularly important in neurons in regulating protein trafficking, protein-protein interactions, and protein association with lipid membranes is S-acylation. Interestingly, many fast axonal transport cargos, cytoskeletal-associated proteins, motor protein subunits, and adaptors are S-acylated to modulate axonal transport. Here, we review the established regulatory role of S-acylation in fast axonal transport and provide evidence for a broader role of S-acylation in regulating the motor-cargo complex machinery, adaptor proteins, and metabolic enzymes from low-throughput studies and S-acyl-proteomic data sets. We propose that S-acylation regulates fast axonal transport and vesicular motility through localization of the proteins required for the motile cargo-complex machinery and relate how perturbed S-acylation contributes to transport impairments in neurological disorders. SIGNIFICANCE STATEMENT: This review investigates the regulatory role of S-acylation in fast axonal transport and its connection to neurological diseases, with a focus on the emerging connections between S-acylation and the molecular motors, adaptor proteins, and metabolic enzymes that make up the trafficking machinery.
Collapse
Affiliation(s)
- Amelia H Doerksen
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Nisandi N Herath
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Shaun S Sanders
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Shao XJ, Wang W, Xu AX, Qi XT, Cai MY, Du WX, Cao J, He QJ, Ying MD, Yang B. Palmitoyltransferase ZDHHC3 is essential for the oncogenic activity of PML/RARα in acute promyelocytic leukemia. Acta Pharmacol Sin 2025; 46:462-473. [PMID: 39227737 PMCID: PMC11747460 DOI: 10.1038/s41401-024-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
The oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) is critical for acute promyelocytic leukemia (APL). PML/RARα initiates APL by blocking the differentiation and increasing the self-renewal of leukemic cells. The standard clinical therapies all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which induce PML/RARα proteolysis, have dramatically improved the prognosis of APL patients. However, the emergence of mutations conferring resistance to ATRA and ATO has created challenges in the treatment of APL patients. Exploring pathways that modulate the oncogenic activity of PML/RARα could help develop novel therapeutic strategies for APL, particularly for drug-resistant APL. Herein, we demonstrated for the first time that palmitoylation of PML/RARα was a critical determinant of its oncogenic activity. PML/RARα palmitoylation was found to be catalyzed mainly by the palmitoyltransferase ZDHHC3. Mechanistically, ZDHHC3-mediated palmitoylation regulated the oncogenic transcriptional activity of PML/RARα and APL pathogenesis. The knockdown or overexpression of ZDHHC3 had respective effects on the expression of proliferation- and differentiation-related genes. Consistently, the depletion or inhibition of ZDHHC3 could significantly arrest the malignant progression of APL, particularly drug-resistant APL, whereas ZDHHC3 overexpression appeared to have a promoting effect on the malignant progression of APL. Thus, our study not only reveals palmitoylation as a novel regulatory mechanism that modulates PML/RARα oncogenic activity but also identifies ZDHHC3 as a potential therapeutic target for APL, including drug-resistant APL.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Animals
- Lipoylation
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Mice
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Tretinoin/pharmacology
- Tretinoin/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Drug Resistance, Neoplasm
- Cell Differentiation/drug effects
- Mice, Nude
Collapse
Affiliation(s)
- Xue-Jing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ai-Xiao Xu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Tian Qi
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min-Yi Cai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Xin Du
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Division of Hematology-Oncology, the Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310015, China.
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Tong J, Gao J, Qi Y, Gao Z, Wang Q, Liu Y, Yuan T, Ren M, Yang G, Li Z, Li J, Sun H, Zhao X, Leung YY, Mu Y, Xu J, Lu C, Peng S, Ge L. GABA AR-PPT1 palmitoylation homeostasis controls synaptic transmission and circuitry oscillation. Transl Psychiatry 2024; 14:488. [PMID: 39695089 DOI: 10.1038/s41398-024-03206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
The infantile neuronal ceroid lipofuscinosis, also called CLN1 disease, is a fatal neurodegenerative disease caused by mutations in the CLN1 gene encoding palmitoyl protein thioesterase 1 (PPT1). Identifying the depalmitoylation substrates of PPT1 is crucial for understanding CLN1 disease. In this study, we found that GABAAR, the critical synaptic protein essential for inhibitory neurotransmission, is a substrate of PPT1. PPT1 depalmitoylates GABAAR α1 subunit at Cystein-260, while binding to Cystein-165 and -179. Mutations of PPT1 or its GABAAR α1 subunit binding site enhanced inhibitory synaptic transmission and strengthened oscillations powers but disrupted phase coupling in CA1 region and impaired learning and memory in 1- to 2-months-old PPT1-deficient and Gabra1em1 mice. Our study highlights the critical role of PPT1 in maintaining GABAAR palmitoylation homeostasis and reveals a previously unknown molecular pathway in CLN1 diseases induced by PPT1 mutations.
Collapse
Affiliation(s)
- Jia Tong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, He'nan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Jingjing Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yawei Qi
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Ziyan Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Qianqian Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Yang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Tiangang Yuan
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Minglong Ren
- Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Guixia Yang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Zhaoyue Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Jin Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Hongyuan Sun
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Xing Zhao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Yeung-Yeung Leung
- Division of Brain Sciences, Imperial College Faculty of Medicine, Du Cane Road, London, UK
| | - Yonghui Mu
- Basic Medical College, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Jiamin Xu
- Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Chengbiao Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China.
