1
|
Song W, Yu X, Yu X, Zhang H, Zhang K, Guo L, Wang JD, Tian DL, Yu Q, Wang X, Zhao J, Xiang W. Antifungal Activity and Potential Mechanisms of Two Bafilomycin Analogues Isolated from Streptomyces sp. NEAU-Y11 against Colletotrichum orbiculare. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11814-11828. [PMID: 40313176 DOI: 10.1021/acs.jafc.5c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Cucumber anthracnose, caused by Colletotrichum orbiculare, severely affects the cucumber yield and quality. In this study, two active compounds, bafilomycin C1 and JBIR-100, were isolated from strain NEAU-Y11 and exhibited strong antifungal activity against C. orbiculare, with EC50 values of 0.0491 and 0.1042 μg/mL, respectively, significantly lower than those of the commercial fungicide (4.42 μg/mL). Pot experiments demonstrated effective control of cucumber anthracnose at 0.2 μg/mL for bafilomycin C1 and 0.4 μg/mL for JBIR-100, with efficacies reaching 78.5 and 67.7%, respectively. Microscopy and biochemical analyses indicated that both compounds disrupted the fungal cell wall, membrane, and redox homeostasis, leading to cell death. Transcriptome analysis further revealed the effects of bafilomycin C1's on amino acid metabolism, cell structure, redox homeostasis, and DNA double-strand break repair. These findings suggest that bafilomycin C1 and JBIR-100 are promising candidates for use as agrochemical fungicides to control C. orbiculares and may serve as a basis for developing next-generation antifungal agents.
Collapse
Affiliation(s)
- Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyan Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxin Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Kuan Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Ji-Dong Wang
- Key Laboratory Vector Biology & Pathogen Control Zhejiang Province, College Life Science, Huzhou University, Huzhou 313000, China
| | - Dong-Lan Tian
- Crop Protection, Syngenta China, Bocheng Lu 567, Shanghai 200120, China
| | - Qingtao Yu
- Harbin Academy of Agricultural Sciences, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Pereira F, McCauley M, Lev K, Verhey-Henke L, Condren AR, Harte RJ, Galvez J, Sherman DH. Optimized production of concanamycins using a rational metabolic engineering strategy. Metab Eng 2025; 88:63-76. [PMID: 39581342 PMCID: PMC11908387 DOI: 10.1016/j.ymben.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Plecomacrolides, such as concanamycins and bafilomycins, are potent and specific inhibitors of vacuolar-type ATPase. Concanamycins are 18-membered macrolides with promising therapeutic potential against multiple diseases, including viral infection, osteoporosis, and cancer. Due to the complexity of their total synthesis, the production of concanamycins is only achieved through microbial fermentation. However, the low titers of concanamycin A and its analogs in the native producing strains are a significant bottleneck for scale-up, robust structure-activity relationship studies, and drug development. To address this challenge, we designed a library of engineered Streptomyces strains for the overproduction of concanamycin A-C by combining the overexpression of target regulatory genes with the optimization of fermentation media. Integration of two endogenous regulators from the concanamycin biosynthetic gene cluster (cms) and one heterologous regulatory gene from the bafilomycin biosynthetic gene cluster significantly increased production of concanamycin A and its less abundant analog concanamycin B in Streptomyces eitanensis. The highest titers reported to date were observed in the engineered S. eitanensis DHS10676, which produced over 900 mg/L of concanamycin A and 300 mg/L of concanamycin B. Heterologous overexpression of the identified target regulatory genes across a panel of Streptomyces spp. harboring a putative concanamycin biosynthetic gene cluster confirmed its identity, and significantly improved concanamycin A production in all tested strains. Strain engineering, optimization of fermentation, and extraction purification protocols enabled swift access to these structurally complex plecomacrolides for semi-synthetic medicinal chemistry-based approaches. Together, this work established a platform for robust overproduction of concanamycin analogs across species.
