1
|
Shastri VM, Madabushi SS, Hui SK, Lamba JK. CD33-D2 isoform characterization for advancement of its therapeutic potential. Immunotherapy 2025:1-8. [PMID: 40272002 DOI: 10.1080/1750743x.2025.2493038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
PURPOSE While CD33 directed immunotherapies have caught significant interest in recent years, the only approved antibody-drug conjugate targeting this antigen for AML is gemtuzumab ozogamicin, which targets the IgV-domain of CD33. Unfortunately, in its current form, these are not effective in a significant proportion of patients due to the presence of a splicing SNP resulting in the loss of IgV-domain. This, however, can be mitigated by targeting the IgC2-domain of CD33; thus, this study aimed to characterize CD33-D2 isoform using the recently developed CD33-D2-targeting antibody HL2541. METHODS Genetically engineered AML cell lines expressing CD33 isoforms were tested for antibody-bound internalization and response to GO in vitro. AML-bearing NSG-SGM3 mice were used to evaluate CD33-D2 localization and targeting by the HL2541 antibody in vivo. RESULTS HL2541-bound-CD33-D2 is internalized similar to CD33-FL upon binding the antibody component of GO. Co-existence of both isoforms compromises the internalization by >2.5-3-fold for each isoform in the AML cell lines, further resulting in 7-9.5-fold higher IC50 values compared to cells expressing only CD33-FL. Finally, we demonstrate that AML cells expressing CD33-D2 localize to bones in mice and are targeted by HL2541antibody in vivo. CONCLUSION The results establish the relevance of targeting IgC domain as an alternative immunotarget to supplement AML chemotherapy.
Collapse
Affiliation(s)
- Vivek M Shastri
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Susanta K Hui
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Vu HN, Situ AJ, Dai X, Ulmer TS. Structure of the CD33 Receptor and Implications for the Siglec Family. Biochemistry 2025; 64:1450-1462. [PMID: 40067740 PMCID: PMC12002911 DOI: 10.1021/acs.biochem.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
In the innate immune system, the CD33 receptor modulates microglial activity. Its downregulation promises to slow Alzheimer's disease, and it is already targeted in blood cancers. The mechanism underlying CD33 signaling is unresolved. Starting from the available crystal structure of its extracellular IgV-IgC1 domains, we have assembled a model of the human CD33 receptor by characterizing the oligomerization and structure of IgC1, transmembrane, and cytosolic domains in solution. IgC1 homodimerizes via intermolecular β-strand pairing and packing. In contrast, the 21-residue transmembrane helix of CD33 appears monomeric and straight, with a conserved thin neck and thick belly appearance followed by a positively charged cytosolic patch. The cytosolic domain is dynamically unstructured. Sequence alignment and AlphaFold models indicate that IgC domains in the family of human Siglecs, to which CD33 belongs, are surprisingly variable. Only Siglec-6 is identified to analogously dimerize via IgC1. Our CD33 structural model suggests that the receptor is not signaling via a monomer-dimer shift. Rather, we propose that, aided but also constrained by dimerization, multivalent ligands may concentrate the receptor transmembrane and cytosolic domains sufficiently to trigger colocalization with an activating kinase.
Collapse
Affiliation(s)
- Han N. Vu
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Alan J. Situ
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | | | - Tobias S. Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
3
|
Abreu C, Di Carluccio C, Ječmen T, Skořepa O, Bláha J, Marchetti R, Silipo A, Vaněk O. Insights into stability, dimerisation, and ligand binding properties of Siglec-7: Isotope labelling in HEK293 cells for protein characterisation by NMR spectroscopy. Int J Biol Macromol 2025; 309:142672. [PMID: 40164254 DOI: 10.1016/j.ijbiomac.2025.142672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Siglec-7, an immune checkpoint receptor, has emerged as a promising target for cancer immunotherapy due to its involvement in the regulation of immune and inflammatory responses. However, while its participation in immunoediting and immune evasion is well established, understanding its biological context, relevant ligands, and associated signalling pathways remains limited. Understanding these aspects is crucial for the development of effective immunotherapies targeting Siglec-7. In this study, three expression constructs of Siglec-7 were designed, expressed, and characterised, including an analysis of the oligomeric state of its extracellular domain. The N-terminal V-set Ig carbohydrate recognition domain was also produced in an isotopically double-labelled (13C,15N) mammalian cell growth medium. Two stable constructs suitable for biophysical and structural studies were identified. These findings reveal the noncovalent dimerisation of Siglec-7, offering new insights into its possible ligand interactions, signal transduction mechanisms, or receptor/ligand clustering. The dimerisation of Siglec-7 may be essential to achieve multivalent, high-avidity interactions with glycoconjugates, which may result in enhanced or alternative signalling processes within the NK cell immune synapse. In addition, a detailed protocol for generating double-labelled Siglec-7 in HEK293 cells, which may apply to other proteins under similar conditions, was described. These findings contribute to a better understanding of the biophysical and structural properties of Siglec-7 and are key to the design of more precise and effective cancer immunotherapies targeting Siglec-7.