- He'nan International Joint Laboratory for Non-invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, He'nan, China.
| | - Shiyong Peng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China.
| | - Lihao Ge
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, He'nan, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China.
| |
Collapse
|
5
|
Ocasio CA, Baggelaar MP, Sipthorp J, Losada de la Lastra A, Tavares M, Volarić J, Soudy C, Storck EM, Houghton JW, Palma-Duran SA, MacRae JI, Tomić G, Carr L, Downward J, Eggert US, Tate EW. A palmitoyl transferase chemical-genetic system to map ZDHHC-specific S-acylation. Nat Biotechnol 2024; 42:1548-1558. [PMID: 38191663 PMCID: PMC11471619 DOI: 10.1038/s41587-023-02030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/13/2023] [Indexed: 01/10/2024]
Abstract
The 23 human zinc finger Asp-His-His-Cys motif-containing (ZDHHC) S-acyltransferases catalyze long-chain S-acylation at cysteine residues across an extensive network of hundreds of proteins important for normal physiology or dysregulated in disease. Here we present a technology to directly map the protein substrates of a specific ZDHHC at the whole-proteome level, in intact cells. Structure-guided engineering of paired ZDHHC 'hole' mutants and 'bumped' chemically tagged fatty acid probes enabled probe transfer to specific protein substrates with excellent selectivity over wild-type ZDHHCs. Chemical-genetic systems were exemplified for five human ZDHHCs (3, 7, 11, 15 and 20) and applied to generate de novo ZDHHC substrate profiles, identifying >300 substrates and S-acylation sites for new functionally diverse proteins across multiple cell lines. We expect that this platform will elucidate S-acylation biology for a wide range of models and organisms.
Collapse
Affiliation(s)
| | - Marc P Baggelaar
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
- Utrecht University, Biomolecular Mass Spectrometry & Proteomics Group, Utrecht, The Netherlands
| | - James Sipthorp
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Ana Losada de la Lastra
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Manuel Tavares
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Jana Volarić
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | | | - Elisabeth M Storck
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | | | - Susana A Palma-Duran
- The Francis Crick Institute, London, UK
- Department of Food Science, Research Center in Food and Development A.C., Hermosillo, Mexico
| | | | | | | | | | - Ulrike S Eggert
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | - Edward W Tate
- The Francis Crick Institute, London, UK.
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK.
| |
Collapse
|
6
|
Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X, Luo P. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol 2024; 14:1342830. [PMID: 38293675 PMCID: PMC10824933 DOI: 10.3389/fphar.2023.1342830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
S-palmitoylation is a reversible posttranslational modification, and the palmitoylation reaction in human-derived cells is mediated by the zDHHC family, which is composed of S-acyltransferase enzymes that possess the DHHC (Asp-His-His-Cys) structural domain. zDHHC proteins form an autoacylation intermediate, which then attaches the fatty acid to cysteine a residue in the target protein. zDHHC proteins sublocalize in different neuronal structures and exert dif-ferential effects on neurons. In humans, many zDHHC proteins are closely related to human neu-rological disor-ders. This review focuses on a variety of neurological disorders, such as AD (Alz-heimer's disease), HD (Huntington's disease), SCZ (schizophrenia), XLID (X-linked intellectual disability), attention deficit hyperactivity disorder and glioma. In this paper, we will discuss and summarize the research progress regarding the role of zDHHC proteins in these neu-rological disorders.
Collapse
Affiliation(s)
- Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Life Science, Northwest University, Xi’an, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Ni H, Wang Y, Yao K, Wang L, Huang J, Xiao Y, Chen H, Liu B, Yang CY, Zhao J. Cyclical palmitoylation regulates TLR9 signalling and systemic autoimmunity in mice. Nat Commun 2024; 15:1. [PMID: 38169466 PMCID: PMC10762000 DOI: 10.1038/s41467-023-43650-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes self-DNA and plays intricate roles in systemic lupus erythematosus (SLE). However, the molecular mechanism regulating the endosomal TLR9 response is incompletely understood. Here, we report that palmitoyl-protein thioesterase 1 (PPT1) regulates systemic autoimmunity by removing S-palmitoylation from TLR9 in lysosomes. PPT1 promotes the secretion of IFNα by plasmacytoid dendritic cells (pDCs) and TNF by macrophages. Genetic deficiency in or chemical inhibition of PPT1 reduces anti-nuclear antibody levels and attenuates nephritis in B6.Sle1yaa mice. In healthy volunteers and patients with SLE, the PPT1 inhibitor, HDSF, reduces IFNα production ex vivo. Mechanistically, biochemical and mass spectrometry analyses demonstrated that TLR9 is S-palmitoylated at C258 and C265. Moreover, the protein acyltransferase, DHHC3, palmitoylates TLR9 in the Golgi, and regulates TLR9 trafficking to endosomes. Subsequent depalmitoylation by PPT1 facilitates the release of TLR9 from UNC93B1. Our results reveal a posttranslational modification cycle that controls TLR9 response and autoimmunity.
