1
|
Alam MS, Dhiman A, Bhardwaj T, Chatterjee S, Lakra V, Tripathi M, Lohani K, Sharma YD, Mirdha BR, Kumar A, Sharma TK, Rathore S. Aptamer-Based Diagnosis for Plasmodium vivax Specific Malaria. ACS Infect Dis 2025; 11:762-772. [PMID: 40042916 DOI: 10.1021/acsinfecdis.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Malaria, caused by a protozoan parasite of the genus Plasmodium, is a severe infectious disease with life-threatening consequences that has burdened mankind for centuries. Although Plasmodium falciparum (P. falciparum) malaria is more prevalent globally than Plasmodium vivax (P. vivax) malaria, India bears the largest burden of P. vivax malaria, with over 3.6 million cases accounting for ∼48% of global P. vivax malaria cases. Existing detection methods for P. vivax malaria are costly or tedious or have low accuracy. To address the need for a specific diagnostic assay for P. vivax, we generated aptamers specific to Plasmodium vivax tryptophan-rich antigen (PvTRAg). We employed them in an aptamer-linked immobilized sorbent assay (ALISA) to detect P. vivax malaria infections. The two most specific aptamers for PvTRAg, identified as Apt_14 and Apt_16, were obtained using the Systematic Evolution of Ligands by Exponential Enrichment. The dissociation constant (KD) values of Apt_14 and Apt_16 were 1.9 and 1.2 nM, respectively, indicating high affinity to PvTRAg. The limit of detection for both aptamers was found to be 2.5 nM. During clinical validation, the sensitivity of 96% and 84% was obtained with Apt_14- and Apt_16-based ALISA with 100% specificity. The aptamers demonstrated nonsignificant cross-reactivity with other nonmalarial antigens and PvTRAg homologues along with a high level of selectivity for PvTRAg over P. falciparum antigens and various other antigens. Altogether, our findings confirm the effectiveness of DNA aptamers for the accurate diagnosis of P. vivax malaria and lay the groundwork for developing an aptamer-based diagnostic assay for malaria.
Collapse
Affiliation(s)
- Mohd Shoeb Alam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tanu Bhardwaj
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat 382355, India
| | - Sudarshana Chatterjee
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vaishali Lakra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manish Tripathi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Khusboo Lohani
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Yagya Dutt Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Amit Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat 382355, India
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Mohali, Punjab 160062, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
2
|
Kong WZ, Zhang HY, Sun YF, Song J, Jiang J, Cui HY, Zhang Y, Han S, Cheng Y. Plasmodium vivax tryptophan-rich antigen reduces type I collagen secretion via the NF-κBp65 pathway in splenic fibroblasts. Parasit Vectors 2024; 17:239. [PMID: 38802961 PMCID: PMC11131192 DOI: 10.1186/s13071-024-06264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.
Collapse
Affiliation(s)
- Wei-Zhong Kong
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Hang-Ye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Case Room, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Jiang
- Wuxi Red Cross Blood Center, Wuxi, 214000, China
| | - Heng-Yuan Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yu Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
3
|
Zuo S, Lu J, Sun Y, Song J, Han S, Feng X, Han ET, Cheng Y. The Plasmodium vivax MSP1P-19 is involved in binding of reticulocytes through interactions with the membrane proteins band3 and CD71. J Biol Chem 2024; 300:107285. [PMID: 38636656 PMCID: PMC11107369 DOI: 10.1016/j.jbc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
The parasite Plasmodium vivax preferentially invades human reticulocytes. Its merozoite surface protein 1 paralog (PvMSP1P), particularly the 19-kDa C-terminal region (PvMSP1P-19), has been shown to bind to reticulocytes, and this binding can be inhibited by antisera obtained by PvMSP1P-19 immunization. The molecular mechanism of interactions between PvMSP1P-19 and reticulocytes during P. vivax invasion, however, remains unclear. In this study, we analyzed the ability of MSP1P-19 to bind to different concentrations of reticulocytes and confirmed its reticulocyte preference. LC-MS analysis was used to identify two potential reticulocyte receptors, band3 and CD71, that interact with MSP1P-19. Both PvMSP1P-19 and its sister taxon Plasmodium cynomolgi MSP1P-19 were found to bind to the extracellular loop (loop 5) of band3, where the interaction of MSP1P-19 with band3 was chymotrypsin sensitive. Antibodies against band3-P5, CD71, and MSP1P-19 reduced the binding activity of PvMSP1P-19 and Plasmodium cynomolgi MSP1P-19 to reticulocytes, while MSP1P-19 proteins inhibited Plasmodium falciparum invasion in vitro in a concentration-dependent manner. To sum up, identification and characterization of the reticulocyte receptor is important for understanding the binding of reticulocytes by MSP1P-19.