Collapse
Affiliation(s)
- Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Tomáš Ječmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Jan Bláha
- EMBL, Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy; Department of Chemistry, School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Osaka, Japan
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
| |
Collapse
|
4
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
5
|
Garnham R, Geh D, Nelson R, Ramon-Gil E, Wilson L, Schmidt EN, Walker L, Adamson B, Buskin A, Hepburn AC, Hodgson K, Kendall H, Frame FM, Maitland N, Coffey K, Strand DW, Robson CN, Elliott DJ, Heer R, Macauley M, Munkley J, Gaughan L, Leslie J, Scott E. ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) synthesis of Siglec ligands mediates anti-tumour immunity in prostate cancer. Commun Biol 2024; 7:276. [PMID: 38448753 PMCID: PMC10918101 DOI: 10.1038/s42003-024-05924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours. We demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion through the synthesises of sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. Here, we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. These interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.
Collapse
Affiliation(s)
- Rebecca Garnham
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Daniel Geh
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Ryan Nelson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Erik Ramon-Gil
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Laura Wilson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Laura Walker
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Beth Adamson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Adriana Buskin
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Anastasia C Hepburn
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Hannah Kendall
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Norman Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Kelly Coffey
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Craig N Robson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - David J Elliott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Matthew Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jennifer Munkley
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Luke Gaughan
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Jack Leslie
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Emma Scott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
6
|
Borges TJ, Lima K, Murshid A, Lape IT, Zhao Y, Rigo MM, Lang BJ, Siddiqui SS, Hui E, Riella LV, Bonorino C, Calderwood SK. Innate extracellular Hsp70 inflammatory properties are mediated by the interaction of Siglec-E and LOX-1 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569623. [PMID: 38106019 PMCID: PMC10723335 DOI: 10.1101/2023.12.01.569623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Innate immune responses to cell damage-associated molecular patterns induce a controlled degree of inflammation, ideally avoiding the promotion of intense unwanted inflammatory adverse events. When released by damaged cells, Hsp70 can stimulate different responses that range from immune activation to immune suppression. The effects of Hsp70 are mediated through innate receptors expressed primarily by myeloid cells, such as dendritic cells (DCs). The regulatory innate receptors that bind to extracellular mouse Hsp70 (mHsp70) are not fully characterized, and neither are their potential interactions with activating innate receptors. Here, we describe that extracellular mHsp70 interacts with a receptor complex formed by inhibitory Siglec-E and activating LOX-1 on DCs. We also find that this interaction takes place within lipid microdomains, and Siglec-E acts as a negative regulator of LOX-1-mediated innate activation upon mHsp70 or oxidized LDL binding. Thus, HSP70 can both bind to and modulate the interaction of inhibitory and activating innate receptors on the cell surface. These findings add another dimension of regulatory mechanism to how self-molecules contribute to dampening of exacerbated inflammatory responses.
Collapse
|
7
|
Smith BAH, Deutzmann A, Correa KM, Delaveris CS, Dhanasekaran R, Dove CG, Sullivan DK, Wisnovsky S, Stark JC, Pluvinage JV, Swaminathan S, Riley NM, Rajan A, Majeti R, Felsher DW, Bertozzi CR. MYC-driven synthesis of Siglec ligands is a glycoimmune checkpoint. Proc Natl Acad Sci U S A 2023; 120:e2215376120. [PMID: 36897988 PMCID: PMC10089186 DOI: 10.1073/pnas.2215376120] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/06/2022] [Indexed: 03/12/2023] Open
Abstract
The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.
