1
|
Kim HD, Choi H, Park JY, Kim CH. Distinct structural basis and catalytic classification of matrix metalloproteinases and their endogenous tissue inhibitors with glycosylation issue in cellular and tissue regulation. Arch Biochem Biophys 2025; 769:110436. [PMID: 40280381 DOI: 10.1016/j.abb.2025.110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Matrix metalloproteinase (MMP) enzymes cleave proteins on the extracellular matrix (ECM) region. MMPs are categorized as Zn2+-binding endo-proteinases. MMPs are stringently regulated in cancers, inflammatory cells and tissues. There are 29 types of MMPs as initially expressed in inactive zymogens (proMMPs) and activated by proteolysis in vertebrates including human. MMPs consist of three highly conserved parts of pro-MMP in precursor, catalytic and hemopexin domains. The MMPs are composed of systemic complexes with their endogenously expressed inhibitors of the tissue inhibitors of metalloproteinases (TIMPs). Therefore, TIMPs intrinsically control such activated MMPs, indicating the existence of self-modulation capacity. N-linked glycosylation (N-glycosylation) saves biological information than known phosphorylation, ubiquitination and acetylation. The MMPs are roughly present as membrane-merged and secreted glycoproteins. MMPs N-glycans regulate cellular behaviors, immune tolerance, and developing angiogenesis. Aberrant N-glycosylation of MMPs may cause the pathogenic properties. N-glycosylation shapes phenotypes of MMPs-producing cells during early MMPs involved in human. Additionally, issues of MMPs and TIMPs glycosylation have been described to view the importance of the glycans in their interaction with owns and other targets. Most of MMPs and 4 TIMPs are not well studied for their glycosylation and its functional roles.
Collapse
Affiliation(s)
- Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea; Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea; Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
2
|
Tanase DM, Valasciuc E, Anton IB, Gosav EM, Dima N, Cucu AI, Costea CF, Floria DE, Hurjui LL, Tarniceriu CC, Ciocoiu M, Floria M. Matrix Metalloproteinases: Pathophysiologic Implications and Potential Therapeutic Targets in Cardiovascular Disease. Biomolecules 2025; 15:598. [PMID: 40305314 PMCID: PMC12025335 DOI: 10.3390/biom15040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that play a crucial role in extracellular matrix (ECM) remodeling and are implicated in the pathogenesis of various cardiovascular diseases (CVDs). Their dysregulation has been linked to atherosclerosis, myocardial infarction (MI), heart failure (HF), and aortic stenosis, contributing to vascular inflammation, plaque destabilization, and adverse cardiac remodeling. Recent research highlights MMPs' involvement beyond ECM degradation, influencing lipoprotein metabolism, inflammatory signaling, and intracellular processes critical for cardiovascular homeostasis. Despite their pathological role, MMPs remain promising therapeutic targets, with pharmacological inhibitors, gene therapy, and tissue inhibitors of metalloproteinases (TIMPs) emerging as potential interventions. However, the clinical translation of MMP-targeting therapies remains challenging due to off-target effects and complex regulatory mechanisms. This review provides an updated synthesis of the molecular mechanisms, disease-specific roles, and therapeutic implications of MMPs in cardiovascular pathology, aiming to bridge the gap between fundamental research and clinical applications.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (I.-B.A.); (E.M.G.); (N.D.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (I.-B.A.); (E.M.G.); (N.D.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Ioana-Bianca Anton
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (I.-B.A.); (E.M.G.); (N.D.); (D.E.F.); (M.F.)
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (I.-B.A.); (E.M.G.); (N.D.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (I.-B.A.); (E.M.G.); (N.D.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Andrei Ionut Cucu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University, 720229 Suceava, Romania;
- Department of Neurosurgery, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (I.-B.A.); (E.M.G.); (N.D.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (I.-B.A.); (E.M.G.); (N.D.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
3
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Chen Z, Ji M, Qian J, Zhang Z, Zhang X, Gao H, Wang H, Wang R, Qi Y. ProBID-Net: a deep learning model for protein-protein binding interface design. Chem Sci 2024; 15:19977-19990. [PMID: 39568891 PMCID: PMC11575592 DOI: 10.1039/d4sc02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Protein-protein interactions are pivotal in numerous biological processes. The computational design of these interactions facilitates the creation of novel binding proteins, crucial for advancing biopharmaceutical products. With the evolution of artificial intelligence (AI), protein design tools have swiftly transitioned from scoring-function-based to AI-based models. However, many AI models for protein design are constrained by assuming complete unfamiliarity with the amino acid sequence of the input protein, a feature most suited for de novo design but posing challenges in designing protein-protein interactions when the receptor sequence is known. To bridge this gap in computational protein design, we introduce ProBID-Net. Trained using natural protein-protein complex structures and protein domain-domain interface structures, ProBID-Net can discern features from known target protein structures to design specific binding proteins based on their binding sites. In independent tests, ProBID-Net achieved interface sequence recovery rates of 52.7%, 43.9%, and 37.6%, surpassing or being on par with ProteinMPNN in binding protein design. Validated using AlphaFold-Multimer, the sequences designed by ProBID-Net demonstrated a close correspondence between the design target and the predicted structure. Moreover, the model's output can predict changes in binding affinity upon mutations in protein complexes, even in scenarios where no data on such mutations were provided during training (zero-shot prediction). In summary, the ProBID-Net model is poised to significantly advance the design of protein-protein interactions.
Collapse
Affiliation(s)
- Zhihang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Menglin Ji
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Jie Qian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Zhe Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Xiangying Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Haotian Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Yifei Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| |
Collapse
|
5
|
Rotenberg N, Feldman M, Shirian J, Hockla A, Radisky ES, Shifman JM. Engineered TIMP2 with narrow MMP-9 specificity is an effective inhibitor of invasion and proliferation of triple-negative breast cancer cells. J Biol Chem 2024; 300:107867. [PMID: 39419285 PMCID: PMC11609464 DOI: 10.1016/j.jbc.2024.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases that degrade extracellular matrix proteins, functioning in various physiological processes such as tissue remodeling, embryogenesis, and morphogenesis. Dysregulation of these enzymes is linked to multiple diseases. Specific inhibition of particular MMPs is crucial for anti-MMP drug development as some MMPs have shown antidisease properties. In this study, we aimed to design a highly specific inhibitor of MMP-9, that plays a crucial role in cell invasion and metastasis, using tissue inhibitor of metalloproteinases 2 (TIMP2s), an endogenous broad-family MMP inhibitor, as a prototype. In our earlier work, we were able to narrow down the specificity of the N-terminal domain of TIMP2 (N-TIMP2) toward MMP-9, yet at the expense of lowering its affinity to MMP-9. In this study, a library of N-TIMP2 mutants based on previous design with randomized additional positions was sorted for binding to MMP-9 using yeast surface display. Two selected N-TIMP2 mutants were expressed, purified, and their inhibitory activity against a panel of MMPs was measured. The best engineered N-TIMP2 mutant (REY) exhibited a 2-fold higher affinity to MMP-9 than that of the WT N-TIMP2, and 6- to 1.1 x 104-fold increase in binding specificity toward MMP-9 compared to five alternative MMPs. Moreover, REY demonstrated a significant increase in inhibition of cell invasion and proliferation compared to the WT N-TIMP2 in MDA-MB-231 breast cancer cells. Therefore, our engineered N-TIMP2 mutant emerges as a promising candidate for future therapeutic development, offering precise targeting of MMP-9 in MMP-9-driven diseases.