Collapse
Affiliation(s)
- Shenghuan Zuo
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Song
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Feng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Birczyńska-Zych M, Czepiel J, Łabanowska M, Kucharska M, Kurdziel M, Biesiada G, Garlicki A, Wesełucha-Birczyńska A. Course of Plasmodium infection studied using 2D-COS on human erythrocytes. Malar J 2023; 22:188. [PMID: 37340440 DOI: 10.1186/s12936-023-04611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The threat of malaria is still present in the world. Recognizing the type of parasite is important in determining a treatment plan. The golden routine involves microscopic diagnostics of Giemsa-stained thin blood smears, however, alternative methods are also constantly being sought, in order to gain an additional insight into the course of the disease. Spectroscopic methods, e.g., Raman spectroscopy, are becoming increasingly popular, due to the non-destructive nature of these techniques. METHODS The study included patients hospitalized for malaria caused by Plasmodium falciparum or Plasmodium vivax, in the Department of Infectious Diseases at the University Hospital in Krakow, Poland, as well as healthy volunteers. The aim of this study was to assess the possibility of using Raman spectroscopy and 2D correlation (2D-COS) spectroscopy in understanding the structural changes in erythrocytes depending on the type of attacking parasite. EPR spectroscopy and two-trace two-dimensional (2T2D) correlation was also used to examine the specificity of paramagnetic centres found in the infected human blood. RESULTS Two-dimensional (2D) correlation spectroscopy facilitates the identification of the hidden relationship, allowing for the discrimination of Raman spectra obtained during the course of disease in human red blood cells, infected by P. falciparum or P. vivax. Synchronous cross-peaks indicate the processes taking place inside the erythrocyte during the export of the parasite protein towards the cell membrane. In contrast, moieties that generate asynchronous 2D cross-peaks are characteristic of the respective ligand-receptor domains. These changes observed during the course of the infection, have different dynamics for P. falciparum and P. vivax, as indicated by the asynchronous correlation cross-peaks. Two-trace two-dimensional (2T2D) spectroscopy, applied to EPR spectra of blood at the beginning of the infection, showed differences between P. falciparum and P. vivax. CONCLUSIONS A unique feature of 2D-COS is the ability to discriminate the collected Raman and EPR spectra. The changes observed during the course of a malaria infection have different dynamics for P. falciparum and P. vivax, indicated by the reverse sequence of events. For each type of parasite, a specific recycling process for iron was observed in the infected blood.
