1
|
Zhang CL, Ma JJ, Li X, Yan HQ, Gui YK, Yan ZX, You MF, Zhang P. The role of transcytosis in the blood-retina barrier: from pathophysiological functions to drug delivery. Front Pharmacol 2025; 16:1565382. [PMID: 40308764 PMCID: PMC12040858 DOI: 10.3389/fphar.2025.1565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-retina barrier (BRB) serves as a critical interface that separates the retina from the circulatory system, playing an essential role in preserving the homeostasis of the microenvironment within the retina. Specialized tight junctions and limited vesicle trafficking restrict paracellular and transcellular transport, respectively, thereby maintaining BRB barrier properties. Additionally, transcytosis of macromolecules through retinal vascular endothelial cells constitutes a primary mechanism for transporting substances from the vascular compartment into the surrounding tissue. This review summarizes the fundamental aspects of transcytosis including its function in the healthy retina, the biochemical properties of transcytosis, and the methodologies used to study this process. Furthermore, we discuss the current understanding of transcytosis in the context of pathological BRB breakdown and present recent findings that highlight significant advances in drug delivery to the retina based on transcytosis.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing-Jie Ma
- Department of Audit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hai-Qing Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong-Kun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhi-Xin Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ming-Feng You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Mou Y, Cao M, Zhang D. The Blood-prostate Barrier: An Obstacle to Drug Delivery into the Prostate. Curr Drug Deliv 2025; 22:401-412. [PMID: 37550915 DOI: 10.2174/1567201821666230807152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
The blood-prostate barrier (BPB), a non-static physical barrier, stands as an obstacle between the prostate stroma and the lumen of the prostate gland tube. The barrier has the ability to dynamically regulate and strictly control the mass exchange between the blood and the prostate, thereby limiting drug penetration into the prostate. The basement membrane, fibrous stromal layer, capillary endothelial cell, prostatic ductal epithelial cell, lipid layer, etc., have been confirmed to be involved in the composition of the barrier structure and altered membrane permeability mainly by regulating the size of paracellular ion pores. Various studies have been conducted to improve the efficiency of drug therapy for prostate diseases by changing the administration approaches, improving barrier permeability and increasing drug penetration. To gain a full understanding of BPB, the composition of BPB, the methodology for evaluating the permeability of BPB and alterations in barrier function under pathological conditions are summarized in this review. To find a shortcut for drug delivery across BPB, the biodistribution of drugs in the prostate and different methods of improving drug penetration across BPB are outlined. This review offers an applied perspective on recent advances in drug delivery across BPB.
Collapse
Affiliation(s)
- Yixuan Mou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Min Cao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dahong Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
3
|
Tei R. The dynamic regulatory network of phosphatidic acid metabolism: a spotlight on substrate cycling between phosphatidic acid and diacylglycerol. Biochem Soc Trans 2024; 52:2123-2132. [PMID: 39417337 PMCID: PMC11555698 DOI: 10.1042/bst20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Mammalian cells utilize over 1000 different lipid species to maintain cell and organelle membrane properties, control cell signaling and processes, and store energy. Lipid synthesis and metabolism are mediated by highly interconnected and spatiotemporally regulated networks of lipid-metabolizing enzymes and supported by vesicle trafficking and lipid-transfer at membrane contact sites. However, the regulatory mechanisms that achieve lipid homeostasis are largely unknown. Phosphatidic acid (PA) serves as the central hub for phospholipid biosynthesis, acting as a key intermediate in both the Kennedy pathway and the CDP-DAG pathway. Additionally, PA is a potent signaling molecule involved in various cellular processes. This dual role of PA, both as a critical intermediate in lipid biosynthesis and as a significant signaling molecule, suggests that it is tightly regulated within cells. This minireview will summarize the functional diversity of PA molecules based on their acyl tail structures and subcellular localization, highlighting recent tools and findings that shed light on how the physical, chemical, and spatial properties of PA species contribute to their differential metabolic fates and functions. Dysfunctional effects of altered PA metabolism as well as the strategies cells employ to maintain PA regulation and homeostasis will also be discussed. Furthermore, this review will explore the differential regulation of PA metabolism across distinct subcellular membranes. Our recent proximity labeling studies highlight the possibility that substrate cycling between PA and DAG may be location-dependent and have functional significance in cell signaling and lipid homeostasis.