Collapse
Affiliation(s)
- Filipa Pereira
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Morgan McCauley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine Lev
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Alanna R Condren
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ralph J Harte
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jesus Galvez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
4
|
Ding W, Li Y, Li X, Shi S, Yin J, Tian X, Xiao M, Zhang S, Yin H. Genome-guided discovery of two undescribed 6,6-spiroketal polyketides and stereochemical correction of bafilomycins P and Q from the marine-derived Streptomyces sp. SCSIO 66814. PHYTOCHEMISTRY 2024; 222:114101. [PMID: 38636687 DOI: 10.1016/j.phytochem.2024.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Bafilomycins are macrocyclic polyketides with intriguing structures and therapeutic value. Genomic analysis of Streptomyces sp. SCSIO 66814 revealed a type I polyketide synthase biosynthetic gene cluster (BGC), namely blm, which encoded bafilomycins and featured rich post-modification genes. The One strain many compounds (OSMAC) strategy led to the discovery of six compounds related to the blm BGC from the strain, including two previously undescribed 6,6-spiroketal polyketides, streptospirodienoic acids D (1) and E (2), and four known bafilomycins, bafilomycins P (3), Q (4), D (5), and G (6). The structures of 1 and 2 were determined by extensive spectroscopic analysis, quantum calculation, and biosynthetic analysis. Additionally, the absolute configurations of the 6/5/5 tricyclic ring moiety containing six consecutive chiral carbons in the putative structures of 3 and 4 were corrected through NOE analysis, DP4+ calculation, and single-crystal X-ray diffraction data. Bioinformatic analysis uncovered a plausible biosynthetic pathway for compounds 1-6, indicating that both streptospirodienoic acids and bafilomycins were derived from the same blm BGC. Additionally, sequence analysis revealed that the KR domains of module 2 from blm BGC was B1-type, further supporting the configurations of 1-4. Notably, compounds 3 and 4 displayed significant cytotoxic activities against A-549 human non-small cell lung cancer cells and HCT-116 human colon cancer cells.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xingyu Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Songbiao Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Min Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
5
|
McCauley M, Huston M, Condren AR, Pereira F, Cline J, Yaple-Maresh M, Painter MM, Zimmerman GE, Robertson AW, Carney N, Goodall C, Terry V, Müller R, Sherman DH, Collins KL. Structure-Activity Relationships of Natural and Semisynthetic Plecomacrolides Suggest Distinct Pathways for HIV-1 Immune Evasion and Vacuolar ATPase-Dependent Lysosomal Acidification. J Med Chem 2024; 67:4483-4495. [PMID: 38452116 PMCID: PMC10978252 DOI: 10.1021/acs.jmedchem.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The human immunodeficiency virus (HIV)-encoded accessory protein Nef enhances pathogenicity by reducing major histocompatibility complex I (MHC-I) cell surface expression, protecting HIV-infected cells from immune recognition. Nef-dependent downmodulation of MHC-I can be reversed by subnanomolar concentrations of concanamycin A (1), a well-known inhibitor of vacuolar ATPase, at concentrations below those that interfere with lysosomal acidification or degradation. We conducted a structure-activity relationship study that assessed 76 compounds for Nef inhibition, 24 and 72 h viability, and lysosomal neutralization in Nef-expressing primary T cells. This analysis demonstrated that the most potent compounds were natural concanamycins and their derivatives. Comparison against a set of new, semisynthetic concanamycins revealed that substituents at C-8 and acylation of C-9 significantly affected Nef potency, target cell viability, and lysosomal neutralization. These findings provide important progress toward understanding the mechanism of action of these compounds and the identification of an advanced lead anti-HIV Nef inhibitory compound.