Collapse
Affiliation(s)
- Malwina Birczyńska-Zych
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Jacek Czepiel
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Maria Łabanowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Martyna Kucharska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Magdalena Kurdziel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Grażyna Biesiada
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Aleksander Garlicki
- Department of Infectious and Tropical Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- Department of Infectious Diseases, The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | | |
Collapse
|
5
|
De Meulenaere K, Prajapati SK, Villasis E, Cuypers B, Kattenberg JH, Kasian B, Laman M, Robinson LJ, Gamboa D, Laukens K, Rosanas-Urgell A. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front Cell Infect Microbiol 2022; 12:1011692. [PMID: 36250048 PMCID: PMC9563252 DOI: 10.3389/fcimb.2022.1011692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Plasmodium vivax reticulocyte invasion process is still poorly understood, with only a few receptor-ligand interactions identified to date. Individuals with the Southeast Asian ovalocytosis (SAO) phenotype have a deletion in the band 3 protein on the surface of erythrocytes, and are reported to have a lower incidence of clinical P. vivax malaria. Based on this observation, band 3 has been put forward as a receptor for P. vivax invasion, although direct proof is still lacking. In this study, we combined functional ex vivo invasion assays and transcriptome sequencing to uncover a band 3-mediated invasion pathway in P. vivax and potential band 3 ligands. Invasion by P. vivax field isolates was 67%-71% lower in SAO reticulocytes compared with non-SAO reticulocytes. Reticulocyte invasion was decreased by 40% and 27%-31% when blocking with an anti-band 3 polyclonal antibody and a PvTRAg38 peptide, respectively. To identify new band 3 receptor candidates, we mRNA-sequenced schizont-stage isolates used in the invasion assays, and observed high transcriptional variability in multigene and invasion-related families. Transcriptomes of isolates with low or high dependency on band 3 for invasion were compared by differential expression analysis, which produced a list of band 3 ligand candidates with high representation of PvTRAg genes. Our ex vivo invasion assays have demonstrated that band 3 is a P. vivax invasion receptor and confirm previous in vitro studies showing binding between PvTRAg38 and band 3, although the lower and variable inhibition levels observed suggest the involvement of other ligands. By coupling transcriptomes and invasion phenotypes from the same isolates, we identified a list of band 3 ligand candidates, of which the overrepresented PvTRAg genes are the most promising for future research.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Surendra Kumar Prajapati
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | | | - Bernadine Kasian
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Leanne J. Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Health Security and Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Hang JW, Tukijan F, Lee EQH, Abdeen SR, Aniweh Y, Malleret B. Zoonotic Malaria: Non- Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens 2021; 10:889. [PMID: 34358039 PMCID: PMC8308728 DOI: 10.3390/pathogens10070889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.
Collapse
Affiliation(s)
- Jing-Wen Hang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Farhana Tukijan
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Erica-Qian-Hui Lee
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Shifana Raja Abdeen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| | - Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana;
| | - Benoit Malleret
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| |
Collapse
|
7
|
Fan L, Xia J, Shen J, Fang Q, Xia H, Zheng M, Han JH, Han ET, Wang B, Xu Y. An Erythrocyte Membrane-Associated Antigen, PvTRAg-26 of Plasmodium vivax: A Study of Its Antigenicity and Immunogenicity. Front Public Health 2020; 8:148. [PMID: 32411650 PMCID: PMC7198802 DOI: 10.3389/fpubh.2020.00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background:Plasmodium tryptophan-rich (TR) proteins have been proposed as potential vaccine candidate antigens. Among them, P. vivax tryptophan-rich antigens (PvTR-Ags), which have positionally conserved tryptophan residues in a TR domain, are highly antigenic in humans. Several of these antigens, including PvTRAg-26, have exhibited erythrocyte-binding activities. Methods: Subclasses of IgG antibodies against PvTRAg-26 were detected by enzyme-linked immunosorbent assay in 35 P. vivax infected patients and mice immunized with the recombinant antigen to characterize its antigenicity and immunogenicity. Moreover, the antigen-specific immune responses and Th1/Th2-type cytokine patterns of splenocytes from the immunized animals were determined in vitro. The subcellular localization of PvTRAg-26 in ring-stage parasites was also detected by indirect immunofluorescence assay. Results: The IgG1 and IgG3 levels in P. vivax-infected patients were significantly higher than those in uninfected individuals. In the PvTRAg-26-immunized mice, elevated levels of antigen-specific IgG antibodies were observed, dominated by the IgG1 subclass, and Th1-type cytokines were remarkably increased compared with Th2-type cytokines. Additionally, the subcellular location of the PvTRAg-26 protein was closely associated with the caveola-vesicle complex on the infected-erythrocyte membrane in the early ring stage of P. vivax. Conclusions: PvTRAg-26, a P. vivax TR antigen, with high antigenicity and immunogenicity, induces Th1-cytokine response and increases production of IgG1 antibodies. This immune profiling study provided a substantial evidence that PvTRAg-26 may be a potential candidate for P. vivax vaccine development.