Collapse
Affiliation(s)
- Reika Tei
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
4
|
Jiang Y, Senyuk V, Ma K, Chen H, Qin X, Li S, Liu Y, Gentile S, Minshall RD. Pharmacological Activation of Potassium Channel Kv11.1 with NS1643 Attenuates Triple Negative Breast Cancer Cell Migration by Promoting the Dephosphorylation of Caveolin-1. Cells 2022; 11:2461. [PMID: 35954304 PMCID: PMC9368491 DOI: 10.3390/cells11152461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The prevention of metastasis is a central goal of cancer therapy. Caveolin-1 (Cav-1) is a structural membrane and scaffolding protein shown to be a key regulator of late-stage breast cancer metastasis. However, therapeutic strategies targeting Cav-1 are still lacking. Here, we demonstrate that the pharmacological activation of potassium channel Kv11.1, which is uniquely expressed in MDA-MB-231 triple negative breast cancer cells (TNBCs) but not in normal MCF-10A cells, induces the dephosphorylation of Cav-1 Tyr-14 by promoting the Ca2+-dependent stimulation of protein tyrosine phosphatase 1B (PTP1B). Consequently, the dephosphorylation of Cav-1 resulted in its disassociation from β-catenin, which enabled the accumulation of β-catenin at cell borders, where it facilitated the formation of cell-cell adhesion complexes via interactions with R-cadherin and desmosomal proteins. Kv11.1 activation-dependent Cav-1 dephosphorylation induced with NS1643 also reduced cell migration and invasion, consistent with its ability to regulate focal adhesion dynamics. Thus, this study sheds light on a novel pharmacological mechanism of promoting Cav-1 dephosphorylation, which may prove to be effective at reducing metastasis and promoting contact inhibition.
Collapse
Affiliation(s)
- Ying Jiang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vitalyi Senyuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ke Ma
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hui Chen
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiang Qin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shun Li
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiyao Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Saverio Gentile
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- UI Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UI Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Jiang Y, Krantz S, Qin X, Li S, Gunasekara H, Kim YM, Zimnicka A, Bae M, Ma K, Toth PT, Hu Y, Shajahan-Haq AN, Patel HH, Gentile S, Bonini MG, Rehman J, Liu Y, Minshall RD. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy. Redox Biol 2022; 52:102304. [PMID: 35413643 PMCID: PMC9018165 DOI: 10.1016/j.redox.2022.102304] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.
Collapse
Affiliation(s)
- Ying Jiang
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Sarah Krantz
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xiang Qin
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Shun Li
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | | | - Young-Mee Kim
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Adriana Zimnicka
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Misuk Bae
- Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ke Ma
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Peter T Toth
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ying Hu
- Chemistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Hemal H Patel
- VA San Diego Health System and Department of Anesthesiology, University of California at San Diego, San Diego, CA, 92161, USA
| | - Saverio Gentile
- Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Marcelo G Bonini
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60614, USA
| | - Jalees Rehman
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yiyao Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, 610054, China
| | - Richard D Minshall
- Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Cells 2022; 11:cells11101645. [PMID: 35626682 PMCID: PMC9139244 DOI: 10.3390/cells11101645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.