Collapse
Affiliation(s)
- Hai Ni
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinuo Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongfang Xiao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyao Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| | - Cliff Y Yang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Jijun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Hernandez LM, Montersino A, Niu J, Guo S, Faezov B, Sanders SS, Dunbrack RL, Thomas GM. Palmitoylation-dependent control of JAK1 kinase signaling governs responses to neuropoietic cytokines and survival in DRG neurons. J Biol Chem 2023; 299:104965. [PMID: 37356718 PMCID: PMC10413081 DOI: 10.1016/j.jbc.2023.104965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Luiselys M Hernandez
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shuchi Guo
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Bulat Faezov
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Kazan Federal University, Kazan, Russian Federation
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
10
|
Sharma C, Hemler ME. Antioxidant and Anticancer Functions of Protein Acyltransferase DHHC3. Antioxidants (Basel) 2022; 11:antiox11050960. [PMID: 35624824 PMCID: PMC9137668 DOI: 10.3390/antiox11050960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Silencing of DHHC3, an acyltransferase enzyme in the DHHC family, extensively upregulates oxidative stress (OS). Substrates for DHHC3-mediated palmitoylation include several antioxidant proteins and many other redox regulatory proteins. This helps to explain why DHHC3 ablation upregulates OS. DHHC3 also plays a key role in cancer. DHHC3 ablation leads to diminished xenograft growth of multiple cancer cell types, along with diminished metastasis. Furthermore, DHHC3 protein is upregulated on malignant/metastatic cancer samples, and upregulated gene expression correlates with diminished patient survival in several human cancers. Decreased primary tumor growth due to DHHC3 ablation may be partly explained by an elevated OS → senescence → innate immune cell recruitment mechanism. Elevated OS due to DHHC3 ablation may also contribute to adaptive anticancer immunity and impair tumor metastasis. In addition, DHHC3 ablation disrupts antioxidant protection mechanisms, thus enhancing the efficacy of OS-inducing anticancer drugs. A major focus has thus far been on OS regulation by DHHC3. However, remaining to be studied are multiple DHHC3 substrates that may affect tumor behavior independent of OS. Nonetheless, the currently established properties of DHHC3 make it an attractive candidate for therapeutic targeting in situations in which antioxidant protections need to be downmodulated, and also in cancer.
Collapse
|
11
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
12
|
Kerkenberg N, Wachsmuth L, Zhang M, Schettler C, Ponimaskin E, Faber C, Baune BT, Zhang W, Hohoff C. Brain microstructural changes in mice persist in adulthood and are modulated by the palmitoyl acyltransferase ZDHHC7. Eur J Neurosci 2021; 54:5951-5967. [PMID: 34355442 DOI: 10.1111/ejn.15415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
For a long time, mice have been classified as adults with completely mature brains at 8 weeks of age, but recent research suggests that developmental brain changes occur for up to 6 months. In particular, adolescence coincides with dramatic changes of neuronal structure and function in the brain that influence the connectivity between areas like hippocampus and medial prefrontal cortex (mPFC). Neuronal development and plasticity are regulated in part by the palmitoyl acyltransferase ZDHHC7, which modulates structural connectivity between hippocampus and mPFC. The aim of the current study was to investigate whether developmental changes take place in hippocampus and mPFC microstructure even after 8 weeks of age and whether deficiency of ZDHHC7 impacts such age-dependent alterations. Altogether, 46 mice at 11, 14 or 17 weeks of age with a genetic Zdhhc7 knockout (KO) or wild type (WT) were analysed with neuroimaging and diffusion tensor-based fibre tractography. The hippocampus and mPFC regions were compared regarding fibre metrics, supplemented by volumetric and immunohistological analyses of the hippocampus. In WT animals, we identified age-dependent changes in hippocampal fibre lengths that followed a U-shaped pattern, whereas in mPFC, changes were linear. In Zdhhc7-deficient animals, the fibre statistics were reduced in both regions, whereas the hippocampus volume and the intensities of myelin and neurofilament were higher in 11-week-old KO mice compared to WTs. Our results confirmed ongoing changes of microstructure in mice up to 17 weeks old and demonstrate that deleting the Zdhhc7 gene impairs fibre development, suggesting that palmitoylation is important in this process.
Collapse
Affiliation(s)
- Nicole Kerkenberg
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Mingyue Zhang
- Department of Mental Health, University of Münster, Münster, Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Cornelius Faber
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Clinic of Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Mental Health, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Abstract
Protein palmitoylation is the post-translational attachment of fatty acids, most commonly palmitate (C16 : 0), onto a cysteine residue of a protein. This reaction is catalysed by a family of integral membrane proteins, the zDHHC protein acyltransferases (PATs), so-called due to the presence of an invariant Asp-His-His-Cys (DHHC) cysteine-rich domain harbouring the catalytic centre of the enzyme. Conserved throughout eukaryotes, the zDHHC PATs are encoded by multigene families and mediate palmitoylation of thousands of protein substrates. In humans, a number of zDHHC proteins are associated with human diseases, including intellectual disability, Huntington's disease, schizophrenia and cancer. Key to understanding the physiological and pathophysiological importance of individual zDHHC proteins is the identification of their protein substrates. Here, we will describe the approaches and challenges in assigning substrates for individual zDHHCs, highlighting key mechanisms that underlie substrate recruitment.