Collapse
Affiliation(s)
- Benjamin A. H. Smith
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Anja Deutzmann
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | | | - Corleone S. Delaveris
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Christopher G. Dove
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Delaney K. Sullivan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, British Columbia, BC V6T 1Z3, Canada
| | - Jessica C. Stark
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - John V. Pluvinage
- Department of Neurology, University of California, San Francisco, CA94143
| | - Srividya Swaminathan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA91016
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA91010
| | | | - Anand Rajan
- Department of Pathology, University of Iowa, Iowa City, IA52242
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Dean W. Felsher
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Carolyn R. Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
8
|
Prescher H, Schweizer A, Frank M, Kuhfeldt E, Ring J, Nitschke L. Targeting Human CD22/Siglec-2 with Dimeric Sialosides as Novel Oligosaccharide Mimetics. J Med Chem 2022; 65:10588-10610. [PMID: 35881556 DOI: 10.1021/acs.jmedchem.2c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Significant interest in the development of high-affinity ligands for Siglecs exists due to the various therapeutically relevant functions of these proteins. Here, we report a new strategy to develop and design Siglec ligands as disialyl-oligosaccharide mimetics exemplified on Siglec-2 (CD22). We report insights into development of dimeric ligands with high affinity and avidity to cell surface-expressed CD22, assay development, tool compounds, structure activity relationships, and biological data on calcium flux regulation in B-cells. The binding modes of selected ligands have been modeled based on state-of-the-art molecular dynamics simulations on the microsecond timescale, providing detailed views on ligand binding and opening a new perspective on drug design efforts for Siglecs. High-avidity dimeric ligands containing a linker opening the way towards bispecifics are presented as well.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Martin Frank
- Biognos AB, Generatorsgatan 1, 40274 Göteborg, Sweden
| | | | - Julia Ring
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Friedman DJ, Kizerwetter M, Belmonte P, Rajcula M, Theodore K, Kim Lee HS, Shapiro MJ, Dong H, Shapiro VS. Cutting Edge: Enhanced Antitumor Immunity in ST8Sia6 Knockout Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1845-1850. [PMID: 35379746 PMCID: PMC9012686 DOI: 10.4049/jimmunol.2101165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
Inhibitory receptors have a critical role in the regulation of immunity. Siglecs are a family of primarily inhibitory receptors expressed by immune cells that recognize specific sialic acid modifications on cell surface glycans. Many tumors have increased sialic acid incorporation. Overexpression of the sialyltransferase ST8Sia6 on tumors led to altered immune responses and increased tumor growth. In this study, we examined the role of ST8Sia6 on immune cells in regulating antitumor immunity. ST8Sia6 knockout mice had an enhanced immune response to tumors. The loss of ST8Sia6 promoted an enhanced intratumoral activation of macrophages and dendritic cells, including upregulation of CD40. Intratumoral regulatory T cells exhibited a more inflammatory phenotype in ST8Sia6 knockout mice. Using adoptive transfer studies, the change in regulatory T cell phenotype was not cell intrinsic and depended on the loss of ST8Sia6 expression in APCs. Thus, ST8Sia6 generates ligands for Siglecs that dampen antitumor immunity.
Collapse
Affiliation(s)
| | | | - Paul Belmonte
- Department of Immunology, Mayo Clinic; Rochester, MN, 55905, USA
| | - Matthew Rajcula
- Department of Immunology, Mayo Clinic; Rochester, MN, 55905, USA
| | - Keith Theodore
- Department of Immunology, Mayo Clinic; Rochester, MN, 55905, USA
| | - Hyun Se Kim Lee
- Department of Immunology, Mayo Clinic; Rochester, MN, 55905, USA
| | | | - Haidong Dong
- Department of Immunology, Mayo Clinic; Rochester, MN, 55905, USA,Department of Urology, College of Medicine, Mayo Clinic; Rochester, MN, 55905, USA
| | | |
Collapse
|
10
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
11
|
Büll C, Nason R, Sun L, Van Coillie J, Madriz Sørensen D, Moons SJ, Yang Z, Arbitman S, Fernandes SM, Furukawa S, McBride R, Nycholat CM, Adema GJ, Paulson JC, Schnaar RL, Boltje TJ, Clausen H, Narimatsu Y. Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proc Natl Acad Sci U S A 2021; 118:e2026102118. [PMID: 33893239 PMCID: PMC8092401 DOI: 10.1073/pnas.2026102118] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.