Collapse
|
7
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
8
|
Han J, Zhang H, Li N, Aziz AUR, Zhang Z, Liu B. The raft cytoskeleton binding protein complexes personate functional regulators in cell behaviors. Acta Histochem 2022; 124:151859. [PMID: 35123353 DOI: 10.1016/j.acthis.2022.151859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/08/2022]
Abstract
Several cytoskeleton proteins interact with raft proteins to form raft-cytoskeleton binding protein complexes (RCPCs) that control cell migration and adhesion. The purpose of this paper is to review the latest research on the modes and mechanisms by which a RCPC controls different cellular functions. This paper discusses RCPC composition and its role in cytoskeleton reorganization, as well as the latest developments in molecular mechanisms that regulate cell adhesion and migration under normal conditions. In addition, the role of some external stimuli (such as stress and chemical signals) in this process is further debated, and meanwhile potential mechanisms for RCPC to regulate lipid raft fluidity is proposed. Thus, this review mainly contributes to the understanding of RCPC signal transduction in cells. Additionally, the targeted signal transduction of RCPC and its mechanism connection with cell behaviors will provide a logical basis for the development of unified interventions to combat metastasis related dysfunction and diseases.
Collapse
Affiliation(s)
- Jinxin Han
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China.
| |
Collapse
|
9
|
Wang Y, He M, Li X, Chai J, Jiang Q, Peng C, He G, Huang W. Design, Synthesis, and Biological Evaluation of Pyrano[2,3-c]-pyrazole-Based RalA Inhibitors Against Hepatocellular Carcinoma. Front Chem 2021; 9:700956. [PMID: 34869198 PMCID: PMC8634879 DOI: 10.3389/fchem.2021.700956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of Ras small GTPases, including RalA and RalB, plays an important role in carcinogenesis, tumor progress, and metastasis. In the current study, we report the discovery of a series of 6-sulfonylamide-pyrano [2,3-c]-pyrazole derivatives as novel RalA inhibitors. ELISA-based biochemical assay results indicated that compounds 4k–4r suppressed RalA/B binding capacities to their substrates. Cellular proliferation assays indicated that these RalA inhibitors potently inhibited the proliferation of HCC cell lines, including HepG2, SMMC-7721, Hep3B, and Huh-7 cells. Among the evaluated compounds, 4p displayed good inhibitory capacities on RalA (IC50 = 0.22 μM) and HepG2 cells (IC50 = 2.28 μM). Overall, our results suggested that a novel small-molecule RalA inhibitor with a 6-sulfonylamide-pyrano [2, 3-c]-pyrazole scaffold suppressed autophagy and cell proliferation in hepatocellular carcinoma, and that it has potential for HCC-targeted therapy.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyao He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qinglin Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Herath TUB, Roy A, Gianfelice A, Ireton K. Shigella flexneri subverts host polarized exocytosis to enhance cell-to-cell spread. Mol Microbiol 2021; 116:1328-1346. [PMID: 34608697 DOI: 10.1111/mmi.14827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Shigella flexneri is a gram-negative bacterial pathogen that causes dysentery. Critical for disease is the ability of Shigella to use an actin-based motility (ABM) process to spread between cells of the colonic epithelium. ABM transports bacteria to the periphery of host cells, allowing the formation of plasma membrane protrusions that mediate spread to adjacent cells. Here we demonstrate that efficient protrusion formation and cell-to-cell spread of Shigella involves bacterial stimulation of host polarized exocytosis. Using an exocytic probe, we found that exocytosis is locally upregulated in bacterial protrusions in a manner that depends on the Shigella type III secretion system. Experiments involving RNA interference (RNAi) indicate that efficient bacterial protrusion formation and spread require the exocyst, a mammalian multi-protein complex known to mediate polarized exocytosis. In addition, the exocyst component Exo70 and the exocyst regulator RalA were recruited to Shigella protrusions, suggesting that bacteria manipulate exocyst function. Importantly, RNAi-mediated depletion of exocyst proteins or RalA reduced the frequency of protrusion formation and also the lengths of protrusions, demonstrating that the exocyst controls both the initiation and elongation of protrusions. Collectively, our results reveal that Shigella co-opts the exocyst complex to disseminate efficiently in host cell monolayers.
Collapse
Affiliation(s)
- Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Arpita Roy
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Metz C, Oyanadel C, Jung J, Retamal C, Cancino J, Barra J, Venegas J, Du G, Soza A, González A. Phosphatidic acid-PKA signaling regulates p38 and ERK1/2 functions in ligand-independent EGFR endocytosis. Traffic 2021; 22:345-361. [PMID: 34431177 DOI: 10.1111/tra.12812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.