Collapse
Affiliation(s)
- Liping Fan
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jinxing Xia
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jilong Shen
- The Key Laboratories of Parasitology and Zoonoses Anhui and Department of Parasitology, Anhui Medical University, Anhui, China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Anhui, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical College, Anhui, China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
8
|
Moreno-Pérez DA, Patarroyo MA. Inferring Plasmodium vivax protein biology by using omics data. J Proteomics 2020; 218:103719. [PMID: 32092400 DOI: 10.1016/j.jprot.2020.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Deciphering Plasmodium vivax biology has long been a challenge for groups working on this parasite, mainly due to the complications involved in propagating it in vitro. However, adapting P. vivax strains in non-human primates and the arrival of high-performance analysis methods has led to increased knowledge regarding parasite protein composition and the ability of some molecules to trigger an immune response or participate in protein-protein interactions. This review describes the state of the art concerning proteomics-, immunomics- and interatomics-related P. vivax omic studies, discussing their potential use in developing disease control methods.
Collapse
Affiliation(s)
- D A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 No. 55-37, Bogotá, Colombia
| | - M A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia.
| |
Collapse
|
9
|
Knuepfer E, Wright KE, Kumar Prajapati S, Rawlinson TA, Mohring F, Koch M, Lyth OR, Howell SA, Villasis E, Snijders AP, Moon RW, Draper SJ, Rosanas-Urgell A, Higgins MK, Baum J, Holder AA. Divergent roles for the RH5 complex components, CyRPA and RIPR in human-infective malaria parasites. PLoS Pathog 2019; 15:e1007809. [PMID: 31185066 PMCID: PMC6588255 DOI: 10.1371/journal.ppat.1007809] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 06/21/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Malaria is caused by Plasmodium parasites, which invade and replicate in erythrocytes. For Plasmodium falciparum, the major cause of severe malaria in humans, a heterotrimeric complex comprised of the secreted parasite proteins, PfCyRPA, PfRIPR and PfRH5 is essential for erythrocyte invasion, mediated by the interaction between PfRH5 and erythrocyte receptor basigin (BSG). However, whilst CyRPA and RIPR are present in most Plasmodium species, RH5 is found only in the small Laverania subgenus. Existence of a complex analogous to PfRH5-PfCyRPA-PfRIPR targeting BSG, and involvement of CyRPA and RIPR in invasion, however, has not been addressed in non-Laverania parasites. Here, we establish that unlike P. falciparum, P. knowlesi and P. vivax do not universally require BSG as a host cell invasion receptor. Although we show that both PkCyRPA and PkRIPR are essential for successful invasion of erythrocytes by P. knowlesi parasites in vitro, neither protein forms a complex with each other or with an RH5-like molecule. Instead, PkRIPR is part of a different trimeric protein complex whereas PkCyRPA appears to function without other parasite binding partners. It therefore appears that in the absence of RH5, outside of the Laverania subgenus, RIPR and CyRPA have different, independent functions crucial for parasite survival. Malaria is one of the most devastating infectious diseases, causing significant human suffering and death. It is caused by parasites of the genus Plasmodium proliferating in the bloodstream. Understanding the mechanism of erythrocyte invasion is key for developing novel intervention strategies. P. falciparum, the cause of the most severe form of malaria, requires the interaction of a trimeric protein complex RH5-CyRPA-RIPR with the host receptor BSG for successful invasion. We show here that the BSG receptor is not essential for invasion by two other major causes of human malaria, P. vivax and P. knowlesi. Furthermore, we analyzed the role of CyRPA and RIPR in the absence of an RH5-like molecule in P. knowlesi and show that these molecules do not associate to form a protein complex unlike in the presence of RH5 in P. falciparum. PkRIPR is part of a different protein complex. Despite this difference CyRPA and RIPR still have essential functions during host cell invasion in other important human malaria-causing parasites.
Collapse
Affiliation(s)
- Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| | - Katherine E. Wright
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| | | | | | - Franziska Mohring
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Marion Koch
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Oliver R. Lyth
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Steven A. Howell
- Proteomics Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Elizabeth Villasis
- Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ambrosius P. Snijders
- Proteomics Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Robert W. Moon
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| |
Collapse
|
10
|
Transcriptome profiling of Plasmodium vivax in Saimiri monkeys identifies potential ligands for invasion. Proc Natl Acad Sci U S A 2019; 116:7053-7061. [PMID: 30872477 DOI: 10.1073/pnas.1818485116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.