Collapse
Affiliation(s)
- Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven Arbitman
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Steve M Fernandes
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Gosse J Adema
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ronald L Schnaar
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- GlycoDisplay ApS, Copenhagen, 2100 N, Denmark
| |
Collapse
|
12
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
13
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
14
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
15
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
16
|
Siddiqui SS, Matar R, Merheb M, Hodeify R, Vazhappilly CG, Marton J, Shamsuddin SA, Al Zouabi H. Siglecs in Brain Function and Neurological Disorders. Cells 2019; 8:E1125. [PMID: 31546700 PMCID: PMC6829431 DOI: 10.3390/cells8101125] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are a I-type lectin that typically binds sialic acid. Siglecs are predominantly expressed in immune cells and generate activating or inhibitory signals. They are also shown to be expressed on the surface of cells in the nervous system and have been shown to play central roles in neuroinflammation. There has been a plethora of reviews outlining the studies pertaining to Siglecs in immune cells. However, this review aims to compile the articles on the role of Siglecs in brain function and neurological disorders. In humans, the most abundant Siglecs are CD33 (Siglec-3), Siglec-4 (myelin-associated glycoprotein/MAG), and Siglec-11, Whereas in mice the most abundant are Siglec-1 (sialoadhesin), Siglec-2 (CD22), Siglec-E, Siglec-F, and Siglec-H. This review is divided into three parts. Firstly, we discuss the general biological aspects of Siglecs that are expressed in nervous tissue. Secondly, we discuss about the role of Siglecs in brain function and molecular mechanism for their function. Finally, we collate the available information on Siglecs and neurological disorders. It is intriguing to study this family of proteins in neurological disorders because they carry immunoinhibitory and immunoactivating motifs that can be vital in neuroinflammation.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Rawad Hodeify
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - John Marton
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | | | - Hussain Al Zouabi
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| |
Collapse
|
17
|
Estus S, Shaw BC, Devanney N, Katsumata Y, Press EE, Fardo DW. Evaluation of CD33 as a genetic risk factor for Alzheimer's disease. Acta Neuropathol 2019; 138:187-199. [PMID: 30949760 PMCID: PMC7035471 DOI: 10.1007/s00401-019-02000-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/23/2022]
Abstract
In 2011, genome-wide association studies implicated a polymorphism near CD33 as a genetic risk factor for Alzheimer's disease. This finding sparked interest in this member of the sialic acid-binding immunoglobulin-type lectin family which is linked to innate immunity. Subsequent studies found that CD33 is expressed in microglia in the brain and then investigated the molecular mechanism underlying the CD33 genetic association with Alzheimer's disease. The allele that protects from Alzheimer's disease acts predominately to increase a CD33 isoform lacking exon 2 at the expense of the prototypic, full-length CD33 that contains exon 2. Since this exon encodes the sialic acid ligand-binding domain, the finding that the loss of exon 2 was associated with decreased Alzheimer's disease risk was interpreted as meaning that a decrease in functional CD33 and its associated immune suppression was protective from Alzheimer's disease. However, this interpretation may need to be reconsidered given current findings that a genetic deletion which abrogates CD33 is not associated with Alzheimer's disease risk. Therefore, integrating currently available findings leads us to propose a model wherein the CD33 isoform lacking the ligand-binding domain represents a gain of function variant that reduces Alzheimer's disease risk.