Collapse
Affiliation(s)
- Claudia Metz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Jung
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Retamal
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jonathan Barra
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jaime Venegas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrea Soza
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
12
|
Cholesterol Sequestration from Caveolae/Lipid Rafts Enhances Cationic Liposome-Mediated Nucleic Acid Delivery into Endothelial Cells. Molecules 2021; 26:molecules26154626. [PMID: 34361779 PMCID: PMC8346983 DOI: 10.3390/molecules26154626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 11/18/2022] Open
Abstract
Delivering nucleic acids into the endothelium has great potential in treating vascular diseases. However, endothelial cells, which line the vasculature, are considered as sensitive in nature and hard to transfect. Low transfection efficacies in endothelial cells limit their potential therapeutic applications. Towards improving the transfection efficiency, we made an effort to understand the internalization of lipoplexes into the cells, which is the first and most critical step in nucleic acid transfections. In this study, we demonstrated that the transient modulation of caveolae/lipid rafts mediated endocytosis with the cholesterol-sequestrating agents, nystatin, filipin III, and siRNA against Cav-1, which significantly increased the transfection properties of cationic lipid-(2-hydroxy-N-methyl-N,N-bis(2-tetradecanamidoethyl)ethanaminium chloride), namely, amide liposomes in combination with 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) (AD Liposomes) in liver sinusoidal endothelial cells (SK-Hep1). In particular, nystatin was found to be highly effective with 2–3-fold enhanced transfection efficacy when compared with amide liposomes in combination with Cholesterol (AC), by switching lipoplex internalization predominantly through clathrin-mediated endocytosis and macropinocytosis.
Collapse
|
13
|
Bandaru S, Ala C, Zhou AX, Akyürek LM. Filamin A Regulates Cardiovascular Remodeling. Int J Mol Sci 2021; 22:ijms22126555. [PMID: 34207234 PMCID: PMC8235345 DOI: 10.3390/ijms22126555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Chandu Ala
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Alex-Xianghua Zhou
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Levent M. Akyürek
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
- Correspondence:
| |
Collapse
|
14
|
Choi D, Montermini L, Meehan B, Lazaris A, Metrakos P, Rak J. Oncogenic RAS drives the CRAF-dependent extracellular vesicle uptake mechanism coupled with metastasis. J Extracell Vesicles 2021; 10:e12091. [PMID: 34136107 PMCID: PMC8191585 DOI: 10.1002/jev2.12091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Oncogenic RAS impacts communication between cancer cells and their microenvironment, but it is unclear how this process influences cellular interactions with extracellular vesicles (EVs). This is important as intercellular EV trafficking plays a key role in cancer invasion and metastasis. Here we report that overexpression of mutant RAS drives the EV internalization switch from endocytosis (in non-transformed cells) to macropinocytosis (in cancer cells) resulting in enhanced EV uptake. This process depends on the surface proteoglycan, fibronectin and EV engulfment mechanism regulated by CRAF. Both mutant RAS and activated CRAF expression is associated with formation of membrane ruffles to which they colocalize along with actin, sodium-hydrogen exchangers (NHEs) and phosphorylated myosin phosphatase (pMYPT). RAS-transformed cells internalize EVs in the vicinity of ruffled structures followed by apparent trafficking to lysosome and degradation. NHE inhibitor (EIPA) suppresses RAS-driven EV uptake, along with adhesion-independent clonal growth and experimental metastasis in mice. Thus, EV uptake may represent a targetable step in progression of RAS-driven cancers.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of Biochemistry College of Medicine Soonchunhyang University Cheonan Chungcheongnam Republic of Korea
| | - Laura Montermini
- Research Institute of the McGill University Health Centre Glen Site McGill University Montreal Quebec Canada
| | - Brian Meehan
- Research Institute of the McGill University Health Centre Glen Site McGill University Montreal Quebec Canada
| | - Anthoula Lazaris
- Cancer Research Program, Research Institute of the McGill University Health Centre Glen Site McGill University Montreal Quebec Canada
| | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre Glen Site McGill University Montreal Quebec Canada.,Department of Surgery Research Institute of the McGill University Health Centre Glen Site McGill University Montreal Quebec Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre Glen Site McGill University Montreal Quebec Canada
| |
Collapse
|
15
|
Nászai M, Bellec K, Yu Y, Román-Fernández A, Sandilands E, Johansson J, Campbell AD, Norman JC, Sansom OJ, Bryant DM, Cordero JB. RAL GTPases mediate EGFR-driven intestinal stem cell proliferation and tumourigenesis. eLife 2021; 10:e63807. [PMID: 34096503 PMCID: PMC8216719 DOI: 10.7554/elife.63807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Endocytosis