Collapse
Affiliation(s)
- Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark Feldman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Shirian J, Hockla A, Gleba JJ, Coban M, Rotenberg N, Strik LM, Alasonyalilar Demirer A, Pawlush ML, Copland JA, Radisky ES, Shifman JM. Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension. Biomolecules 2024; 14:1187. [PMID: 39334953 PMCID: PMC11429640 DOI: 10.3390/biom14091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are significant drivers of many diseases, including cancer, and are established targets for drug development. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous MMP inhibitors and are being pursued for the development of anti-MMP therapeutics. TIMPs possess many attractive properties for drug candidates, such as complete MMP inhibition, low toxicity, low immunogenicity, and high tissue permeability. However, a major challenge with TIMPs is their rapid clearance from the bloodstream due to their small size. This study explores a method for extending the plasma half-life of the N-terminal domain of TIMP2 (N-TIMP2) by appending it with a long, intrinsically unfolded tail containing Pro, Ala, and Thr (PATylation). We designed and produced two PATylated N-TIMP2 constructs with tail lengths of 100 and 200 amino acids (N-TIMP2-PAT100 and N-TIMP2-PAT200). Both constructs demonstrated higher apparent molecular weights and retained high inhibitory activity against MMP-9. N-TIMP2-PAT200 significantly increased plasma half-life in mice compared to the non-PATylated variant, enhancing its therapeutic potential. PATylation offers distinct advantages for half-life extension, such as fully genetic encoding, monodispersion, and biodegradability. It can be easily applied to N-TIMP2 variants engineered for high affinity and selectivity toward individual MMPs, creating promising candidates for drug development against MMP-related diseases.
Collapse
Affiliation(s)
- Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Justyna J. Gleba
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Matt Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Laura M. Strik
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Aylin Alasonyalilar Demirer
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Matt L. Pawlush
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Julia M. Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Meiri R, Aharoni Lotati SL, Orenstein Y, Papo N. Deep neural networks for predicting the affinity landscape of protein-protein interactions. iScience 2024; 27:110772. [PMID: 39310756 PMCID: PMC11416218 DOI: 10.1016/j.isci.2024.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Studies determining protein-protein interactions (PPIs) by deep mutational scanning have focused mainly on a narrow range of affinities within complexes and thus include only partial coverage of the mutation space of given proteins. By inserting an affinity-reducing N-terminal alanine in the N-terminal domain of the tissue inhibitor of metalloproteinases-2 (N-TIMP2), we overcame the limitation of its narrow affinity range for matrix metalloproteinase 9 (MMP9CAT). We trained deep neural networks (DNNs) to quantitatively predict the binding affinity of unobserved wild-type variants and variants carrying an N-terminal alanine. Good correlation was obtained between predicted and observed log2 enrichment ratio (ER) values, which also correlated with the affinity of N-TIMP2 variants to MMP9CAT. Our ability to predict affinities of unobserved N-TIMP2 variants was confirmed on an independent dataset of experimentally validated N-TIMP2 proteins. This ability is of significant importance in the field of PPI prediction and for developing therapies targeting these interactions.
Collapse
Affiliation(s)
- Reut Meiri
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shay-Lee Aharoni Lotati
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaron Orenstein
- Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
8
|
Shirian J, Hockla A, Gleba JJ, Coban M, Rotenberg N, Strik LM, Alasonyalilar Demirer A, Pawlush ML, Copland JA, Radisky ES, Shifman JM. Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600979. [PMID: 38979353 PMCID: PMC11230438 DOI: 10.1101/2024.06.27.600979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Matrix Metalloproteinases (MMPs) are drivers of many diseases including cancer and are established targets for drug development. Tissue inhibitors of metalloproteinases (TIMPs) are human proteins that inhibit MMPs and are being pursued for the development of anti-MMP therapeutics. TIMPs possess many attractive properties of a drug candidate, such as complete MMP inhibition, low toxicity and immunogenicity, high tissue permeability and others. A major challenge with TIMPs, however, is their formulation and delivery, as these proteins are quickly cleared from the bloodstream due to their small size. In this study, we explore a new method for plasma half-life extension for the N-terminal domain of TIMP2 (N-TIMP2) through appending it with a long intrinsically unfolded tail containing a random combination of Pro, Ala, and Thr (PATylation). We design, produce and explore two PATylated N-TIMP2 constructs with a tail length of 100- and 200-amino acids (N-TIMP2-PAT100 and N-TIMP2-PAT200, respectively). We demonstrate that both PATylated N-TIMP2 constructs possess apparent higher molecular weights compared to the wild-type protein and retain high inhibitory activity against MMP-9. Furthermore, when injected into mice, N-TIMP2-PAT200 exhibited a significant increase in plasma half-life compared to the non-PATylated variant, enhancing the therapeutic potential of the protein. Thus, we establish that PATylation could be successfully applied to TIMP-based therapeutics and offers distinct advantages as an approach for half-life extension, such as fully genetic encoding of the gene construct, mono-dispersion, and biodegradability. Furthermore, PATylation could be easily applied to N-TIMP2 variants engineered to possess high affinity and selectivity toward individual MMP family members, thus creating attractive candidates for drug development against MMP-related diseases.
Collapse
Affiliation(s)
- Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Justyna J. Gleba
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Matt Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Laura M. Strik
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Aylin Alasonyalilar Demirer
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Matt L. Pawlush
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Julia M. Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
9
|
Taheri E, Raeeszadeh-Sarmazdeh M. Effect of TIMPs and Their Minimally Engineered Variants in Blocking Invasion and Migration of Brain Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597644. [PMID: 38895489 PMCID: PMC11185677 DOI: 10.1101/2024.06.05.597644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Matrix metalloproteinases (MMPs) play a pivotal role in extracellular matrix (ECM) remodeling, influencing various aspects of cancer progression including migration, invasion, angiogenesis, and metastasis. Overexpression of MMPs, particularly MMP-2 and MMP-9, is notably pronounced in glioblastoma multiforme (GBM), a highly aggressive primary brain tumor characterized by diffuse and infiltrative behavior. Previous attempts to develop small molecule MMP inhibitors have failed in clinical trials, necessitating the exploration of more stable and selective alternatives. Tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins, offer promising potential due to their stability and broader interaction interfaces compared to small molecule inhibitors. In this study, we examined the effectiveness of wild-type human TIMP-1 and TIMP-3, alongside engineered minimal TIMP variants (mTC1 and mTC3), specifically designed for targeted MMP inhibition to reduce the migratory and invasive capabilities of GBM cells. Our investigation focused on these minimal TIMP variants, which provide enhanced tissue penetration and cellular uptake due to their small molecular weight, aiming to validate their potential as therapeutic agents. The results demonstrated that mTC1 and mTC3 effectively inhibit MMP activity, a critical factor in GBM aggressiveness, thereby highlighting their promise in controlling tumor spread. Given the lethality of GBM and the limited effectiveness of current treatments, the application of engineered TIMP variants represents a novel and potentially transformative therapeutic approach. By offering targeted MMP inhibition, these variants may significantly improve patient outcomes, providing new avenues for treatment and enhancing the survival and quality of life for patients with this devastating disease.
Collapse
|
10
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
11
|
Kalantar M, Hilpert GA, Mosca ER, Raeeszadeh-Sarmazdeh M. Engineering metalloproteinase inhibitors: tissue inhibitors of metalloproteinases or antibodies, that is the question. Curr Opin Biotechnol 2024; 86:103094. [PMID: 38430575 DOI: 10.1016/j.copbio.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/04/2024]
Abstract
Targeting metalloproteinases (MPs) has been the center of attention for developing therapeutics due to their contribution to a wide range of diseases, including cancer, cardiovascular, neurodegenerative disease, and preterm labor. Protein-based MP inhibitors offer higher stability and selectivity, which is critical for developing efficient therapeutics with low off-target effects. Tissue inhibitors of metalloproteinases (TIMPs), natural inhibitors of MPs, and antibodies provide excellent protein scaffolds for engineering selective or multispecific MP inhibitors. Advances in protein engineering and design techniques, such as rational design and directed evolution using yeast display to develop potent MP inhibitors, are discussed, including but not limited to loop grafting, swapping, and counterselective selection.