Collapse
Affiliation(s)
- Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Benjamin C Shaw
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Nicholas Devanney
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
18
|
Adams OJ, Stanczak MA, von Gunten S, Läubli H. Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology 2018; 28:640-647. [PMID: 29309569 DOI: 10.1093/glycob/cwx108] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Changes in sialic acids in cancer have been observed for many years. In particular, the increase of sialoglycan density or hypersialylation in tumors has been described. Recent studies have identified mechanisms for immune evasion based on sialoglycan interactions with immunoregulatory Siglec receptors that are exploited by tumor cells and microorganisms alike. Siglecs are mostly inhibitory receptors similar to known immune checkpoints including PD-1 or CTLA-4 that are successfully targeted with blocking antibodies for cancer immunotherapy. Here, we summarize the known changes of sialic acids in cancer and the role Siglec receptors play in cancer immunity. We also focus on potential ways to target these Siglec receptors or sialoglycans in order to improve anti-cancer immunity.
Collapse
Affiliation(s)
- Olivia Joan Adams
- Institute of Pharmacology, University of Bern, Inselspital INO-F, Bern, Switzerland
| | | | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Inselspital INO-F, Bern, Switzerland
| | - Heinz Läubli
- Laboratory of Cancer Immunology, Department of Biomedicine.,Medical Oncology, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, Basel, Switzerland
| |
Collapse
|
19
|
Alkhodair K, Almhanna H, McGetrick J, Gedair S, Gallagher ME, Fernandez-Fuertes B, Tharmalingam T, Larsen PB, Fitzpatrick E, Lonergan P, Evans ACO, Carrington SD, Reid CJ. Siglec expression on the surface of human, bull and ram sperm. Reproduction 2018; 155:361-371. [PMID: 29581386 DOI: 10.1530/rep-17-0475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/06/2018] [Indexed: 01/11/2023]
Abstract
Sialic acid (Sia) is a major constituent of both the sperm glycocalyx and female reproductive mucosal surface and is involved in regulating sperm migration, uterotubal reservoir formation and oocyte binding. Siglecs (sialic acid-binding immunoglobulin - like lectins) commonly found on immune cells, bind to Sia in a linkage- and sugar-specific manner and often mediate cell-to-cell interactions and signalling. Proteomic and transcriptomic analysis of human and bovine sperm have listed Siglecs, but to date, their presence and/or localisation on sperm has not been studied. Therefore, the aim of this study was to characterise the presence of Siglecs on the surface of bovine, human and ovine sperm using both immunostaining and Western blotting. Siglec 1, 2, 5, 6, 10 and 14 were identified and displayed both species- and regional-specific expression on sperm. Almost universal expression across Siglecs and species was evident in the sperm neck and midpiece region while variable expression among Siglecs, similar among species, was detected in the head and tail regions of the sperm. The possible role for these proteins on sperm is discussed.
Collapse
Affiliation(s)
- K Alkhodair
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - H Almhanna
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland.,School of Veterinary MedicineUniversity of Kufa, Kufa, Iraq
| | - J McGetrick
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - S Gedair
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - M E Gallagher
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - B Fernandez-Fuertes
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - T Tharmalingam
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - P B Larsen
- Cryos International - Denmark ApSAarhus, Denmark
| | - E Fitzpatrick
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - P Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - A C O Evans
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - S D Carrington
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - C J Reid
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
20
|
Petvises S, Periasamy P, O'Neill HC. MCSF drives regulatory DC development in stromal co-cultures supporting hematopoiesis. BMC Immunol 2018; 19:21. [PMID: 29940852 PMCID: PMC6020213 DOI: 10.1186/s12865-018-0255-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Splenic stroma overlaid with hematopoietic progenitors supports in vitro hematopoiesis with production of dendritic-like cells. Co-cultures of murine lineage-depleted bone marrow over the 5G3 stromal line produce two populations of cells, characterised as CD11b+CD11c+MHC-II− dendritic-like ‘L-DC’, and CD11b+CD11c+MHC-II+ cells, resembling conventional dendritic cells (cDC). To date, the functional capacity of these two subsets has not been clearly distinguished. Results Here we show both the L-DC and cDC-like subsets can be activated and induce proliferation of OT-I CD8+ T cells, being strong inducers of IL-2 and IFN-γ production. Both subsets lack ability to induce proliferation of OT-II CD4+ T cells. The cDC-like population is shown here to resemble regulatory DC in that they induce FoxP3 expression and IL-10 production in OT-II CD4+ T cells, in line with their function as regulatory DC. L-DC did not activate or induce the proliferation of CD4+ T cells and did not induce FoxP3 expression in CD4+ T cells. L-DC can be distinguished from cDC-like cells through their superior endocytic capacity and expression of 4-1BBL, F4/80 and Sirp-α. A comparison of gene expression by the two subsets was consistent with L-DC having an activated or immunostimulatory DC phenotype, while cDC-like cells reflect myeloid dendritic cells with inflammatory and suppressive properties, also consistent with functional characteristics as regulatory DC. When a Transwell membrane was used to prevent hematopoietic cell contact with stroma, only cDC-like cells and not L-DC were produced, and cell production was dependent on M-CSF production by stroma. Conclusion Co-cultures of hematopoietic progenitors over splenic stroma produce two distinct subsets of dendritic-like cells. These are here distinguished phenotypically and through gene expression differences. While both resemble DC, there are functionally distinct. L-DC activate CD8+ but not CD4+ T cells, while the cDC-like population induce regulatory T cells, so reflecting regulatory DC. The latter can be enriched through Transwell co-cultures with cell production dependent on M-CSF.