Collapse
Affiliation(s)
- Martin Ian P Malgapo
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Maurine E Linder
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J 2021; 289:861-882. [PMID: 33624421 DOI: 10.1111/febs.15781] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
The lipid post-translational modification S-palmitoylation is a vast developing field, with the modification itself and the enzymes that catalyse the reversible reaction implicated in a number of diseases. In this review, we discuss the past and recent advances in the experimental tools used in this field, including pharmacological tools, animal models and techniques to understand how palmitoylation controls protein localisation and function. Additionally, we discuss the obstacles to overcome in order to advance the field, particularly to the point at which modulating palmitoylation may be achieved as a therapeutic strategy.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
15
|
Collura KM, Niu J, Sanders SS, Montersino A, Holland SM, Thomas GM. The palmitoyl acyltransferases ZDHHC5 and ZDHHC8 are uniquely present in DRG axons and control retrograde signaling via the Gp130/JAK/STAT3 pathway. J Biol Chem 2020; 295:15427-15437. [PMID: 32958558 PMCID: PMC7667964 DOI: 10.1074/jbc.ra120.013815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Palmitoylation, the modification of proteins with the lipid palmitate, is a key regulator of protein targeting and trafficking. However, knowledge of the roles of specific palmitoyl acyltransferases (PATs), which catalyze palmitoylation, is incomplete. For example, little is known about which PATs are present in neuronal axons, although long-distance trafficking of palmitoyl-proteins is important for axon integrity and for axon-to-soma retrograde signaling, a process critical for axon development and for responses to injury. Identifying axonally targeted PATs might thus provide insights into multiple aspects of axonal biology. We therefore comprehensively determined the subcellular distribution of mammalian PATs in dorsal root ganglion (DRG) neurons and, strikingly, found that only two PATs, ZDHHC5 and ZDHHC8, were enriched in DRG axons. Signals via the Gp130/JAK/STAT3 and DLK/JNK pathways are important for axonal injury responses, and we found that ZDHHC5 and ZDHHC8 were required for Gp130/JAK/STAT3, but not DLK/JNK, axon-to-soma signaling. ZDHHC5 and ZDHHC8 robustly palmitoylated Gp130 in cotransfected nonneuronal cells, supporting the possibility that Gp130 is a direct ZDHHC5/8 substrate. In DRG neurons, Zdhhc5/8 shRNA knockdown reduced Gp130 palmitoylation and even more markedly reduced Gp130 surface expression, potentially explaining the importance of these PATs for Gp130-dependent signaling. Together, these findings provide new insights into the subcellular distribution and roles of specific PATs and reveal a novel mechanism by which palmitoylation controls axonal retrograde signaling.
Collapse
Affiliation(s)
- Kaitlin M Collura
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sabrina M Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
16
|
Sharma C, Yang W, Steen H, Freeman MR, Hemler ME. Antioxidant functions of DHHC3 suppress anti-cancer drug activities. Cell Mol Life Sci 2020; 78:2341-2353. [PMID: 32986127 DOI: 10.1007/s00018-020-03635-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Ablation of protein acyltransferase DHHC3 selectively enhanced the anti-cancer cell activities of several chemotherapeutic agents, but not kinase inhibitors. To understand why this occurs, we used comparative mass spectrometry-based palmitoyl-proteomic analysis of breast and prostate cancer cell lines, ± DHHC3 ablation, to obtain the first comprehensive lists of candidate protein substrates palmitoylated by DHHC3. Putative substrates included 22-28 antioxidant/redox-regulatory proteins, thus predicting that DHHC3 should have antioxidant functions. Consistent with this, DHHC3 ablation elevated oxidative stress. Furthermore, DHHC3 ablation, together with chemotherapeutic drug treatment, (a) elevated oxidative stress, with a greater than additive effect, and (b) enhanced the anti-growth effects of the chemotherapeutic agents. These results suggest that DHHC3 ablation enhances chemotherapeutic drug potency by disabling the antioxidant protections that contribute to drug resistance. Affirming this concept, DHHC3 ablation synergized with another anti-cancer drug, PARP inhibitor PJ-34, to decrease cell proliferation and increase oxidative stress. Hence, DHHC3 targeting can be a useful strategy for selectively enhancing potency of oxidative stress-inducing anti-cancer drugs. Also, comprehensive identification of DHHC3 substrates provides insight into other DHHC3 functions, relevant to in vivo tumor growth modulation.
Collapse
Affiliation(s)
- Chandan Sharma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Dana-Farber Cancer Institute, Rm SM-520, 450 Brookline Ave, Boston, MA, 02215, USA.