Collapse
Affiliation(s)
- Masoud Kalantar
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | - Gregory A Hilpert
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | - Ethan R Mosca
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
12
|
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases that belong to the group of endopeptidases or matrixins. They are able to cleave a plethora of substrates, including components of the extracellular matrix and cell-surface-associated proteins, as well as intracellular targets. Accordingly, MMPs play key roles in a variety of physiological and pathological processes, such as tissue homeostasis and cancer cell invasion. MMP activity is exquisitely regulated at several levels, including pro-domain removal, association with inhibitors, intracellular trafficking and transport via extracellular vesicles. Moreover, the regulation of MMP activity is currently being rediscovered for the development of respective therapies for the treatment of cancer, as well as infectious, inflammatory and neurological diseases. In this Cell Science at a Glance article and the accompanying poster, we present an overview of the current knowledge regarding the regulation of MMP activity, the intra- and extra-cellular trafficking pathways of these enzymes and their diverse groups of target proteins, as well as their impact on health and disease.
Collapse
Affiliation(s)
- Sven Hey
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Ahmadighadykolaei H, Radisky ES, Raeeszadeh-Sarmazdeh M. Engineering Selective TIMPs Using a Counter-Selective Screening Strategy. Methods Mol Biol 2024; 2747:257-278. [PMID: 38038946 PMCID: PMC11235094 DOI: 10.1007/978-1-0716-3589-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The yeast surface display platform provides a powerful approach for screening protein diversity libraries to identify binders with an enhanced affinity toward a binding partner. Here, we describe an adaptation of the approach to identify binders with enhanced specificity toward one among multiple closely related binding partners. Specifically, we describe methods for engineering selective matrix metalloproteinase (MMP) inhibitors via yeast surface display of a tissue inhibitor of metalloproteinase (TIMP) diversity library coupled with a counter-selective screening strategy. This protocol may also be employed for developing selective protein binders or inhibitors toward other targets.
Collapse
|
14
|
Hosseini A, Kumar S, Hedin K, Raeeszadeh‐Sarmazdeh M. Engineering minimal tissue inhibitors of metalloproteinase targeting MMPs via gene shuffling and yeast surface display. Protein Sci 2023; 32:e4795. [PMID: 37807423 PMCID: PMC10659938 DOI: 10.1002/pro.4795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
Overexpression of specific matrix metalloproteinases (MMPs) has a key role in development of several diseases, such as cancer, neurological disorders, and cardiovascular diseases due to their critical role in degradation and remodeling of the extracellular matrix (ECM). Tissue inhibitors of metalloproteinases (TIMPs), a family of four in humans, are endogenous inhibitors of MMPs. TIMPs have a high level of sequence and structure homology, with a broad range of binding and inhibition to the family of MMPs. It is important to identify the key motifs of TIMPs responsible for inhibition of MMPs to develop efficient therapeutics targeting specific MMPs. We used DNA shuffling between the human TIMP family to generate a minimal TIMP hybrid library in yeast to identify the dominant minimal MMP inhibitory regions. The minimal TIMP variants screened toward MMP-3 and MMP-9 using fluorescent-activated cell sorting (FACS). Interestingly, several minimal TIMP variants selected after screening toward MMP-3cd or MMP-9cd, with lengths as short as 20 amino acids, maintained or improved binding to MMP-3 and MMP-9. The TIMP-MMP binding dissociation constant (KD ), in the nM range, and MMP inhibition constants (Ki ), in the pM range, of these minimal TIMP variants were similar to the N-terminal domain of TIMP-1 on the yeast surface and in solution indicating the potency of these minimal variants as MMP inhibitors. We further used molecular modeling simulation, and molecular docking of the minimal TIMP variants in complex with MMP-3cd to understand the binding and inhibition mechanism of these variants.
Collapse
Affiliation(s)
- Arman Hosseini
- Department of Chemical and Materials EngineeringUniversity of NevadaRenoNVUSA
| | - Sachin Kumar
- Department of Chemical and Materials EngineeringUniversity of NevadaRenoNVUSA
| | - Kyle Hedin
- Department of Chemical and Materials EngineeringUniversity of NevadaRenoNVUSA
| | | |
Collapse
|
15
|
Itzhar A, Yosef G, Eilon-Ashkenazy M, Shmidov Y, Gil H, Lacham-Hartman S, Elyagon S, Etzion S, Bitton R, Cohen S, Etzion Y, Papo N. Potent inhibition of MMP-9 by a novel sustained-release platform attenuates left ventricular remodeling following myocardial infarction. J Control Release 2023; 364:246-260. [PMID: 37879441 DOI: 10.1016/j.jconrel.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Sustained drug-release systems prolong the retention of therapeutic drugs within target tissues to alleviate the need for repeated drug administration. Two major caveats of the current systems are that the release rate and the timing cannot be predicted or fine-tuned because they rely on uncontrolled environmental conditions and that the system must be redesigned for each drug and treatment regime because the drug is bound via interactions that are specific to its structure and composition. We present a controlled and universal sustained drug-release system, which comprises minute spherical particles in which a therapeutic protein is affinity-bound to alginate sulfate (AlgS) through one or more short heparin-binding peptide (HBP) sequence repeats. Employing post-myocardial infarction (MI) heart remodeling as a case study, we show that the release of C9-a matrix metalloproteinase-9 (MMP-9) inhibitor protein that we easily bound to AlgS by adding one, two, or three HBP repeats to its sequence-can be directly controlled by modifying the number of HBP repeats. In an in vivo study, we directly injected AlgS particles, which were bound to C9 through three HBP repeats, into the left ventricular myocardium of mice following MI. We found that the particles substantially reduced post-MI remodeling, attesting to the sustained, local release of the drug within the tissue. As the number of HBP repeats controls the rate of drug release from the AlgS particles, and since C9 can be easily replaced with almost any protein, our tunable sustained-release system can readily accommodate a wide range of protein-based treatments.
Collapse
Affiliation(s)
- Amit Itzhar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Yosef
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maayan Eilon-Ashkenazy
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadas Gil
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Elyagon
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sharon Etzion
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
16
|
Shoari A, Khalili-Tanha G, Coban MA, Radisky ES. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Front Mol Biosci 2023; 10:1321956. [PMID: 38074088 PMCID: PMC10702220 DOI: 10.3389/fmolb.2023.1321956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The study of protein-protein interactions (PPIs) and the engineering of protein-based inhibitors often employ two distinct strategies. One approach leverages the power of combinatorial libraries, displaying large ensembles of mutant proteins, for example, on the yeast cell surface, to select binders. Another approach harnesses computational modeling, sifting through an astronomically large number of protein sequences and attempting to predict the impact of mutations on PPI binding energy. Individually, each approach has inherent limitations, but when combined, they generate superior outcomes across diverse protein engineering endeavors. This synergistic integration of approaches aids in identifying novel binders and inhibitors, fine-tuning specificity and affinity for known binding partners, and detailed mapping of binding epitopes. It can also provide insight into the specificity profiles of varied PPIs. Here, we outline strategies for directing the evolution of tissue inhibitors of metalloproteinases (TIMPs), which act as natural inhibitors of matrix metalloproteinases (MMPs). We highlight examples wherein design of combinatorial TIMP libraries using structural and computational insights and screening these libraries of variants using yeast surface display (YSD), has successfully optimized for MMP binding and selectivity, and conferred insight into the PPIs involved.