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Humans
- Hyperplasia
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases/metabolism
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- ral GTP-Binding Proteins/genetics
- ral GTP-Binding Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Máté Nászai
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Karen Bellec
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Yachuan Yu
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Alvaro Román-Fernández
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Emma Sandilands
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Joel Johansson
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | | | - Jim C Norman
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Owen J Sansom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - David M Bryant
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Julia B Cordero
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| |
Collapse
|
16
|
Murphy KJ, Reed DA, Trpceski M, Herrmann D, Timpson P. Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging. Curr Opin Cell Biol 2021; 72:41-53. [PMID: 34091131 DOI: 10.1016/j.ceb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Intravital imaging is a powerful technology used to quantify and track dynamic changes in live cells and tissues within an intact environment. The ability to watch cell biology in real-time 'as it happens' has provided novel insight into tissue homeostasis, as well as disease initiation, progression and response to treatment. In this minireview, we highlight recent advances in the field of intravital microscopy, touching upon advances in awake versus anaesthesia-based approaches, as well as the integration of biosensors into intravital imaging. We also discuss current challenges that, in our opinion, need to be overcome to further advance the field of intravital imaging at the single-cell, subcellular and molecular resolution to reveal nuances of cell behaviour that can be targeted in complex disease settings.
Collapse
Affiliation(s)
- Kendelle J Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
17
|
Colozza G, Koo BK. Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev Growth Differ 2021; 63:199-218. [PMID: 33619734 PMCID: PMC8251975 DOI: 10.1111/dgd.12718] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Wnt/β‐catenin signaling is an ancient pathway that regulates key aspects of embryonic development, cell differentiation, proliferation, and adult stem cell homeostasis. Work from different laboratories has shed light on the molecular mechanisms underlying the Wnt pathway, including structural details of ligand–receptor interactions. One key aspect that has emerged from multiple studies is that endocytosis of the receptor complex plays a crucial role in fine‐tuning Wnt/β‐catenin signaling. Endocytosis is a key process involved in both activation as well as attenuation of Wnt signaling, but how this is regulated is still poorly understood. Importantly, recent findings show that Wnt also regulates central metabolic pathways such as the acquisition of nutrients through actin‐driven endocytic mechanisms. In this review, we propose that the Wnt pathway displays diverse characteristics that go beyond the regulation of gene expression, through a connection with the endocytic machinery.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
18
|
Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles. PLoS One 2020; 15:e0235116. [PMID: 32569321 PMCID: PMC7307772 DOI: 10.1371/journal.pone.0235116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.
Collapse
|
19
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
20
|
Joseph JG, Liu AP. Mechanical Regulation of Endocytosis: New Insights and Recent Advances. ACTA ACUST UNITED AC 2020; 4:e1900278. [PMID: 32402120 DOI: 10.1002/adbi.201900278] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Endocytosis is a mechanosensitive process. It involves remodeling of the plasma membrane from a flat shape to a budded morphology, often at the sub-micrometer scale. This remodeling process is energy-intensive and is influenced by mechanical factors such as membrane tension, membrane rigidity, and physical properties of cargo and extracellular surroundings. The cellular responses to a variety of mechanical factors by distinct endocytic pathways are important for cells to counteract rapid and extreme disruptions in the mechanohomeostasis of cells. Recent advances in microscopy and mechanical manipulation at the cellular scale have led to new discoveries of mechanoregulation of endocytosis by the aforementioned factors. While factors such as membrane tension and membrane rigidity are generally shown to inhibit endocytosis, other mechanical stimuli have complex relationships with endocytic pathways. At this juncture, it is now possible to utilize experimental techniques to interrogate theoretical predictions on mechanoregulation of endocytosis in cells and even living organisms.