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hanno Steen
- Department of Pathology and Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Martin E Hemler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Hayashi T. Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br J Pharmacol 2020; 178:784-797. [PMID: 32159240 DOI: 10.1111/bph.15050] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the mammalian CNS, glutamate is the major excitatory neurotransmitter. Ionotropic glutamate receptors (iGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Regulation of glutamatergic synapses is critical for higher brain functions including neural communication, memory formation, learning, emotion, and behaviour. Many previous studies have shown that post-translational protein S-palmitoylation, the only reversible covalent attachment of lipid to protein, regulates synaptic expression, intracellular localization, and membrane trafficking of iGluRs and their scaffolding proteins in neurons. This modification mechanism is extremely conserved in the vertebrate lineages. The failure of appropriate palmitoylation-dependent regulation of iGluRs leads to hyperexcitability that reduces the maintenance of network stability, resulting in brain disorders, such as epileptic seizures. This review summarizes advances in the study of palmitoylation of iGluRs, especially AMPA receptors and NMDA receptors, and describes the current understanding of palmitoylation-dependent regulation of excitatory glutamatergic synapses. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takashi Hayashi
- Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
18
|
Gorinski N, Wojciechowski D, Guseva D, Abdel Galil D, Mueller FE, Wirth A, Thiemann S, Zeug A, Schmidt S, Zareba-Kozioł M, Wlodarczyk J, Skryabin BV, Glage S, Fischer M, Al-Samir S, Kerkenberg N, Hohoff C, Zhang W, Endeward V, Ponimaskin E. DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels. J Biol Chem 2020; 295:5970-5983. [PMID: 32184353 DOI: 10.1074/jbc.ra119.011049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7 -/- mice. Although palmitoylation of barttin in kidneys of Zdhhc7 -/- animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7 -/- mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.
Collapse
Affiliation(s)
- Nataliya Gorinski
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Dalia Abdel Galil
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Franziska E Mueller
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Wirth
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Thiemann
- Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Schmidt
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Zareba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Boris V Skryabin
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149 Münster, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Samer Al-Samir
- Institute of Vegetative Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Kerkenberg
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany
| | - Weiqi Zhang
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Volker Endeward
- Institute of Vegetative Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
19
|
Ernst AM, Toomre D, Bogan JS. Acylation - A New Means to Control Traffic Through the Golgi. Front Cell Dev Biol 2019; 7:109. [PMID: 31245373 PMCID: PMC6582194 DOI: 10.3389/fcell.2019.00109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The Golgi is well known to act as center for modification and sorting of proteins for secretion and delivery to other organelles. A key sorting step occurs at the trans-Golgi network and is mediated by protein adapters. However, recent data indicate that sorting also occurs much earlier, at the cis-Golgi, and uses lipid acylation as a novel means to regulate anterograde flux. Here, we examine an emerging role of S-palmitoylation/acylation as a mechanism to regulate anterograde routing. We discuss the critical Golgi-localized DHHC S-palmitoyltransferase enzymes that orchestrate this lipid modification, as well as their diverse protein clients (e.g., MAP6, SNAP25, CSP, LAT, β-adrenergic receptors, GABA receptors, and GLUT4 glucose transporters). Critically, for integral membrane proteins, S-acylation can act as new a “self-sorting” signal to concentrate these cargoes in rims of Golgi cisternae, and to promote their rapid traffic through the Golgi or, potentially, to bypass the Golgi. We discuss this mechanism and examine its potential relevance to human physiology and disease, including diabetes and neurodegenerative diseases.
Collapse
Affiliation(s)
- Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jonathan S Bogan
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
20
|
Deficiency of the palmitoyl acyltransferase ZDHHC7 impacts brain and behavior of mice in a sex-specific manner. Brain Struct Funct 2019; 224:2213-2230. [PMID: 31183559 DOI: 10.1007/s00429-019-01898-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
The palmitoyl acyltransferase ZDHHC7 belongs to the DHHC family responsible for the covalent attachment of palmitic acid (palmitoylation) to target proteins. Among synaptic proteins, its main targets are sex steroid receptors such as the estrogen receptors. When palmitoylated, these couple to membrane microdomains and elicit non-genomic rapid responses. Such coupling is found particularly in cortico-limbic brain areas which impact structure, function, and behavioral outcomes. Thus far, the functional role of ZDHHC7 has not been investigated in this context. To directly analyze an impact of ZDHHC7 on brain anatomy, microstructure, connectivity, function, and behavior, we generated a mutant mouse in which the Zdhhc7 gene is constitutively inactivated. Male and female Zdhhc7-/- mice were phenotypically compared with wild-type mice using behavioral tests, electrophysiology, protein analyses, and neuroimaging with diffusion tensor-based fiber tractography. Zdhhc7-deficiency impaired excitatory transmission, synaptic plasticity at hippocampal Schaffer collateral CA1 synapses, and hippocampal structural connectivity in both sexes in similar manners. Effects on both sexes but in different manners appeared in medial prefrontal cortical synaptic transmission and in hippocampal microstructures. Finally, Zdhhc7-deficiency affected anxiety-related behaviors exclusively in females. Our data demonstrated the importance of Zdhhc7 for assembling proper brain structure, function, and behavior on a system level in mice in a sex-related manner. Given the prominent role of sex-specificity also in humans and associated mental disorders, Zdhhc7-/- mice might provide a promising model for in-depth investigation of potentially underlying sex-specifically altered mechanisms.