Collapse
Affiliation(s)
- Morgan McCauley
- University of Michigan, Life Sciences Institute, Ann Arbor, MI 48109
| | - Matthew Huston
- University of Michigan, Department of Internal Medicine, Ann Arbor, MI 48109
| | - Alanna R. Condren
- University of Michigan, Life Sciences Institute, Ann Arbor, MI 48109
| | - Filipa Pereira
- University of Michigan, Life Sciences Institute, Ann Arbor, MI 48109
| | - Joel Cline
- University of Michigan, Department of Internal Medicine, Ann Arbor, MI 48109
| | | | - Mark M. Painter
- University of Michigan, Graduate Program in Immunology, Ann Arbor, MI 48109
| | | | - Andrew W. Robertson
- University of Michigan, Life Sciences Institute, Ann Arbor, MI 48109
- University of Michigan Natural Products Discovery Core, Life Sciences Institute, Ann Arbor, MI 48109
| | - Nolan Carney
- University of Michigan, Department of Chemistry, Ann Arbor, MI 48109
| | - Christopher Goodall
- University of Michigan, Department of Internal Medicine, Ann Arbor, MI 48109
| | - Valeri Terry
- University of Michigan, Department of Internal Medicine, Ann Arbor, MI 48109
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany 66123
| | - David H. Sherman
- University of Michigan, Department of Microbiology & Immunology, Ann Arbor, MI 48109
- University of Michigan, Life Sciences Institute, Ann Arbor, MI 48109
- University of Michigan, Department of Medicinal Chemistry, Ann Arbor, MI 48109
- University of Michigan, Department of Chemistry, Ann Arbor, MI 48109
| | - Kathleen L. Collins
- University of Michigan, Graduate Program in Immunology, Ann Arbor, MI 48109
- University of Michigan, Department of Internal Medicine, Ann Arbor, MI 48109
- University of Michigan, Department of Microbiology & Immunology, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Wang R, Bao Y, Dong Y, Dong Y, Li H. Genome-directed discovery of antiproliferative bafilomycins from a deepsea-derived Streptomyces samsunensis. Bioorg Chem 2023; 138:106599. [PMID: 37320913 DOI: 10.1016/j.bioorg.2023.106599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Genomic bioinformatics analysis identified a bafilomycin biosynthetic gene cluster (named bfl) in the deepsea-derived S. samsunensis OUCT16-12, from which two new (1 and 2, named bafilomycins R and S) along with four known (3-6) bafilomycins were targetly obtained. The structure of 3 was clearly identified for the first time, thus named bafilomycin T herein. Differ from the fumarate substitution at C-21 of known bafilomycins, its location on C-23 is a unique feature of 1 and 2. The stereochemistry of the compounds was established based on NOE correlations, ketoreductase (KR)-types in PKS modules of bfl, and ECD calculations. Moreover, a detailed biosynthetic model of 1-6 in S. samsunensis OUCT16-12 was provided based on the gene function prediction and sequence identity. Compared with the positive control doxorubicin, 1-6 showed more potent antiproliferative activities against drug-resistant lung cancer cell line A549-Taxol, with IC50 values ranging from 0.07 μM to 1.79 μM, which arrested cell cycle in G0/G1 phase to hinder proliferation.
Collapse
Affiliation(s)
- Runyi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yilei Bao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yujing Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yun Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Duan H, Wang F, Zhang C, Dong Y, Li H, Xiao F, Li W. Elucidation of the Late Steps during Hexacosalactone A Biosynthesis in Streptomyces samsunensis OUCT16-12. Appl Environ Microbiol 2023; 89:e0195822. [PMID: 36847553 PMCID: PMC10057877 DOI: 10.1128/aem.01958-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Hexacosalactone A (1) is a polyene macrolide compound featuring a 2-amino-3-hydroxycyclopent-2-enone (C5N)-fumaryl moiety. While compound 1 has been proposed to be assembled via a type I modular polyketide synthase (PKS) system, most of the putative biosynthetic steps lack experimental evidence. In this study, we elucidated the post-PKS tailoring steps of compound 1 through in vivo gene inactivation and in vitro biochemical assays. We demonstrated that the amide synthetase HexB and O-methyltransferase HexF are responsible for the installations of the C5N moiety and the methyl group at 15-OH of compound 1, respectively; two new hexacosalactone analogs, named hexacosalactones B (4) and C (5), were purified and structurally characterized, followed by anti-multidrug resistance (anti-MDR) bacterial assays, revealing that the C5N ring and the methyl group are necessary for the antibacterial bioactivities. Through database mining of C5N-forming proteins HexABC, six uncharacterized biosynthetic gene clusters (BGCs), putatively encoding compounds with different types of backbones, were identified, providing potentials to discover novel bioactive compounds with C5N moiety. IMPORTANCE In this study, we elucidate the post-PKS tailoring steps during the biosynthesis of compound 1 and demonstrate that both C5N and 15-OMe groups are critical for the antibacterial activities of compound 1, paving the way for generation of hexacosalactone derivatives via synthetic biology strategy. In addition, mining of HexABC homologs from the GenBank database revealed their wide distribution across the bacterial world, facilitating the discovery of other bioactive natural products with C5N moiety.