Collapse
Affiliation(s)
- Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
22
|
Abstract
In this issue of Cell Stem Cell, Johansson et al. (2019) find evolutionarily conserved regulation of Wnt signaling through Ral GTPases. These GTPases promote internalization of Wnt receptor complexes and play a critical role in intestinal stem cell function in flies and mice.
Collapse
Affiliation(s)
- Helen Tauc
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Loh J, Chuang MC, Lin SS, Joseph J, Su YA, Hsieh TL, Chang YC, Liu AP, Liu YW. An acute decrease in plasma membrane tension induces macropinocytosis via PLD2 activation. J Cell Sci 2019; 132:jcs.232579. [PMID: 31391241 DOI: 10.1242/jcs.232579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Internalization of macromolecules and membrane into cells through endocytosis is critical for cellular growth, signaling and plasma membrane (PM) tension homeostasis. Although endocytosis is responsive to both biochemical and physical stimuli, how physical cues modulate endocytic pathways is less understood. Contrary to the accumulating discoveries on the effects of increased PM tension on endocytosis, less is known about how a decrease of PM tension impacts on membrane trafficking. Here, we reveal that an acute decrease of PM tension results in phosphatidic acid (PA) production, F-actin and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]-enriched dorsal membrane ruffling and subsequent macropinocytosis in myoblasts. The PA production induced by decreased PM tension depends on phospholipase D2 (PLD2) activation via PLD2 nanodomain disintegration. Furthermore, the 'decreased PM tension-PLD2-macropinocytosis' pathway is prominent in myotubes, reflecting a potential mechanism of PM tension homeostasis upon intensive muscle stretching and relaxation. Together, we identify a new mechanotransduction pathway that converts an acute decrease in PM tension into PA production and then initiates macropinocytosis via actin and PI(4,5)P2-mediated processes.
Collapse
Affiliation(s)
- Julie Loh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jophin Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Tsung-Lin Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
24
|
Johansson J, Naszai M, Hodder MC, Pickering KA, Miller BW, Ridgway RA, Yu Y, Peschard P, Brachmann S, Campbell AD, Cordero JB, Sansom OJ. RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Cell Stem Cell 2019; 24:592-607.e7. [PMID: 30853556 PMCID: PMC6459002 DOI: 10.1016/j.stem.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential.
Collapse
Affiliation(s)
- Joel Johansson
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Mate Naszai
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | - Bryan W Miller
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Yachuan Yu
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | | | - Julia B Cordero
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
25
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
26
|
Phospholipase D and the Mitogen Phosphatidic Acid in Human Disease: Inhibitors of PLD at the Crossroads of Phospholipid Biology and Cancer. Handb Exp Pharmacol 2019; 259:89-113. [PMID: 31541319 DOI: 10.1007/164_2019_216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are key building blocks of biological membranes and are involved in complex signaling processes such as metabolism, proliferation, migration, and apoptosis. Extracellular signaling by growth factors, stress, and nutrients is transmitted through receptors that activate lipid-modifying enzymes such as the phospholipases, sphingosine kinase, or phosphoinositide 3-kinase, which then modify phospholipids, sphingolipids, and phosphoinositides. One such important enzyme is phospholipase D (PLD), which cleaves phosphatidylcholine to yield phosphatidic acid and choline. PLD isoforms have dual role in cells. The first involves maintaining cell membrane integrity and cell signaling, including cell proliferation, migration, cytoskeletal alterations, and invasion through the PLD product PA, and the second involves protein-protein interactions with a variety of binding partners. Increased evidence of elevated PLD expression and activity linked to many pathological conditions, including cancer, neurological and inflammatory diseases, and infection, has motivated the development of dual- and isoform-specific PLD inhibitors. Many of these inhibitors are reported to be efficacious and safe in cells and mouse disease models, suggesting the potential for PLD inhibitors as therapeutics for cancer and other diseases. Current knowledge and ongoing research of PLD signaling networks will help to evolve inhibitors with increased efficacy and safety for clinical studies.