Collapse
|
21
|
Crowley NA, Magee SN, Feng M, Jefferson SJ, Morris CJ, Dao NC, Brockway DF, Luscher B. Ketamine normalizes binge drinking-induced defects in glutamatergic synaptic transmission and ethanol drinking behavior in female but not male mice. Neuropharmacology 2019; 149:35-44. [PMID: 30731135 DOI: 10.1016/j.neuropharm.2019.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 01/06/2023]
Abstract
Ketamine is a fast acting experimental antidepressant with significant therapeutic potential for emotional disorders such as major depressive disorder and alcohol use disorders. Of particular interest is binge alcohol use, which during intermittent withdrawal from drinking involves depressive-like symptoms reminiscent of major depressive disorder. Binge drinking has been successfully modeled in mice with the Drinking in the Dark (DID) paradigm, which involves daily access to 20% ethanol, for a limited duration and selectively during the dark phase of the circadian light cycle. Here we demonstrate that DID exposure reduces the cell surface expression of NMDA- and AMPA-type glutamate receptors in the prelimbic cortex (PLC) of female but not male mice, along with reduced activity of the mammalian target of rapamycin (mTOR) signaling pathway. Pretreatment with an acute subanesthetic dose of ketamine suppresses binge-like ethanol consumption in female but not male mice. Lastly, DID-exposure reduces spontaneous glutamatergic synaptic transmission in the PLC of both sexes, but synaptic transmission is rescued by ketamine selectively in female mice. Thus, ketamine may have therapeutic potential as an ethanol binge suppressing agent selectively in female subjects.
Collapse
Affiliation(s)
- Nicole A Crowley
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah N Magee
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengyang Feng
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah J Jefferson
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Christian J Morris
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nigel C Dao
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dakota F Brockway
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
22
|
Meitzen J, Britson KA, Tuomela K, Mermelstein PG. The expression of select genes necessary for membrane-associated estrogen receptor signaling differ by sex in adult rat hippocampus. Steroids 2019; 142:21-27. [PMID: 28962849 PMCID: PMC5874170 DOI: 10.1016/j.steroids.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
Abstract
17β-estradiol can rapidly modulate neuron function via membrane estrogen receptors (ERs) in a sex-specific manner. For example, female rat hippocampal neurons express palmitoylated versions of ERα and ERβ that associate with the plasma membrane. These membrane-associated ERs are organized by caveolin proteins into functional signaling microdomains with metabotropic glutamate receptors (mGluRs). ER/mGluR signaling mediates several sex-specific estradiol actions on hippocampal neuron function. An important unanswered question regards the mechanism by which sex-specific membrane-associated ER signaling is generated, especially since it has been previously demonstrated that mGluR action is not sex-specific. One possibility is that the genes necessary for the ER membrane complex are differentially expressed between males and females, including genes that encode ERα and β, caveolin 1 and 3, and/or the palmitoylacyltransferases DHHC-7 and -21. Thus we used qPCR to test the hypothesis that these genes show sex differences in expression in neonatal and adult rat hippocampus. As an additional control we tested the expression of the 20 other DHHC palmitoylacyltransferases with no known connections to ER. In neonatal hippocampus, no sex differences were detected in gene expression. In adult hippocampus, the genes that encode caveolin 1 and DHHC-7 showed decreased expression in females compared to males. Thus, select genes differ by sex at specific developmental stages, arguing for a more nuanced model than simple widespread perinatal emergence of sex differences in all genes enabling sex-specific estradiol action. These findings enable the generation of new hypotheses regarding the mechanisms by which sex differences in membrane-associated ER signaling are programmed.
Collapse
Affiliation(s)
- John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.
| | - Kyla A Britson
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Krista Tuomela
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul G Mermelstein
- Dept. of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
23
|
Zhou L, Tang X, Li X, Bai Y, Buxbaum JN, Chen G. Identification of transthyretin as a novel interacting partner for the δ subunit of GABAA receptors. PLoS One 2019; 14:e0210094. [PMID: 30615651 PMCID: PMC6322723 DOI: 10.1371/journal.pone.0210094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023] Open
Abstract
GABAA receptors (GABAA-Rs) play critical roles in brain development and synchronization of neural network activity. While synaptic GABAA-Rs can exert rapid inhibition, the extrasynaptic GABAA-Rs can tonically inhibit neuronal activity due to constant activation by ambient GABA. The δ subunit-containing GABAA-Rs are expressed abundantly in the cerebellum, hippocampus and thalamus to mediate the major tonic inhibition in the brain. While electrophysiological and pharmacological properties of the δ-GABAA-Rs have been well characterized, the molecular interacting partners of the δ-GABAA-Rs are not clearly defined. Here, using a yeast two-hybrid screening assay, we identified transthyretin (TTR) as a novel regulatory molecule for the δ-GABAA-Rs. Knockdown of TTR in cultured cerebellar granule neurons significantly decreased the δ receptor expression; whereas overexpressing TTR in cortical neurons increased the δ receptor expression. Electrophysiological analysis confirmed that knockdown or overexpression of TTR in cultured neurons resulted in a corresponding decrease or increase of tonic currents. Furthermore, in vivo analysis of TTR-/- mice revealed a significant decrease of the surface expression of the δ-GABAA-Rs in cerebellar granule neurons. Together, our studies identified TTR as a novel regulator of the δ-GABAA-Rs.