Collapse
Affiliation(s)
- Sawang Petvises
- Division of Biomedical Science, Research School of Biology, The Australian National University, Canberra, Australia.,Department of Medical Technology, Faculty of Applied Health Sciences, Thammasat University, Bangkok, Thailand
| | - Pravin Periasamy
- Division of Biomedical Science, Research School of Biology, The Australian National University, Canberra, Australia.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Helen C O'Neill
- Division of Biomedical Science, Research School of Biology, The Australian National University, Canberra, Australia. .,Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia.
| |
Collapse
|
21
|
Yu H, Gonzalez-Gil A, Wei Y, Fernandes SM, Porell RN, Vajn K, Paulson JC, Nycholat CM, Schnaar RL. Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology 2018; 27:657-668. [PMID: 28369504 DOI: 10.1093/glycob/cwx026] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Siglecs are transmembrane sialoglycan binding proteins, most of which are expressed on leukocyte subsets and have inhibitory motifs that translate cell surface ligation into immune suppression. In humans, Siglec-8 on eosinophils, mast cells and basophils and Siglec-9 on neutrophils, monocytes and some T-cells, mediate immune cell death, inhibition of immune mediator release and/or enhancement of anti-inflammatory mediator release. Endogenous sialoglycan ligands in tissues, mostly uncharacterized, engage siglecs on leukocytes to inhibit inflammation. Glycan array analyses demonstrated that Siglec-8, Siglec-9 and their mouse counterparts Siglec-F and Siglec-E (respectively) have distinct glycan binding specificities, with Siglec-8 more structurally restricted. Since siglecs are involved in lung inflammation, we studied Siglec-8 and Siglec-9 ligands in human lungs and airways. Siglec-8 ligands are in tracheal submucosal glands and cartilage but not airway epithelium or connective tissues, whereas Siglec-9 ligands are broadly distributed. Mouse airways do not have Siglec-8 ligands, whereas Siglec-9 ligands are on airways of both species. Extraction of human airways and lung followed by electrophoretic resolution and siglec blotting revealed Siglec-8 ligands in extracts of human trachea and cultured tracheal gland cells, but not parenchyma or cultured airway epithelial cells whereas Siglec-9 ligands were extracted from all airway and lung tissues and cells tested. Siglec-8 and Siglec-9 ligands in airways appear to be high molecular weight O-linked sialoglycoproteins. These data reveal differential glycan specificities of Siglec-8, Siglec-9 and their mouse counterparts Siglec-F and Siglec-E, and the tissue distributions and molecular characteristics of Siglec-8 and Siglec-9 sialoglycan ligands on human airways and lungs.