Collapse
|
27
|
Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, Wollacott R, Sapp E, Dubuke ML, Li X, Shaffer SA, DiFiglia M, Wang Y, Aronin N, Khvorova A. Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity. Mol Ther 2018; 26:2838-2847. [PMID: 30341012 PMCID: PMC6277553 DOI: 10.1016/j.ymthe.2018.09.015] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Exosomes can deliver therapeutic RNAs to neurons. The composition and the safety profile of exosomes depend on the type of the exosome-producing cell. Mesenchymal stem cells are considered to be an attractive cell type for therapeutic exosome production. However, scalable methods to isolate and manufacture exosomes from mesenchymal stem cells are lacking, a limitation to the clinical translation of exosome technology. We evaluate mesenchymal stem cells from different sources and find that umbilical cord-derived mesenchymal stem cells produce the highest exosome yield. To optimize exosome production, we cultivate umbilical cord-derived mesenchymal stem cells in scalable microcarrier-based three-dimensional (3D) cultures. In combination with the conventional differential ultracentrifugation, 3D culture yields 20-fold more exosomes (3D-UC-exosomes) than two-dimensional cultures (2D-UC-exosomes). Tangential flow filtration (TFF) in combination with 3D mesenchymal stem cell cultures further improves the yield of exosomes (3D-TFF-exosomes) 7-fold over 3D-UC-exosomes. 3D-TFF-exosomes are seven times more potent in small interfering RNA (siRNA) transfer to neurons compared with 2D-UC-exosomes. Microcarrier-based 3D culture and TFF allow scalable production of biologically active exosomes from mesenchymal stem cells. These findings lift a major roadblock for the clinical utility of mesenchymal stem cell exosomes.
Collapse
Affiliation(s)
- Reka Agnes Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rachael Miller
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Cecile Didiot
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Ellen Sapp
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | - Michelle L Dubuke
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Xuni Li
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Marian DiFiglia
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | | | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Ma XX, Gao H, Zhang YX, Jia YY, Li C, Zhou SY, Zhang BL. Construction and evaluation of BSA-CaP nanomaterials with enhanced transgene performance via biocorona-inspired caveolae-mediated endocytosis. NANOTECHNOLOGY 2018; 29:085101. [PMID: 29256442 DOI: 10.1088/1361-6528/aaa2b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Non-viral nanovectors have attracted much attention owing to their ability to condense genetic materials and their ease of modification. However, their poor stability, low biocompatibility and gene degradation in endosomes or lysosomes has significantly hampered their application in vivo and in the clinic. In an attempt to overcome these difficulties a series of bovine serum albumin (BSA)-calcium phosphate (CaP) nanoparticles were constructed. The CaP condenses with DNA to form nanocomplexes coated with a biomimetic corona of BSA. Such complexes may retain the inherent endocytosis profile of BSA, with improved biocompatibility. In particular the transgene performance may be enhanced by stimulating the cellular uptake pathway via caveolae-mediated endocytosis. Two methods were employed to construct and optimize the formulation of BSA-CaP nanomaterials. The optimized BSA-CaP-50-M2 nanoparticles prepared by our second method exhibited good stability, negligible cytotoxicity and enhanced transgene performance with long-term expression for 72 h in vivo even with a single dose. Determination of the cellular uptake pathway and Western blot revealed that cellular uptake of the designed BSA-CaP-50-M2 nanoparticles was mainly via caveolae-mediated endocytosis in a non-degradative pathway in which the biomimetic uptake profile of BSA was retained.