Collapse
Affiliation(s)
- Li Zhou
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Xin Tang
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Xinyi Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Yuting Bai
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
24
|
Golgi-specific DHHC type zinc finger protein is decreased in neurons of intractable epilepsy patients and pentylenetetrazole-kindled rats. Neuroreport 2018; 29:1157-1165. [PMID: 29994811 DOI: 10.1097/wnr.0000000000001088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Golgi-specific DHHC type zinc finger protein (GODZ) is a member of the DHHC protein family, and its enzymatic activity is regulated by fibroblast growth factor or Src kinase-mediated tyrosine phosphorylation. In cultured neurons, GODZ affects the numbers of calcium ions channels, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, N-methy-D-aspartate receptors, and γ-aminobutyric acid A receptors on postsynaptic membrane by palmitoylation, thus modulating synaptic plasticity. As the change in synaptic plasticity plays a role in epilepsy, GODZ may play roles in epilepsy. However, the expression of GODZ has never been investigated in brain tissues in vivo, and its change during epilepsy is still unclear. In this study, the cellular distribution of GODZ in brain tissues of both patients and rats was determined using double-labeled immunofluorescence and the levels of GODZ protein and mRNA among intractable epilepsy patients, pentylenetetrazole (PTZ)-kindled rats, and controls were measured using immunohistochemistry, Western blot, and real-time quantitative polymerase chain reaction. GODZ expression was identified on cytomembranes and in the cytoplasm of neurons in the temporal neocortex of intractable epilepsy patients and in the hippocampus and the adjacent temporal cortex of PTZ-kindled rats, but not in astrocytes. Decreased GODZ protein and mRNA were identified in brain tissues of intractable epilepsy patients and PTZ-kindled rats compared with the controls. In conclusion, GODZ is expressed in neurons, but not astrocytes, and epilepsy may reduce the protein and mRNA levels of GODZ, indicating a possible role of GODZ in the pathogenesis or the pathophysiology of epilepsy.
Collapse
|
25
|
Lorenz-Guertin JM, Bambino MJ, Jacob TC. γ2 GABA AR Trafficking and the Consequences of Human Genetic Variation. Front Cell Neurosci 2018; 12:265. [PMID: 30190672 PMCID: PMC6116786 DOI: 10.3389/fncel.2018.00265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the central nervous system (CNS). Most prevalent as heteropentamers composed of two α, two β, and a γ2 subunit, these ligand-gated ionotropic chloride channels are capable of extensive genetic diversity (α1-6, β1-3, γ1-3, δ, 𝜀, 𝜃, π, ρ1-3). Part of this selective GABAAR assembly arises from the critical role for γ2 in maintaining synaptic receptor localization and function. Accordingly, mutations in this subunit account for over half of the known epilepsy-associated genetic anomalies identified in GABAARs. Fundamental structure-function studies and cellular pathology investigations have revealed dynamic GABAAR trafficking and synaptic scaffolding as critical regulators of GABAergic inhibition. Here, we introduce in vitro and in vivo findings regarding the specific role of the γ2 subunit in receptor trafficking. We then examine γ2 subunit human genetic variation and assess disease related phenotypes and the potential role of altered GABAAR trafficking. Finally, we discuss new-age imaging techniques and their potential to provide novel insight into critical regulatory mechanisms of GABAAR function.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
27
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
28
|
The Absence of DHHC3 Affects Primary and Latent Herpes Simplex Virus 1 Infection. J Virol 2018; 92:JVI.01599-17. [PMID: 29187538 DOI: 10.1128/jvi.01599-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
UL20, an essential herpes simplex virus 1 (HSV-1) protein, is involved in cytoplasmic envelopment of virions and virus egress. We reported recently that UL20 can bind to a host protein encoded by the zinc finger DHHC-type containing 3 (ZDHHC3) gene (also known as Golgi-specific DHHC zinc finger protein [GODZ]). Here, we show for the first time that HSV-1 replication is compromised in murine embryonic fibroblasts (MEFs) isolated from GODZ-/- mice. The absence of GODZ resulted in blocking palmitoylation of UL20 and altered localization and expression of UL20 and glycoprotein K (gK); the expression of gB and gC; and the localization and expression of tegument and capsid proteins within HSV-1-infected MEFs. Electron microscopy revealed that the absence of GODZ limited the maturation of virions at multiple steps and affected the localization of virus and endoplasmic reticulum morphology. Virus replication in the eyes of ocularly HSV-1-infected GODZ-/- mice was significantly lower than in HSV-1-infected wild-type (WT) mice. The levels of UL20, gK, and gB transcripts in the corneas of HSV-1-infected GODZ-/- mice on day 5 postinfection were markedly lower than in WT mice, whereas only UL20 transcripts were reduced in trigeminal ganglia (TG). In addition, HSV-1-infected GODZ-/- mice showed notably lower levels of corneal scarring, and HSV-1 latency reactivation was also reduced. Thus, normal HSV-1 infectivity and viral pathogenesis are critically dependent on GODZ-mediated palmitoylation of viral UL20.IMPORTANCE HSV-1 infection is widespread. Ocular infection can cause corneal blindness; however, approximately 70 to 90% of American adults exposed to the virus show no clinical symptoms. In this study, we show for the first time that the absence of a zinc finger protein called GODZ affects primary and latent infection, as well as reactivation, in ocularly infected mice. The reduced virus infectivity is due to the absence of the GODZ interaction with HSV-1 UL20. These results strongly suggest that binding of UL20 to GODZ promotes virus infectivity in vitro and viral pathogenesis in vivo.