Collapse
Affiliation(s)
- Huifeng Yu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
| | - Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
| | - Yadong Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
| | - Ryan N Porell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
| | - Katarina Vajn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
| | - James C Paulson
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Corwin M Nycholat
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Li RE, van Vliet SJ, van Kooyk Y. Using the glycan toolbox for pathogenic interventions and glycan immunotherapy. Curr Opin Biotechnol 2017; 51:24-31. [PMID: 29175707 DOI: 10.1016/j.copbio.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Glycans play a crucial role to discern between self and foreign entities by providing key recognition elements for C-type lectin receptors (CLRs) and Siglec receptors expressed on immune cells. The glycan recognition of CLRs has illustrated a potent immune modulatory role affecting not only innate pathogen binding and immune signalling, but also Thelper differentiation, cytokine production and antigen presentation. This broad range of influence has implicated glycans in the pathogenesis of infectious diseases but also revealed their extraordinary properties in cancer. Glycan binding by CLRs and Siglecs can be exploited for immunotherapy and the design of glycan-based therapeutics and their multivalent requirements will aspire new biotechnological approaches to effectively interfere in immunological processes in cancer and infectious diseases.
Collapse
Affiliation(s)
- Rj Eveline Li
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Liu YC, Yu MM, Chai YF, Shou ST. Sialic Acids in the Immune Response during Sepsis. Front Immunol 2017; 8:1601. [PMID: 29209331 PMCID: PMC5702289 DOI: 10.3389/fimmu.2017.01601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are a group of cell surface transmembrane receptors expressed on immune cells, and regulate immune balance in inflammatory diseases. Sepsis is a life-threatened inflammatory syndrome induced by infection, and the pathogenesis of sepsis includes immune dysregulation, inflammation, and coagulation disorder. Here, we reviewed the various roles acted by Siglecs family in the pathogenesis of sepsis. Siglec-1, Siglec-5, and Siglec-14 play bidirectional roles through modulation of inflammation and immunity. Siglec-2 regulates the immune balance during infection by modulating B cell and T cell response. Siglec-9 helps endocytosis of toll-like receptor 4, regulates macrophages polarization, and inhibits the function of neutrophils during infection. Siglec-10 inhibits danger-associated molecular patterns induced inflammation, helps the initiation of antigen response by T cells, and decreases B-1a cell population to weaken inflammation. Regulating the Siglecs function in the different stages of sepsis holds great potential in the therapy of sepsis.
Collapse
Affiliation(s)
- Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Mu-Ming Yu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Alisson-Silva F, Jiang W, Ghosh P, Varki A. The Alzheimer's disease-protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J Biol Chem 2017; 292:15312-15320. [PMID: 28747436 DOI: 10.1074/jbc.m117.799346] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/20/2017] [Indexed: 12/25/2022] Open
Abstract
The immunomodulatory receptor Siglec-3/CD33 influences risk for late-onset Alzheimer's disease (LOAD), an apparently human-specific post-reproductive disease. CD33 generates two splice variants: a full-length CD33M transcript produced primarily by the "LOAD-risk" allele and a shorter CD33m isoform lacking the sialic acid-binding domain produced primarily from the "LOAD-protective" allele. An SNP that modulates CD33 splicing to favor CD33m is associated with enhanced microglial activity. Individuals expressing more protective isoform accumulate less brain β-amyloid and have a lower LOAD risk. How the CD33m isoform increases β-amyloid clearance remains unknown. We report that the protection by the CD33m isoform may not be conferred by what it does but, rather, from what it cannot do. Analysis of blood neutrophils and monocytes and a microglial cell line revealed that unlike CD33M, the CD33m isoform does not localize to cell surfaces; instead, it accumulates in peroxisomes. Cell stimulation and activation did not mobilize CD33m to the surface. Thus, the CD33m isoform may neither interact directly with amyloid plaques nor engage in cell-surface signaling. Rather, production and localization of CD33m in peroxisomes is a way of diminishing the amount of CD33M and enhancing β-amyloid clearance. We confirmed intracellular localization by generating a CD33m-specific monoclonal antibody. Of note, CD33 is the only Siglec with a peroxisome-targeting sequence, and this motif emerged by convergent evolution in toothed whales, the only other mammals with a prolonged post-reproductive lifespan. The CD33 allele that protects post-reproductive individuals from LOAD may have evolved by adaptive loss-of-function, an example of the less-is-more hypothesis.
Collapse
Affiliation(s)
- Shoib S Siddiqui
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Stevan A Springer
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Andrea Verhagen
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Venkatasubramaniam Sundaramurthy
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and
| | - Frederico Alisson-Silva
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | | | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Ajit Varki
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and .,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| |
Collapse
|