Collapse
Affiliation(s)
| | | | | | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
17
|
Bonadio A, Oguche S, Lavy T, Kleifeld O, Shifman J. Computational design of matrix metalloprotenaise-9 (MMP-9) resistant to auto-cleavage. Biochem J 2023; 480:1097-1107. [PMID: 37401540 PMCID: PMC10422929 DOI: 10.1042/bcj20230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is an endopeptidase that remodels the extracellular matrix. MMP-9 has been implicated in several diseases including neurodegeneration, arthritis, cardiovascular diseases, fibrosis and several types of cancer, resulting in a high demand for MMP-9 inhibitors for therapeutic purposes. For such drug design efforts, large amounts of MMP-9 are required. Yet, the catalytic domain of MMP-9 (MMP-9Cat) is an intrinsically unstable enzyme that tends to auto-cleave within minutes, making it difficult to use in drug design experiments and other biophysical studies. We set our goal to design MMP-9Cat variant that is active but stable to auto-cleavage. For this purpose, we first identified potential auto-cleavage sites on MMP-9Cat using mass spectroscopy and then eliminated the auto-cleavage site by predicting mutations that minimize auto-cleavage potential without reducing enzyme stability. Four computationally designed MMP-9Cat variants were experimentally constructed and evaluated for auto-cleavage and enzyme activity. Our best variant, Des2, with 2 mutations, was as active as the wild-type enzyme but did not exhibit auto-cleavage after 7 days of incubation at 37°C. This MMP-9Cat variant, with an identical with MMP-9Cat WT active site, is an ideal candidate for drug design experiments targeting MMP-9 and enzyme crystallization experiments. The developed strategy for MMP-9CAT stabilization could be applied to redesign other proteases to improve their stability for various biotechnological applications.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Solomon Oguche
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Julia Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Bonadio A, Wenig BL, Hockla A, Radisky ES, Shifman JM. Designed Loop Extension Followed by Combinatorial Screening Confers High Specificity to a Broad Matrix MetalloproteinaseInhibitor. J Mol Biol 2023; 435:168095. [PMID: 37068580 PMCID: PMC10312305 DOI: 10.1016/j.jmb.2023.168095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Matrix metalloproteinases (MMPs) are key drivers of various diseases, including cancer. Development of probes and drugs capable of selectively inhibiting the individual members of the large MMP family remains a persistent challenge. The inhibitory N-terminal domain of tissue inhibitor of metalloproteinases-2 (N-TIMP2), a natural broad MMP inhibitor, can provide a scaffold for protein engineering to create more selective MMP inhibitors. Here, we pursued a unique approach harnessing both computational design and combinatorial screening to confer high binding specificity toward a target MMP in preference to an anti-target MMP. We designed a loop extension of N-TIMP2 to allow new interactions with the non-conserved MMP surface and generated an efficient focused library for yeast surface display, which was then screened for high binding to the target MMP-14 and low binding to anti-target MMP-3. Deep sequencing analysis identified the most promising variants, which were expressed, purified, and tested for selectivity of inhibition. Our best N-TIMP2 variant exhibited 29 pM binding affinity to MMP-14 and 2.4 µM affinity to MMP-3, revealing 7500-fold greater specificity than WT N-TIMP2. High-confidence structural models were obtained by including NGS data in the AlphaFold multiple sequence alignment. The modeling together with experimental mutagenesis validated our design predictions, demonstrating that the loop extension packs tightly against non-conserved residues on MMP-14 and clashes with MMP-3. This study demonstrates how introduction of loop extensions in a manner guided by target protein conservation data and loop design can offer an attractive strategy to achieve specificity in design of protein ligands.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Bernhard L Wenig
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA; Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
19
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
20
|
Hayun H, Coban M, Bhagat AK, Ozer E, Alfonta L, Caulfield TR, Radisky ES, Papo N. Utilizing genetic code expansion to modify N-TIMP2 specificity towards MMP-2, MMP-9, and MMP-14. Sci Rep 2023; 13:5186. [PMID: 36997589 PMCID: PMC10063552 DOI: 10.1038/s41598-023-32019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) regulate the degradation of extracellular matrix (ECM) components in biological processes. MMP activity is controlled by natural tissue inhibitors of metalloproteinases (TIMPs) that non-selectively inhibit the function of multiple MMPs via interaction with the MMPs' Zn2+-containing catalytic pocket. Recent studies suggest that TIMPs engineered to confer MMP specificity could be exploited for therapeutic purposes, but obtaining specific TIMP-2 inhibitors has proved to be challenging. Here, in an effort to improve MMP specificity, we incorporated the metal-binding non-canonical amino acids (NCAAs), 3,4-dihydroxyphenylalanine (L-DOPA) and (8-hydroxyquinolin-3-yl)alanine (HqAla), into the MMP-inhibitory N-terminal domain of TIMP2 (N-TIMP2) at selected positions that interact with the catalytic Zn2+ ion (S2, S69, A70, L100) or with a structural Ca2+ ion (Y36). Evaluation of the inhibitory potency of the NCAA-containing variants towards MMP-2, MMP-9 and MMP-14 in vitro revealed that most showed a significant loss of inhibitory activity towards MMP-14, but not towards MMP-2 and MMP-9, resulting in increased specificity towards the latter proteases. Substitutions at S69 conferred the best improvement in selectivity for both L-DOPA and HqAla variants. Molecular modeling provided an indication of how MMP-2 and MMP-9 are better able to accommodate the bulky NCAA substituents at the intermolecular interface with N-TIMP2. The models also showed that, rather than coordinating to Zn2+, the NCAA side chains formed stabilizing polar interactions at the intermolecular interface with MMP-2 and MMP-9. Our findings illustrate how incorporation of NCAAs can be used to probe-and possibly exploit-differential tolerance for substitution within closely related protein-protein complexes as a means to improve specificity.
Collapse
Affiliation(s)
- Hezi Hayun
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Matt Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, 310 Griffin Building, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Ashok Kumar Bhagat
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Thomas R Caulfield
- Departments of Neuroscience, Artificial Intelligence and Informatics, Computational Biology and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA.
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, 310 Griffin Building, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
21
|
Chang M. Matrix metalloproteinase profiling and their roles in disease. RSC Adv 2023; 13:6304-6316. [PMID: 36825288 PMCID: PMC9942564 DOI: 10.1039/d2ra07005g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play roles in remodelling of the extracellular matrix that occurs during morphogenesis, repair, and angiogenesis. Dysregulation of extracellular matrix remodelling can lead to cell proliferation, invasion, and tissue fibrosis. Identification of a specific MMP(s) in a disease has been challenging due to the presence of 24 closely-related human MMPs, each existing in three forms, of which only one is active and capable of catalysis. This review focuses on methods for MMP profiling, with particular emphasis on the batimastat affinity resin that binds only to the active forms of MMPs and related ADAMs (a disintegrin and metalloproteinases), which are then identified by mass spectrometry. Use of the batimastat affinity resin has identified targets for intervention in several human diseases.