Collapse
|
29
|
Multiple pro-tumor roles for protein acyltransferase DHHC3. Oncoscience 2018; 4:152-153. [PMID: 29344544 PMCID: PMC5769970 DOI: 10.18632/oncoscience.385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
|
30
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Binding of Herpes Simplex Virus 1 UL20 to GODZ (DHHC3) Affects Its Palmitoylation and Is Essential for Infectivity and Proper Targeting and Localization of UL20 and Glycoprotein K. J Virol 2017; 91:JVI.00945-17. [PMID: 28724772 DOI: 10.1128/jvi.00945-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) UL20 plays a crucial role in the envelopment of the cytoplasmic virion and its egress. It is a nonglycosylated envelope protein that is regulated as a γ1 gene. Two-hybrid and pulldown assays demonstrated that UL20, but no other HSV-1 gene-encoded proteins, binds specifically to GODZ (also known as DHHC3), a cellular Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein. A catalytically inactive dominant-negative GODZ construct significantly reduced HSV-1 replication in vitro and affected the localization of UL20 and glycoprotein K (gK) and their interactions but not glycoprotein C (gC). GODZ is involved in palmitoylation, and we found that UL20 is palmitoylated by GODZ using a GODZ dominant-negative plasmid. Blocking of palmitoylation using 2-bromopalmitate (2-BP) affected the virus titer and the interaction of UL20 and gK but did not affect the levels of these proteins. In conclusion, we have shown that binding of UL20 to GODZ in the Golgi apparatus regulates trafficking of UL20 and its subsequent effects on gK localization and virus replication. We also have demonstrated that GODZ-mediated UL20 palmitoylation is critical for UL20 membrane targeting and thus gK cell surface expression, providing new mechanistic insights into how UL20 palmitoylation regulates HSV-1 infectivity.IMPORTANCE HSV-1 UL20 is a nonglycosylated essential envelope protein that is highly conserved among herpesviruses. In this study, we show that (i) HSV-1 UL20 binds to GODZ (also known as DHHC3), a Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein; (ii) a GODZ dominant-negative mutant and an inhibitor of palmitoylation reduced HSV-1 titers and altered the localization of UL20 and glycoprotein K; and (iii) UL20 is palmitoylated by GODZ, and this UL20 palmitoylation is required for HSV-1 infectivity. Thus, blocking of the interaction of UL20 with GODZ, using a GODZ dominant-negative mutant or possibly GODZ shRNA, should be considered a potential alternative therapy in not only HSV-1 but also other conditions in which GODZ processing is an integral component of pathogenesis.
Collapse
|
32
|
Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW. Dynamic Protein Acylation: New Substrates, Mechanisms, and Drug Targets. Trends Biochem Sci 2017; 42:566-581. [PMID: 28602500 DOI: 10.1016/j.tibs.2017.04.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/04/2023]
Abstract
Post-translational attachment of lipids to proteins is found in all organisms, and is important for many biological processes. Acylation with myristic and palmitic acids are among the most common lipid modifications, and understanding reversible protein palmitoylation dynamics has become a particularly important goal. Linking acyltransferase enzymes to disease states can be challenging due to a paucity of robust models, compounded by functional redundancy between many palmitoyl transferases; however, in cases such as Wnt or Hedgehog signalling, small molecule inhibitors have been identified, with some progressing to clinical trials. In this review, we present recent developments in our understanding of protein acylation in human health and disease through use of chemical tools, global profiling of acylated proteomes, and functional studies of specific protein targets.
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Monica Faronato
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Remigiusz A Serwa
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Edward W Tate
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
33
|
Du K, Murakami S, Sun Y, Kilpatrick CL, Luscher B. DHHC7 Palmitoylates Glucose Transporter 4 (Glut4) and Regulates Glut4 Membrane Translocation. J Biol Chem 2017; 292:2979-2991. [PMID: 28057756 DOI: 10.1074/jbc.m116.747139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/30/2016] [Indexed: 11/06/2022] Open
Abstract
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane plays a key role in the dynamic regulation of glucose homeostasis. We recently showed that this process is critically dependent on palmitoylation of Glut4 at Cys-223. To gain further insights into the regulation of Glut4 palmitoylation, we set out to identify the palmitoyl acyltransferase (PAT) involved. Here we report that among 23 mammalian DHHC proteins, DHHC7 is the major Glut4 PAT, based on evidence that ectopic expression of DHHC7 increased Glut4 palmitoylation, whereas DHHC7 knockdown in 3T3-L1 adipocytes and DHHC7 KO in adipose tissue and muscle decreased Glut4 palmitoylation. Moreover, inactivation of DHHC7 suppressed insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and primary adipocytes. Finally, DHHC7 KO mice developed hyperglycemia and glucose intolerance, thereby confirming that DHHC7 represents the principal PAT for Glut4 and that this mechanism is essential for insulin-regulated glucose homeostasis.
Collapse
Affiliation(s)
- Keyong Du
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| | | | - Yingmin Sun
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| | - Casey L Kilpatrick
- Department of Biochemistry and Molecular Biology.,Department of Biology, and.,Center for Molecular Investigation of Neurological Disorders, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bernhard Luscher
- Department of Biochemistry and Molecular Biology.,Department of Biology, and.,Center for Molecular Investigation of Neurological Disorders, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|