Collapse
Affiliation(s)
- Xi-Xi Ma
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
AtCAP2 is crucial for lytic vacuole biogenesis during germination by positively regulating vacuolar protein trafficking. Proc Natl Acad Sci U S A 2018; 115:E1675-E1683. [PMID: 29378957 DOI: 10.1073/pnas.1717204115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein trafficking is a fundamental mechanism of subcellular organization and contributes to organellar biogenesis. AtCAP2 is an Arabidopsis homolog of the Mesembryanthemum crystallinum calcium-dependent protein kinase 1 adaptor protein 2 (McCAP2), a member of the syntaxin superfamily. Here, we show that AtCAP2 plays an important role in the conversion to the lytic vacuole (LV) during early plant development. The AtCAP2 loss-of-function mutant atcap2-1 displayed delays in protein storage vacuole (PSV) protein degradation, PSV fusion, LV acidification, and biosynthesis of several vacuolar proteins during germination. At the mature stage, atcap2-1 plants accumulated vacuolar proteins in the prevacuolar compartment (PVC) instead of the LV. In wild-type plants, AtCAP2 localizes to the PVC as a peripheral membrane protein and in the PVC compartment recruits glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2) to the PVC. We propose that AtCAP2 contributes to LV biogenesis during early plant development by supporting the trafficking of specific proteins involved in the PSV-to-LV transition and LV acidification during early stages of plant development.
Collapse
|
30
|
Huang LS, Jiang P, Feghali-Bostwick C, Reddy SP, Garcia JGN, Natarajan V. Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast differentiation. Free Radic Biol Med 2017; 112:162-173. [PMID: 28751023 DOI: 10.1016/j.freeradbiomed.2017.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022]
Abstract
Lysocardiolipin acyltransferase (LYCAT), a cardiolipin remodeling enzyme, plays a key role in mitochondrial function and vascular development. We previously reported that reduced LYCAT mRNA levels in peripheral blood mononuclear cells correlated with poor pulmonary function outcomes and decreased survival in IPF patients. Further LYCAT overexpression reduced lung fibrosis, and LYCAT knockdown accentuated experimental pulmonary fibrosis. NADPH Oxidase 4 (NOX4) expression and oxidative stress are known to contribute to lung fibroblast differentiation and progression of fibrosis. In this study, we investigated the role of LYCAT in TGF-β mediated differentiation of human lung fibroblasts to myofibroblasts, and whether this occurred through mitochondrial superoxide and NOX4 mediated hydrogen peroxide (H2O2) generation. Our data indicated that LYCAT expression was up-regulated in primary lung fibroblasts isolated from IPF patients and bleomycin-challenged mice, compared to controls. In vitro, siRNA-mediated SMAD3 depletion inhibited TGF-β stimulated LYCAT expression in human lung fibroblasts. ChIP immunoprecipitation assay revealed TGF-β stimulated SMAD2/3 binding to the endogenous LYCAT promoter, and mutation of the SMAD2/3 binding sites (-179/-183 and -540/-544) reduced TGF-β-stimulated LYCAT promoter activity. Overexpression of LYCAT attenuated TGF-β-induced mitochondrial and intracellular oxidative stress, NOX4 expression and differentiation of human lung fibroblasts. Further, pretreatment with Mito-TEMPO, a mitochondrial superoxide scavenger, blocked TGF-β-induced mitochondrial superoxide, NOX4 expression and differentiation of human lung fibroblasts. Treatment of human lung fibroblast with NOX1/NOX4 inhibitor, GKT137831, also attenuated TGF-β induced fibroblast differentiation and mitochondrial oxidative stress. Collectively, these results suggest that LYCAT is a negative regulator of TGF-β-induced lung fibroblast differentiation by modulation of mitochondrial superoxide and NOX4 dependent H2O2 generation, and this may serve as a potential therapeutic target for human lung fibrosis.
Collapse
Affiliation(s)
- Long Shuang Huang
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA.
| | - Peiyue Jiang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Sekhar P Reddy
- Department of Pediatrics, The University of Illinois at Chicago, Chicago, IL, USA
| | | | - Viswanathan Natarajan
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|