Collapse
Affiliation(s)
- Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| |
Collapse
|
22
|
Rezhdo A, Lessard CT, Islam M, Van Deventer JA. Strategies for enriching and characterizing proteins with inhibitory properties on the yeast surface. Protein Eng Des Sel 2023; 36:gzac017. [PMID: 36648434 PMCID: PMC10365883 DOI: 10.1093/protein/gzac017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 01/18/2023] Open
Abstract
Display technologies are powerful tools for discovering binding proteins against a broad range of biological targets. However, it remains challenging to adapt display technologies for the discovery of proteins that inhibit the enzymatic activities of targets. Here, we investigate approaches for discovering and characterizing inhibitory antibodies in yeast display format using a well-defined series of constructs and the target matrix metalloproteinase-9. Three previously reported antibodies were used to create model libraries consisting of inhibitory, non-inhibitory, and non-binding constructs. Conditions that preferentially enrich for inhibitory clones were identified for both magnetic bead-based enrichments and fluorescence-activated cell sorting. Half maximal inhibitory concentration (IC50) was obtained through yeast titration assays. The IC50 of the inhibitory antibody obtained in yeast display format falls within the confidence interval of the IC50 value determined in soluble form. Overall, this study identifies strategies for the discovery and characterization of inhibitory clones directly in yeast display format.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Catherine T Lessard
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
23
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
24
|
Cayetano-Salazar L, Nava-Tapia DA, Astudillo-Justo KD, Arizmendi-Izazaga A, Sotelo-Leyva C, Herrera-Martinez M, Villegas-Comonfort S, Navarro-Tito N. Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges. Life Sci 2022; 308:120932. [PMID: 36067841 DOI: 10.1016/j.lfs.2022.120932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death in patients worldwide, where invasion and metastasis are directly responsible for this statement. Although cancer therapy has progressed in recent years, current therapeutic approaches are ineffective due to toxicity and chemoresistance. Therefore, it is essential to evaluate other treatment options, and natural products are a promising alternative as they show antitumor properties in different study models. This review describes the regulation of tissue inhibitors of metalloproteinases (TIMPs) expression and the role of flavonoids as molecules with the antitumor activity that targets TIMPs therapeutically. These inhibitors regulate tissue extracellular matrix (ECM) turnover; they inhibit matrix metalloproteinases (MMPs), cell migration, invasion, and angiogenesis and induce apoptosis in tumor cells. Data obtained in cell lines and in vivo models suggest that flavonoids are chemopreventive and cytotoxic against various types of cancer through several mechanisms. Flavonoids also regulate crucial signaling pathways such as focal adhesion kinase (FAK), phosphatidylinositol-3-kinase (PI3K)-Akt, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NFκB), and mitogen-activated protein kinase (MAPK) involved in cancer cell migration, invasion, and metastasis. All these data reposition flavonoids as excellent candidates for use in cancer therapy.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Dania A Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Kevin D Astudillo-Justo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - César Sotelo-Leyva
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Mayra Herrera-Martinez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón, OAX 68540, Mexico
| | - Sócrates Villegas-Comonfort
- División de Ciencias Naturales e Ingeniería, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, CDMX 05348, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
25
|
Costa S, Ragusa MA, Lo Buglio G, Scilabra SD, Nicosia A. The Repertoire of Tissue Inhibitors of Metalloproteases: Evolution, Regulation of Extracellular Matrix Proteolysis, Engineering and Therapeutic Challenges. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081145. [PMID: 36013323 PMCID: PMC9409782 DOI: 10.3390/life12081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Tissue inhibitors of metalloproteases (TIMPs) belong to a fascinating protein family expressed in all Metazoa. They act as regulators of the turnover of the extracellular matrix, and they are consistently involved in essential processes. Herein, we recapitulate the main activities of mammalian TIMPs (TIMP1-4) in the control of extracellular-matrix degradation and pathologies associated with aberrant proteostasis. We delineate the activity of TIMPs in the control of extracellular matrix (ECM) homeostasis and discuss the diversity of TIMPs across metazoans taking into account the emergence of the components of the ECM during evolution. Thus, the TIMP repertoire herein analysed includes the homologues from cnidarians, which are coeval with the origins of ECM components; protostomes (molluscs, arthropods and nematodes); and deuterostomes (echinoderms and vertebrates). Several questions, including the maintenance of the structure despite low sequence similarity and the strategies for TIMP engineering, shed light on the possibility to use recombinant TIMPs integrating unique features and binding selectivity for therapeutic applications in the treatment of inflammatory pathologies.
Collapse
Affiliation(s)
- Salvatore Costa
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.L.B.)
| | - Maria Antonietta Ragusa
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.L.B.)
| | - Gabriele Lo Buglio
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.L.B.)
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Via E. Tricomi 5, 90127 Palermo, Italy;
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation—National Research Council (IRIB-CNR), 90146 Palermo, Italy
- Correspondence:
| |
Collapse
|
26
|
Hayun H, Arkadash V, Sananes A, Arbely E, Stepensky D, Papo N. Bioorthogonal PEGylation Prolongs the Elimination Half-Life of N-TIMP2 While Retaining MMP Inhibition. Bioconjug Chem 2022; 33:795-806. [PMID: 35446024 DOI: 10.1021/acs.bioconjchem.2c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of the matrix metalloproteinase (MMP) family of proteins, whose members are key regulators of the proteolysis of extracellular matrix components and hence of multiple biological processes. In particular, imbalanced activity of matrix metalloproteinase-14 (MMP-14) may lead to the development of cancer and cardiovascular and other diseases. This study aimed to engineer TIMP2, one of the four homologous TIMPs, as a potential therapeutic by virtue of its ability to bind to the active-site Zn2+ of MMP-14. However, the susceptibility to degradation of TIMP2 and its small size, which results in a short circulation half-life, limit its use as a therapeutic. PEGylation was thus used to improve the pharmacokinetic profile of TIMP2. PEGylation of the MMP-targeting N-terminal domain of TIMP2 (N-TIMP2), via either cysteine or lysine residues, resulted in a significant decrease in N-TIMP2 affinity toward MMP-14 or multisite conjugation and conjugate heterogeneity, respectively. Our strategy designed to address this problem was based on incorporating a noncanonical amino acid (NCAA) into N-TIMP2 to enable site-specific mono-PEGylation. The first step was to incorporate the NCAA propargyl lysine (PrK) at position S31 in N-TIMP2, which does not interfere with the N-TIMP2-MMP-14 binding interface. Thereafter, site-specific PEGylation was achieved via a click chemistry reaction between N-TIMP2-S31PrK and PEG-azide-20K. Inhibition studies showed that PEGylated N-TIMP2-S31PrK did indeed retain its inhibitory activity toward MMP-14. The modified protein also showed improved serum stability vs non-PEGylated N-TIMP2. In vivo pharmacokinetic studies in mice revealed a significant 8-fold increase in the elimination half-life of PEGylated N-TIMP2 vs the non-PEGylated protein. This study shows that site-specific bioorthogonal mono-PEGylation extends the half-life of N-TIMP2 without impairing its biological activity, thereby highlighting the advantage of this strategy for generating potent PEGylated proteins.
Collapse
Affiliation(s)
- Hezi Hayun
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Valeria Arkadash
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Amiram Sananes
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Eyal Arbely
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Chen H, Ma L, Dai H, Fu Y, Wang H, Zhang Y. Advances in Rational Protein Engineering toward Functional Architectures and Their Applications in Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4522-4533. [PMID: 35353517 DOI: 10.1021/acs.jafc.2c00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein biomolecules including enzymes, cagelike proteins, and specific peptides have been continuously exploited as functional biomaterials applied in catalysis, nutrient delivery, and food preservation in food-related areas. However, natural proteins usually function well in physiological conditions, not industrial conditions, or may possess undesirable physical and chemical properties. Currently, rational protein design as a valuable technology has attracted extensive attention for the rational engineering or fabrication of ideal protein biomaterials with novel properties and functionality. This article starts with the underlying knowledge of protein folding and assembly and is followed by the introduction of the principles and strategies for rational protein design. Basic strategies for rational protein engineering involving experienced protein tailoring, computational prediction, computation redesign, and de novo protein design are summarized. Then, we focus on the recent progress of rational protein engineering or design in the application of food science, and a comprehensive summary ranging from enzyme manufacturing to cagelike protein nanocarriers engineering and antimicrobial peptides preparation is given. Overall, this review highlights the importance of rational protein engineering in food biomaterial preparation which could be beneficial for food science.
Collapse
Affiliation(s)
- Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Raeeszadeh-Sarmazdeh M, Coban M, Mahajan S, Hockla A, Sankaran B, Downey GP, Radisky DC, Radisky ES. Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely-related stromelysins MMP-3 and MMP-10. J Biol Chem 2022; 298:101654. [PMID: 35101440 PMCID: PMC8902619 DOI: 10.1016/j.jbc.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have long been known as key drivers in the development and progression of diseases, including cancer and neurodegenerative, cardiovascular, and many other inflammatory and degenerative diseases, making them attractive potential drug targets. Engineering selective inhibitors based upon tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins that tightly yet nonspecifically bind to the family of MMPs, represents a promising new avenue for therapeutic development. Here, we used a counter-selective screening strategy for directed evolution of yeast-displayed human TIMP-1 to obtain TIMP-1 variants highly selective for the inhibition of MMP-3 in preference over MMP-10. As MMP-3 and MMP-10 are the most similar MMPs in sequence, structure, and function, our results thus clearly demonstrate the capability for engineering full-length TIMP proteins to be highly selective MMP inhibitors. We show using protein crystal structures and models of MMP-3-selective TIMP-1 variants bound to MMP-3 and counter-target MMP-10 how structural alterations within the N-terminal and C-terminal TIMP-1 domains create new favorable and selective interactions with MMP-3 and disrupt unique interactions with MMP-10. While our MMP-3-selective inhibitors may be of interest for future investigation in diseases where this enzyme drives pathology, our platform and screening strategy can be employed for developing selective inhibitors of additional MMPs implicated as therapeutic targets in disease.