Collapse
|
11
|
Human erythrocyte band 3 is a host receptor for Plasmodium falciparum glutamic acid-rich protein. Blood 2018; 133:470-480. [PMID: 30545833 DOI: 10.1182/blood-2018-07-865451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a major global threat to human health and economic development. Microvascular lesions caused by Plasmodium falciparum-infected human erythrocytes/red blood cells are hallmarks of severe pathogenesis contributing to high mortality, particularly in children from sub-Saharan Africa. In this study, we used a phage display complementary DNA library screening strategy to identify P falciparum glutamic acid-rich protein (PfGARP) as a secreted ligand that recognizes an ectodomain of human erythrocyte anion-exchanger, band 3/AE1, as a host receptor. Domain mapping of PfGARP revealed distinct nonoverlapping repeats encoding the immune response epitopes and core erythrocyte-binding activity. Synthetic peptides derived from the erythrocyte-binding repeats of PfGARP induced erythrocyte aggregation reminiscent of the rosetting phenomenon. Using peptides derived from the immunogenic repeats, a quantitative immunoassay was developed to detect a selective immune response against PfGARP in human plasma samples obtained from patients in rural Mali, suggesting the feasibility of PfGARP as a potential biomarker of disease progression. Collectively, our results suggest that PfGARP may play a functional role in enhancing the adhesive properties of human erythrocytes by engaging band 3 as a host receptor. We propose that immunological and pharmacological inhibition of PfGARP may unveil new therapeutic options for mitigating lesions in cerebral and pregnancy-associated malaria.
Collapse
|
12
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
13
|
Bermúdez M, Moreno-Pérez DA, Arévalo-Pinzón G, Curtidor H, Patarroyo MA. Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J 2018; 17:301. [PMID: 30126427 PMCID: PMC6102941 DOI: 10.1186/s12936-018-2456-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and eliminating this parasitic species. Although advances in omic sciences and high-throughput techniques in recent years have enabled the identification and characterization of proteins which might be participating in P. vivax invasion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining a continuous culture for this species. Such advance that would help in defining each parasite protein’s function in the complex process of P. vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances related to maintenance, culture medium supplements and the use of different sources of reticulocytes and parasites (strains and isolates) have been made regarding the development of an in vitro culture for P. vivax; however, only some cultures having few replication cycles have been obtained to date, meaning that this parasite’s maintenance goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P. vivax prefers for invading young CD71+ reticulocytes [early maturation stages (I–II–III)], changes related to membrane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P. vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why the species’ continuous in vitro culture is so difficult to standardize. Some alternatives for P. vivax in vitro culture have also been described.
Collapse
Affiliation(s)
- Maritza Bermúdez
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia
| | - Darwin Andrés Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 No. 55-37, Bogotá, DC, Colombia
| | - Gabriela Arévalo-Pinzón
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia
| | - Hernando Curtidor
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, DC, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, DC, Colombia.
| |
Collapse
|
14
|
Gunalan K, Niangaly A, Thera MA, Doumbo OK, Miller LH. Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? Trends Parasitol 2018. [PMID: 29530446 DOI: 10.1016/j.pt.2018.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax is the main cause of malarial disease in Asia and South America. Plasmodium vivax infection was thought to be absent in African populations who are Duffy blood group antigen negative (Duffy-negative). However, many cases of P. vivax infection have recently been observed in Duffy-negative Africans. This raises the question: were P. vivax infections in Duffy-negative populations previously missed or has P. vivax adapted to infect Duffy-negative populations? This review focuses on recent P. vivax findings in Africa and reports views on the parasite ligands that may play a role in Duffy-negative P. vivax infections. In addition, clues gained from studying P. vivax infection of reticulocytes are presented, which may provide possible avenues for establishing P. vivax culture in vitro.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; These authors contributed equally.
| | - Amadou Niangaly
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali; These authors contributed equally
| | - Mahamadou A Thera
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|