Collapse
Affiliation(s)
- He Duan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fang Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chuchu Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yujing Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Kudo F, Kishikawa K, Tsuboi K, Kido T, Usui T, Hashimoto J, Shin-Ya K, Miyanaga A, Eguchi T. Acyltransferase Domain Exchange between Two Independent Type I Polyketide Synthases in the Same Producer Strain of Macrolide Antibiotics. Chembiochem 2023; 24:e202200670. [PMID: 36602093 DOI: 10.1002/cbic.202200670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Streptomyces graminofaciens A-8890 produces two macrolide antibiotics, FD-891 and virustomycin A, both of which show significant biological activity. In this study, we identified the virustomycin A biosynthetic gene cluster, which encodes type I polyketide synthases (PKSs), ethylmalonyl-CoA biosynthetic enzymes, methoxymalony-acyl carrier protein biosynthetic enzymes, and post-PKS modification enzymes. Next, we demonstrated that the acyltransferase domain can be exchanged between the Vsm PKSs and the PKSs involved in FD-891 biosynthesis (Gfs PKSs), without any supply problems of the unique extender units. We exchanged the malonyltransferase domain in the loading module of Gfs PKS with the ethylmalonyltransferase domain and the methoxymalonyltransferase domain of Vsm PKSs. Consequently, the expected two-carbon-elongated analog 26-ethyl-FD-891 was successfully produced with a titer comparable to FD-891 production by the wild type; however, exchange with the methoxymalonyltransferase domain did not produce any FD-891 analogs. Furthermore, 26-ethyl-FD-891 showed potent cytotoxic activity against HeLa cells, like natural FD-891.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kosuke Kishikawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kazuma Tsuboi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takafusa Kido
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| |
Collapse
|
9
|
Tolani B, Celli A, Yao Y, Tan YZ, Fetter R, Liem CR, de Smith AJ, Vasanthakumar T, Bisignano P, Cotton AD, Seiple IB, Rubinstein JL, Jost M, Weissman JS. Ras-mutant cancers are sensitive to small molecule inhibition of V-type ATPases in mice. Nat Biotechnol 2022; 40:1834-1844. [PMID: 35879364 PMCID: PMC9750872 DOI: 10.1038/s41587-022-01386-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/03/2022] [Indexed: 01/14/2023]
Abstract
Mutations in Ras family proteins are implicated in 33% of human cancers, but direct pharmacological inhibition of Ras mutants remains challenging. As an alternative to direct inhibition, we screened for sensitivities in Ras-mutant cells and discovered 249C as a Ras-mutant selective cytotoxic agent with nanomolar potency against a spectrum of Ras-mutant cancers. 249C binds to vacuolar (V)-ATPase with nanomolar affinity and inhibits its activity, preventing lysosomal acidification and inhibiting autophagy and macropinocytosis pathways that several Ras-driven cancers rely on for survival. Unexpectedly, potency of 249C varies with the identity of the Ras driver mutation, with the highest potency for KRASG13D and G12V both in vitro and in vivo, highlighting a mutant-specific dependence on macropinocytosis and lysosomal pH. Indeed, 249C potently inhibits tumor growth without adverse side effects in mouse xenografts of KRAS-driven lung and colon cancers. A comparison of isogenic SW48 xenografts with different KRAS mutations confirmed that KRASG13D/+ (followed by G12V/+) mutations are especially sensitive to 249C treatment. These data establish proof-of-concept for targeting V-ATPase in cancers driven by specific KRAS mutations such as KRASG13D and G12V.
Collapse
Affiliation(s)
- Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| | - Anna Celli
- Laboratory for Cell Analysis Core Facility, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yanmin Yao
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Yong Zi Tan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Disease Intervention Technology Laboratory, Agency for Science, Technology and Research, Singapore, Singapore
| | - Richard Fetter
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Christina R Liem
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Thamiya Vasanthakumar
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON, Canada
| | - Paola Bisignano
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Adam D Cotton
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Geisslinger F, Müller M, Chao YK, Grimm C, Vollmar AM, Bartel K. Targeting TPC2 sensitizes acute lymphoblastic leukemia cells to chemotherapeutics by impairing lysosomal function. Cell Death Dis 2022; 13:668. [PMID: 35915060 PMCID: PMC9343397 DOI: 10.1038/s41419-022-05105-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Despite novel therapy regimens and extensive research, chemoresistance remains a challenge in leukemia treatment. Of note, recent studies revealed lysosomes as regulators of cell death and chemotherapy response, suggesting this organelle is a novel target for chemosensitization. Interestingly, drug-resistant VCR-R CEM acute lymphoblastic leukemia (ALL) cells have an increased expression of the lysosomal cation channel Two-Pore-Channel 2 (TPC2) compared to drug-naïve CCRF-CEM ALL cells. Concurrently, knockout (KO) of TPC2 sensitized drug-resistant VCR-R CEM cells to treatment with cytostatics. The chemosensitizing effect could be confirmed in several cell lines as well as in heterogeneous, patient-derived xenograft ALL cells, using the pharmacological TPC2 inhibitors naringenin and tetrandrine. We reveal that a dual mechanism of action mediates chemo sensitization by loss of lysosomal TPC2 function. First, because of increased lysosomal pH, lysosomal drug sequestration is impaired, leading to an increased nuclear accumulation of doxorubicin and hence increased DNA damage. Second, lysosomes of TPC2 KO cells are more prone to lysosomal damage as a result of morphological changes and dysregulation of proteins influencing lysosomal stability. This leads to induction of lysosomal cell death (LCD), evident by increased cathepsin B levels in the cytosol, truncation of pro-apoptotic Bid, as well as the reversibility of cell death by co-treatment with the cathepsin B inhibitor CA-074Me in TPC2 KO cells. In summary, this study establishes TPC2 as a novel, promising, druggable target for combination therapy approaches in ALL to overcome chemoresistance, which could be exploited in the clinic in the future. Additionally, it unravels LCD signaling as an important death-inducing component upon loss of TPC2 function.