Collapse
Affiliation(s)
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Shivansh Mahajan
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gregory P Downey
- Departments of Medicine, Pediatrics, and Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado 80206; Departments of Medicine, and Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224.
| |
Collapse
|
29
|
Raeeszadeh-Sarmazdeh M, Boder ET. Yeast Surface Display: New Opportunities for a Time-Tested Protein Engineering System. Methods Mol Biol 2022; 2491:3-25. [PMID: 35482182 DOI: 10.1007/978-1-0716-2285-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display has proven to be a powerful tool for the discovery of antibodies and other novel binding proteins and for engineering the affinity and selectivity of existing proteins for their targets. In the decades since the first demonstrations of the approach, the range of yeast display applications has greatly expanded to include many different protein targets and has grown to encompass methods for rapid protein characterization. Here, we briefly summarize the development of yeast display methodologies and highlight several selected examples of recent applications to timely and challenging protein engineering and characterization problems.
Collapse
Affiliation(s)
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
30
|
Toumaian MR, Raeeszadeh-Sarmazdeh M. Engineering Tissue Inhibitors of Metalloproteinases Using Yeast Surface Display. Methods Mol Biol 2022; 2491:361-385. [PMID: 35482200 DOI: 10.1007/978-1-0716-2285-8_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display (YSD) has been extensively used for protein design, engineering, and directed evolution in the past two decades. Here, we describe methods for directed evolution of tissue inhibitors of metalloproteinase (TIMP), the natural inhibitors of matrix metalloproteinases (MMPs), through design and generation of a combinatorial library of TIMP mutants and screening the targeted TIMP library of variants toward MMP binding using YSD. This protocol can be adopted to other natural enzyme inhibitors and similar protein binders such as antibodies.
Collapse
Affiliation(s)
- Mari R Toumaian
- Chemical and Materials Engineering, University of Nevada, Reno, NV, USA
- Cell and Molecular Biology, University of Nevada, Reno, NV, USA
| | | |
Collapse
|
31
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Ke J, Ye J, Li M, Zhu Z. The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target. Biomolecules 2021; 11:1739. [PMID: 34827737 PMCID: PMC8615881 DOI: 10.3390/biom11111739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is a condition that is influenced by hormones and involves stroma and glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding, and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some of which not only affect the process of cell invasion but also participate in other physiological and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted molecules and their expression can be regulated by numerous factors such as estrogen, oxidative stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs may become effective biomarkers of endometriosis in the future. In the present review, we summarize the current literature on MMPs regarding their classification, function, and potential value for endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.
Collapse
Affiliation(s)
- Junya Ke
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiangfeng Ye
- Division of Obstetrics and Gynecology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
33
|
Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Future Med Chem 2021; 14:35-51. [PMID: 34779649 DOI: 10.4155/fmc-2021-0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protease inhibitors are of considerable interest as anticancer agents. Matrix metalloproteinases (MMPs) were the earliest type of proteases considered as anticancer targets. The developments of MMP inhibitors (MMPIs) by pharmaceutical companies can be dated from the early 1980s. Thus far, none of the over 50 MMPIs entering clinical trials have been approved. This work summarizes the reported studies on the structure of MMPs and complexes with ligands and inhibitors, based on which, the authors analyzed the clinical failures of MMPIs in a structural biological manner. Furthermore, MMPs were systematically compared with urokinase, a protease-generating plasmin, which plays similar pathological roles in cancer development; the reasons for the clinical successes of urokinase inhibitors and the clinical failures of MMPIs are discussed.
Collapse
|
34
|
Simultaneous targeting of CD44 and MMP9 catalytic and hemopexin domains as a therapeutic strategy. Biochem J 2021; 478:1139-1157. [PMID: 33600567 PMCID: PMC7959692 DOI: 10.1042/bcj20200628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Crosstalk of the oncogenic matrix metalloproteinase-9 (MMP9) and one of its ligands, CD44, involves cleavage of CD44 by the MMP9 catalytic domain, with the CD44–MMP9 interaction on the cell surface taking place through the MMP9 hemopexin domain (PEX). This interaction promotes cancer cell migration and invasiveness. In concert, MMP9-processed CD44 induces the expression of MMP9, which degrades ECM components and facilitates growth factor release and activation, cancer cell invasiveness, and metastasis. Since both MMP9 and CD44 contribute to cancer progression, we have developed a new strategy to fully block this neoplastic process by engineering a multi-specific inhibitor that simultaneously targets CD44 and both the catalytic and PEX domains of MMP9. Using a yeast surface display technology, we first obtained a high-affinity inhibitor for the MMP9 catalytic domain, which we termed C9, by modifying a natural non-specific MMP inhibitor, N-TIMP2. We then conjugated C9 via a flexible linker to PEX, thereby creating a multi-specific inhibitor (C9-PEX) that simultaneously targets the MMP9 catalytic and PEX domains and CD44. It is likely that, via its co-localization with CD44, C9-PEX may compete with MMP9 localization on the cell surface, thereby inhibiting MMP9 catalytic activity, reducing MMP9 cellular levels, interfering with MMP9 homodimerization, and reducing the activation of downstream MAPK/ERK pathway signaling. The developed platform could be extended to other oncogenic MMPs as well as to other important target proteins, thereby offering great promise for creating novel multi-specific therapeutics for cancer and other diseases.
Collapse
|
35
|
Adams E, Pezzotti S, Ahlers J, Rüttermann M, Levin M, Goldenzweig A, Peleg Y, Fleishman SJ, Sagi I, Havenith M. Local Mutations Can Serve as a Game Changer for Global Protein Solvent Interaction. JACS AU 2021; 1:1076-1085. [PMID: 34337607 PMCID: PMC8317155 DOI: 10.1021/jacsau.1c00155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 05/15/2023]
Abstract
Although it is well-known that limited local mutations of enzymes, such as matrix metalloproteinases (MMPs), may change enzyme activity by orders of magnitude as well as its stability, the completely rational design of proteins is still challenging. These local changes alter the electrostatic potential and thus local electrostatic fields, which impacts the dynamics of water molecules close the protein surface. Here we show by a combined computational design, experimental, and molecular dynamics (MD) study that local mutations have not only a local but also a global effect on the solvent: In the specific case of the matrix metalloprotease MMP14, we found that the nature of local mutations, coupled with surface morphology, have the ability to influence large patches of the water hydrogen-bonding network at the protein surface, which is correlated with stability. The solvent contribution can be experimentally probed via terahertz (THz) spectroscopy, thus opening the door to the exciting perspective of rational protein design in which a systematic tuning of hydration water properties allows manipulation of protein stability and enzymatic activity.