Collapse
Affiliation(s)
- Franz Geisslinger
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| | - Martin Müller
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| | - Yu-Kai Chao
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Walther-Straub-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Christian Grimm
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Walther-Straub-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Angelika M. Vollmar
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| | - Karin Bartel
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| |
Collapse
|
11
|
Shi P, Li Y, Zhu J, Shen Y, Wang H. Targeted Discovery of the Polyene Macrolide Hexacosalactone A from Streptomyces by Reporter-Guided Selection of Fermentation Media. JOURNAL OF NATURAL PRODUCTS 2021; 84:1924-1929. [PMID: 34170140 DOI: 10.1021/acs.jnatprod.1c00144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New approaches are still needed to fully explore the biosynthetic potential of microbes. We recently devised a melC reporter-guided fermentation media screening approach for targeted activation of cryptic gene clusters. Using this approach, we successfully activated the expression of the hcl gene cluster in Streptomyces sp. LZ35 and discovered a novel polyene macrolide hexacosalactone A (1).
Collapse
Affiliation(s)
- Peng Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
12
|
Niklaus NJ, Tokarchuk I, Zbinden M, Schläfli AM, Maycotte P, Tschan MP. The Multifaceted Functions of Autophagy in Breast Cancer Development and Treatment. Cells 2021; 10:cells10061447. [PMID: 34207792 PMCID: PMC8229352 DOI: 10.3390/cells10061447] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (herein referred to as autophagy) is a complex catabolic process characterized by the formation of double-membrane vesicles called autophagosomes. During this process, autophagosomes engulf and deliver their intracellular content to lysosomes, where they are degraded by hydrolytic enzymes. Thereby, autophagy provides energy and building blocks to maintain cellular homeostasis and represents a dynamic recycling mechanism. Importantly, the clearance of damaged organelles and aggregated molecules by autophagy in normal cells contributes to cancer prevention. Therefore, the dysfunction of autophagy has a major impact on the cell fate and can contribute to tumorigenesis. Breast cancer is the most common cancer in women and has the highest mortality rate among all cancers in women worldwide. Breast cancer patients often have a good short-term prognosis, but long-term survivors often experience aggressive recurrence. This phenomenon might be explained by the high heterogeneity of breast cancer tumors rendering mammary tumors difficult to target. This review focuses on the mechanisms of autophagy during breast carcinogenesis and sheds light on the role of autophagy in the traits of aggressive breast cancer cells such as migration, invasion, and therapeutic resistance.
Collapse
Affiliation(s)
- Nicolas J. Niklaus
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Igor Tokarchuk
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Mara Zbinden
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Anna M. Schläfli
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla 74360, Mexico;
| | - Mario P. Tschan
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-87-80
| |
Collapse
|
13
|
Sulheim S, Fossheim FA, Wentzel A, Almaas E. Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters. BMC Bioinformatics 2021; 22:81. [PMID: 33622234 PMCID: PMC7901079 DOI: 10.1186/s12859-021-03985-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background A wide range of bioactive compounds is produced by enzymes and enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can be identified and functionally annotated based on their DNA sequence. Candidates for further research and development may be prioritized based on properties such as their functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production of the target compound in the native strain is often not achievable, rendering heterologous expression in an optimized host strain as a promising alternative. Genome-scale metabolic models are frequently used to guide strain development, but large-scale incorporation and testing of heterologous production of complex natural products in this framework is hampered by the amount of manual work required to translate annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for an automated reconstruction of BGC associated metabolic pathways responsible for the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes of bioactive compounds. Results The developed pipeline correctly predicts 72.8% of the metabolic reactions in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By introducing the reconstructed pathways into a genome-scale metabolic model we demonstrate that this level of accuracy is sufficient to make reliable in silico predictions with respect to production rate and gene knockout targets. Furthermore, we apply the pipeline to a large BGC database and reconstruct 943 metabolic pathways. We identify 17 enzymatic reactions using high-throughput assessment of potential knockout targets for increasing the production of any of the associated compounds. However, the targets only provide a relative increase of up to 6% compared to wild-type production rates. Conclusion With this pipeline we pave the way for an extended use of genome-scale metabolic models in strain design of heterologous expression hosts. In this context, we identified generic knockout targets for the increased production of heterologous compounds. However, as the predicted increase is minor for any of the single-reaction knockout targets, these results indicate that more sophisticated strain-engineering strategies are necessary for the development of efficient BGC expression hosts.
Collapse
Affiliation(s)
- Snorre Sulheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway. .,Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway.
| | - Fredrik A Fossheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Håkon Jarls gate 11, 7030, Trondheim, Norway
| |
Collapse
|
14
|
Li Z, Li S, Du L, Zhang X, Jiang Y, Liu W, Zhang W, Li S. Engineering Bafilomycin High-Producers by Manipulating Regulatory and Biosynthetic Genes in the Marine Bacterium Streptomyces lohii. Mar Drugs 2021; 19:md19010029. [PMID: 33440628 PMCID: PMC7827423 DOI: 10.3390/md19010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bafilomycin A1 is the representative compound of the plecomacrolide natural product family. This 16-membered ring plecomacrolide has potent antifungal and vacuolar H+-ATPase inhibitory activities. In our previous work, we identified a bafilomycin biosynthetic gene cluster (baf) from the marine bacterium Streptomyces lohii ATCC BAA-1276, wherein a luxR family regulatory gene orf1 and an afsR family regulatory gene bafG were revealed based on bioinformatics analysis. In this study, the positive regulatory roles of orf1 and bafG for bafilomycin biosynthesis are characterized through gene inactivation and overexpression. Compared to the wild-type S. lohii strain, the knockout of either orf1 or bafG completely abolished the production of bafilomycins. The overexpression of orf1 or bafG led to 1.3- and 0.5-fold increased production of bafilomycins, respectively. A genetically engineered S. lohii strain (SLO-08) with orf1 overexpression and inactivation of the biosynthetic genes orf2 and orf3, solely produced bafilomycin A1 with the titer of 535.1 ± 25.0 mg/L in an optimized fermentation medium in shaking flasks. This recombinant strain holds considerable application potential in large-scale production of bafilomycin A1 for new drug development.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.L.); (S.L.); (L.D.); (X.Z.); (Y.J.); (W.L.); (W.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
15
|
Efficient Preparation of Bafilomycin A1 from Marine Streptomyces lohii Fermentation Using Three-Phase Extraction and High-Speed Counter-Current Chromatography. Mar Drugs 2020; 18:md18060332. [PMID: 32630403 PMCID: PMC7345786 DOI: 10.3390/md18060332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 11/23/2022] Open
Abstract
An efficient strategy was developed for the rapid separation and enrichment of bafilomycin A1 (baf A1) from a crude extract of the marine microorganism Streptomyces lohii fermentation. This strategy comprises liquid−liquid extraction (LLE) with a three-phase solvent system (n-hexane–ethyl acetate–acetonitrile–water = 7:3:5:5, v/v/v/v) followed by separation using high-speed counter-current chromatography (HSCCC). The results showed that a 480.2-mg fraction of baf A1-enriched extract in the middle phase of the three-phase solvent system was prepared from 4.9 g of crude extract after two consecutive one-step operations. Over 99% of soybean oil, the main hydrophobic waste in the crude extract, and the majority of hydrophilic impurities were distributed in the upper and lower phase, respectively. HSCCC was used with a two-phase solvent system composed of n-hexane–acetonitrile–water (15:8:12, v/v/v) to isolate and purify baf A1 from the middle phase fraction, which yielded 77.4 mg of baf A1 with > 95% purity within 90 min. The overall recovery of baf A1 in the process was determined to be 95.7%. The use of a three-phase solvent system represents a novel strategy for the simultaneous removal of hydrophobic oil and hydrophilic impurities from a microbial fermentation extract.