Collapse
Affiliation(s)
- Ellen
M. Adams
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Simone Pezzotti
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Jonas Ahlers
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Maximilian Rüttermann
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Maxim Levin
- Department
of Biological Regulation, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Adi Goldenzweig
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Yoav Peleg
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Irit Sagi
- Department
of Biological Regulation, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Martina Havenith
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
36
|
Bonadio A, Shifman JM. Computational design and experimental optimization of protein binders with prospects for biomedical applications. Protein Eng Des Sel 2021; 34:gzab020. [PMID: 34436606 PMCID: PMC8388154 DOI: 10.1093/protein/gzab020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 11/12/2022] Open
Abstract
Protein-based binders have become increasingly more attractive candidates for drug and imaging agent development. Such binders could be evolved from a number of different scaffolds, including antibodies, natural protein effectors and unrelated small protein domains of different geometries. While both computational and experimental approaches could be utilized for protein binder engineering, in this review we focus on various computational approaches for protein binder design and demonstrate how experimental selection could be applied to subsequently optimize computationally-designed molecules. Recent studies report a number of designed protein binders with pM affinities and high specificities for their targets. These binders usually characterized with high stability, solubility, and low production cost. Such attractive molecules are bound to become more common in various biotechnological and biomedical applications in the near future.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
37
|
Yano H, Nishimiya D, Kawaguchi Y, Tamura M, Hashimoto R. Discovery of potent and specific inhibitors targeting the active site of MMP-9 from the engineered SPINK2 library. PLoS One 2020; 15:e0244656. [PMID: 33373399 PMCID: PMC7771667 DOI: 10.1371/journal.pone.0244656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) contribute to many physiological and pathological phenomena via the proteolysis of extracellular matrix components. Specific blocking of the active site of each MMP sheds light on its particular role. However, it remains difficult to acquire an active-site inhibitor with high specificity for only the target MMP due to the highly conserved structure around the active site of MMPs. Recently, we reported that potent and specific inhibitors of serine proteases were obtained from our proprietary engineered serine protease inhibitor Kazal type 2 (SPINK2) library. In this research, using this library, we succeeded in obtaining potent and specific MMP-9 inhibitors. The obtained inhibitors bound to the active site of MMP-9 and inhibited MMP-9 with low nanomolar Ki values. The inhibitors did not cross-react with other MMPs that we tested. Further analysis using MMP-9 mutants demonstrated that the inhibitors recognize not only the residues around the conserved active site of MMP-9 but also different and unique residues in exosites that are distant from each other. This unique recognition manner, which can be achieved by the large interface provided by engineered SPINK2, may contribute to the generation of specific active-site inhibitors of MMPs.
Collapse
Affiliation(s)
- Hidenori Yano
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Daisuke Nishimiya
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoshirou Kawaguchi
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masakazu Tamura
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ryuji Hashimoto
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
38
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
39
|
Kalavska K, Cierna Z, Karaba M, Minarik G, Benca J, Sedlackova T, Kolekova D, Mrvova I, Pindak D, Mardiak J, Mego M. Prognostic role of matrix metalloproteinase 9 in early breast cancer. Oncol Lett 2020; 21:78. [PMID: 33363615 PMCID: PMC7723168 DOI: 10.3892/ol.2020.12339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
MMP9 is involved in extracellular matrix degradation during various physiological and pathological conditions, including tumorigenesis. The present study aimed to assess the prognostic role of intratumoral MMP9 and to determine its association with circulating tumor cells (CTCs) in patients with early breast cancer. A total of 318 patients with primary breast cancer (PBC) were enrolled into the present study. Specimens were subjected to immunohistochemistry analysis, using the MMP9 monoclonal antibody. MMP9 expression was scored using a weighted histoscore (WH). The results demonstrated that the mean WH ± SEM for MMP9 expression was significantly higher in breast tumor cells compared with tumor associated stromas (132.0±5.2 vs. 50.8±3.7; P<0.00001). Furthermore, a positive association was observed between MMP9 expression, the hormone positive status and proliferation index of analysed breast cancer tumour cells. Notably, the prognostic role of MMP9 was not observed in tumor cells [hazard ratio (HR) =0.96; 95% confidence interval (CI), 0.58-1.59; P=0.864] or tumor associated stroma (HR=1.29; 95% CI, 0.60-2.78; P=0.547). Subgroup analysis demonstrated that patients that were HR negative or triple negative, with low MMP9 expression in tumor cells and stroma had a significantly improved disease-free survival than patients with high MMP9 expression. Taken together, the results of the present study demonstrated that high MMP9 expression in PBC was associated with favorable tumor characteristics. However, the prognostic value of MMP9 was limited to only the HR negative and CTC epithelial-to-mesenchymal transition positive subgroups. Thus, analyzing MMP9 tumor expression may help identify patients with increased risk of disease recurrence in these subgroups.
Collapse
Affiliation(s)
- Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia.,Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 945 05 Bratislava, Slovakia
| | - Zuzana Cierna
- Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Department of Pathology, Faculty Hospital, 917 02 Trnava, Slovakia
| | - Marian Karaba
- Department of Oncosurgery, National Cancer Institute, 833 10 Bratislava, Slovakia.,Department of Surgical Oncology, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Gabriel Minarik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Juraj Benca
- Department of Oncosurgery, National Cancer Institute, 833 10 Bratislava, Slovakia.,Department of Medicine, St. Elizabeth University, 810 01 Bratislava, Slovakia
| | | | - Denisa Kolekova
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
| | - Ivana Mrvova
- Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Department of Pathology, Faculty Hospital, 917 02 Trnava, Slovakia
| | - Daniel Pindak
- Department of Oncosurgery, National Cancer Institute, 833 10 Bratislava, Slovakia.,Department of Surgical Oncology, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Jozef Mardiak
- Second Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia.,Second Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia
| |
Collapse
|
40
|
Claesson-Welsh L. How the matrix metalloproteinase MMP14 contributes to the progression of colorectal cancer. J Clin Invest 2020; 130:1093-1095. [PMID: 32015228 DOI: 10.1172/jci135239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Certain matrix metalloproteinase (MMP) family proteins have been associated with cell proliferation and invasion in aggressive cancers. However, attempts to target the MMPs with the hope of treating tumors have thus far failed. In this issue of the JCI, Ragusa and coworkers identified an intestinal cancer subgroup of slow-growing, chemotherapy-resistant, and very aggressive matrix-rich tumors that mimic a hard-to-treat colorectal cancer subtype in humans. These tumors showed downregulated levels of the transcription factor prospero homeobox protein 1 (PROX1), which relieved repression of the matrix metalloproteinase MMP14. Upregulated MMP14 levels correlated with blood vessel dysfunction and a lack of cytotoxic T cells. Notably, blockade of proangiogenic factors in combination with stimulation of the CD40 pathway in the mouse cancer model boosted cytotoxic T cell infiltration. The study illustrates how combinatorial treatments for aggressive, T cell-deficient cancers can launch an antitumor immune response.