Collapse
|
16
|
Li Z, Jiang Y, Zhang X, Chang Y, Li S, Zhang X, Zheng S, Geng C, Men P, Ma L, Yang Y, Gao Z, Tang YJ, Li S. Fragrant Venezuelaenes A and B with A 5–5–6–7 Tetracyclic Skeleton: Discovery, Biosynthesis, and Mechanisms of Central Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01575] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shanmin Zheng
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ying Yang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
17
|
Computational identification of co-evolving multi-gene modules in microbial biosynthetic gene clusters. Commun Biol 2019; 2:83. [PMID: 30854475 PMCID: PMC6395733 DOI: 10.1038/s42003-019-0333-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
The biosynthetic machinery responsible for the production of bacterial specialised metabolites is encoded by physically clustered group of genes called biosynthetic gene clusters (BGCs). The experimental characterisation of numerous BGCs has led to the elucidation of subclusters of genes within BGCs, jointly responsible for the same biosynthetic function in different genetic contexts. We developed an unsupervised statistical method able to successfully detect a large number of modules (putative functional subclusters) within an extensive set of predicted BGCs in a systematic and automated manner. Multiple already known subclusters were confirmed by our method, proving its efficiency and sensitivity. In addition, the resulting large collection of newly defined modules provides new insights into the prevalence and putative biosynthetic role of these modular genetic entities. The automated and unbiased identification of hundreds of co-evolving group of genes is an essential breakthrough for the discovery and biosynthetic engineering of high-value compounds.
Collapse
|
18
|
Weng JY, Bu XL, He BB, Cheng Z, Xu J, Da LT, Xu MJ. Rational engineering of amide synthetase enables bioconversion to diverse xiamenmycin derivatives. Chem Commun (Camb) 2019; 55:14840-14843. [DOI: 10.1039/c9cc07826f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To improve the enzyme promiscuity, we engineered XimA by site-directed mutagenesis at a specific position based on our theoretical model.
Collapse
Affiliation(s)
- Jing-Yi Weng
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xu-Liang Bu
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bei-Bei He
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhuo Cheng
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
19
|
Hanh NPK, Hwang JY, Oh HR, Kim GJ, Choi H, Nam DH. Biosynthesis of 2-amino-3-hydroxycyclopent-2-enone moiety of bafilomycin in Kitasatospora cheerisanensis KCTC2395. J Microbiol 2018; 56:571-578. [DOI: 10.1007/s12275-018-8267-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
|
20
|
An ATP-Dependent Ligase with Substrate Flexibility Involved in Assembly of the Peptidyl Nucleoside Antibiotic Polyoxin. Appl Environ Microbiol 2018; 84:AEM.00501-18. [PMID: 29703734 DOI: 10.1128/aem.00501-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Polyoxin (POL) is an unusual peptidyl nucleoside antibiotic, in which the peptidyl moiety and nucleoside skeleton are linked by an amide bond. However, their biosynthesis remains poorly understood. Here, we report the deciphering of PolG as an ATP-dependent ligase responsible for the assembly of POL. A polG mutant is capable of accumulating multiple intermediates, including the peptidyl moiety (carbamoylpolyoxamic acid [CPOAA]) and the nucleoside skeletons (POL-C and the previously overlooked thymine POL-C). We further demonstrate that PolG employs an ATP-dependent mechanism for amide bond formation and that the generation of the hybrid nucleoside antibiotic POL-N is also governed by PolG. Finally, we determined that the deduced ATP-binding sites are functionally essential for PolG and that they are highly conserved in a number of related ATP-dependent ligases. These insights have allowed us to propose a catalytic mechanism for the assembly of peptidyl nucleoside antibiotic via an acyl-phosphate intermediate and have opened the way for the combinatorial biosynthesis/pathway engineering of this group of nucleoside antibiotics.IMPORTANCE POL is well known for its remarkable antifungal bioactivities and unusual structural features. Actually, elucidation of the POL assembly logic not only provides the enzymatic basis for further biosynthetic understanding of related peptidyl nucleoside antibiotics but also contributes to the rational generation of more hybrid nucleoside antibiotics via synthetic biology strategy.
Collapse
|