Collapse
|
41
|
Fischer T, Riedl R. Challenges with matrix metalloproteinase inhibition and future drug discovery avenues. Expert Opin Drug Discov 2020; 16:75-88. [PMID: 32921161 DOI: 10.1080/17460441.2020.1819235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Matrix metalloproteinases have been in the scope of pharmaceutical drug discovery for decades as promising targets for drug development. Until present, no modulator of the enzyme class survived clinical trials, all failing for various reasons. Nevertheless, the target family did not lose its attractiveness and there is ever more evidence that MMP modulators are likely to overcome the hurdles and result in successful clinical therapies. AREAS COVERED This review provides an overview of past efforts that were taken in the development of MMP inhibitors and insight into promising strategies that might enable drug discovery in the field in the future. Small molecule inhibitors as well as biomolecules are reviewed. EXPERT OPINION Despite the lack of successful clinical trials in the past, there is ongoing research in the field of MMP modulation, proving the target class has not lost its appeal to pharmaceutical research. With ever-growing insights from different scientific fields that shed light on previously unknown correlations, it is now time to use synergies deriving from biological knowledge, chemical structure generation, and clinical application to reach the ultimate goal of bringing MMP derived drugs on a broad front for the benefit of patients into therapeutic use.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| |
Collapse
|
42
|
Stubbs EB. Targeting the blood-nerve barrier for the management of immune-mediated peripheral neuropathies. Exp Neurol 2020; 331:113385. [PMID: 32562668 DOI: 10.1016/j.expneurol.2020.113385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Healthy peripheral nerves encounter, with increased frequency, numerous chemical, biological, and biomechanical forces. Over time and with increasing age, these forces collectively contribute to the pathophysiology of a spectrum of traumatic, metabolic, and/or immune-mediated peripheral nerve disorders. The blood-nerve barrier (BNB) serves as a critical first-line defense against chemical and biologic insults while biomechanical forces are continuously buffered by a dense array of longitudinally orientated epineural collagen fibers exhibiting high-tensile strength. As emphasized throughout this Experimental Neurology Special Issue, the BNB is best characterized as a functionally dynamic multicellular vascular unit comprised of not only highly specialized endoneurial endothelial cells, but also associated perineurial cells, pericytes, Schwann cells, basement membrane, and invested axons. The composition of the BNB, while anatomically distinct, is not functionally dissimilar to that of the well characterized neurovascular unit of the central nervous system. While the BNB lacks a glial limitans and an astrocytic endfoot layer, the primary function of both vascular units is to establish, maintain, and protect an optimal endoneurial (PNS) or interstitial (CNS) fluid microenvironment that is vital for proper neuronal function. Altered endoneurial homeostasis as a secondary consequence of BNB dysregulation is considered an early pathological event in the course of a variety of traumatic, immune-mediated, or metabolically acquired peripheral neuropathies. In this review, emerging experimental advancements targeting the endoneurial microvasculature for the therapeutic management of immune-mediated inflammatory peripheral neuropathies, including the AIDP variant of Guillain-Barré syndrome, are discussed.
Collapse
Affiliation(s)
- Evan B Stubbs
- Research Service (151), Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; Department of Ophthalmology, Loyola University Health Science Division, Maywood, IL 60153, USA.
| |
Collapse
|
43
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
44
|
Aharon L, Aharoni SL, Radisky ES, Papo N. Quantitative mapping of binding specificity landscapes for homologous targets by using a high-throughput method. Biochem J 2020; 477:1701-1719. [PMID: 32296833 PMCID: PMC7376575 DOI: 10.1042/bcj20200188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
To facilitate investigations of protein-protein interactions (PPIs), we developed a novel platform for quantitative mapping of protein binding specificity landscapes, which combines the multi-target screening of a mutagenesis library into high- and low-affinity populations with sophisticated next-generation sequencing analysis. Importantly, this method generates accurate models to predict affinity and specificity values for any mutation within a protein complex, and requires only a few experimental binding affinity measurements using purified proteins for calibration. We demonstrated the utility of the approach by mapping quantitative landscapes for interactions between the N-terminal domain of the tissue inhibitor of metalloproteinase 2 (N-TIMP2) and three matrix metalloproteinases (MMPs) having homologous structures but different affinities (MMP-1, MMP-3, and MMP-14). The binding landscapes for N-TIMP2/MMP-1 and N-TIMP2/MMP-3 showed the PPIs to be almost fully optimized, with most single mutations giving a loss of affinity. In contrast, the non-optimized PPI for N-TIMP2/MMP-14 was reflected in a wide range of binding affinities, where single mutations exhibited a far more attenuated effect on the PPI. Our new platform reliably and comprehensively identified not only hot- and cold-spot residues, but also specificity-switch mutations that shape target affinity and specificity. Thus, our approach provides a methodology giving an unprecedentedly rich quantitative analysis of the binding specificity landscape, which will broaden the understanding of the mechanisms and evolutionary origins of specific PPIs and facilitate the rational design of specific inhibitors for structurally similar target proteins.
Collapse
Affiliation(s)
- Lidan Aharon
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shay-Lee Aharoni
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
45
|
The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther 2020; 207:107465. [DOI: 10.1016/j.pharmthera.2019.107465] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
|
46
|
Sinha R, Shukla P. Current Trends in Protein Engineering: Updates and Progress. Curr Protein Pept Sci 2019; 20:398-407. [PMID: 30451109 DOI: 10.2174/1389203720666181119120120] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
Proteins are one of the most important and resourceful biomolecules that find applications in health, industry, medicine, research, and biotechnology. Given its tremendous relevance, protein engineering has emerged as significant biotechnological intervention in this area. Strategic utilization of protein engineering methods and approaches has enabled better enzymatic properties, better stability, increased catalytic activity and most importantly, interesting and wide range applicability of proteins. In fact, the commercialization of engineered proteins have manifested in economically beneficial and viable solutions for industry and healthcare sector. Protein engineering has also evolved to become a powerful tool contributing significantly to the developments in both synthetic biology and metabolic engineering. The present review revisits the current trends in protein engineering approaches such as rational design, directed evolution, de novo design, computational approaches etc. and encompasses the recent progresses made in this field over the last few years. The review also throws light on advanced or futuristic protein engineering aspects, which are being explored for design and development of novel proteins with improved properties or advanced applications.
Collapse
Affiliation(s)
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
47
|
Jankauskaite J, Jiménez-García B, Dapkunas J, Fernández-Recio J, Moal IH. SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 2019; 35:462-469. [PMID: 30020414 PMCID: PMC6361233 DOI: 10.1093/bioinformatics/bty635] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022] Open
Abstract
Motivation Understanding the relationship between the sequence, structure, binding energy, binding kinetics and binding thermodynamics of protein–protein interactions is crucial to understanding cellular signaling, the assembly and regulation of molecular complexes, the mechanisms through which mutations lead to disease, and protein engineering. Results We present SKEMPI 2.0, a major update to our database of binding free energy changes upon mutation for structurally resolved protein–protein interactions. This version now contains manually curated binding data for 7085 mutations, an increase of 133%, including changes in kinetics for 1844 mutations, enthalpy and entropy changes for 443 mutations, and 440 mutations, which abolish detectable binding. Availability and implementation The database is available as supplementary data and at https://life.bsc.es/pid/skempi2/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Justina Jankauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Brian Jiménez-García
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Justas Dapkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Institut de Biologia Molecular de Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Iain H Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| |
Collapse
|
48
|
The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019; 8:cells8090984. [PMID: 31461880 PMCID: PMC6769477 DOI: 10.3390/cells8090984] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The pursuit of matrix metalloproteinase (MMP) inhibitors began in earnest over three decades ago. Initial clinical trials were disappointing, resulting in a negative view of MMPs as therapeutic targets. As a better understanding of MMP biology and inhibitor pharmacokinetic properties emerged, it became clear that initial MMP inhibitor clinical trials were held prematurely. Further complicating matters were problematic conclusions drawn from animal model studies. The most recent generation of MMP inhibitors have desirable selectivities and improved pharmacokinetics, resulting in improved toxicity profiles. Application of selective MMP inhibitors led to the conclusion that MMP-2, MMP-9, MMP-13, and MT1-MMP are not involved in musculoskeletal syndrome, a common side effect observed with broad spectrum MMP inhibitors. Specific activities within a single MMP can now be inhibited. Better definition of the roles of MMPs in immunological responses and inflammation will help inform clinic trials, and multiple studies indicate that modulating MMP activity can improve immunotherapy. There is a U.S. Food and Drug Administration (FDA)-approved MMP inhibitor for periodontal disease, and several MMP inhibitors are in clinic trials, targeting a variety of maladies including gastric cancer, diabetic foot ulcers, and multiple sclerosis. It is clearly time to move on from the dogma of viewing MMP inhibition as intractable.
Collapse
|
49
|
Fischer T, Riedl R. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules 2019; 24:molecules24122265. [PMID: 31216704 PMCID: PMC6631688 DOI: 10.3390/molecules24122265] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.
Collapse
Affiliation(s)
- Thomas Fischer
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
50
|
Raeeszadeh-Sarmazdeh M, Greene KA, Sankaran B, Downey GP, Radisky DC, Radisky ES. Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. J Biol Chem 2019; 294:9476-9488. [PMID: 31040180 DOI: 10.1074/jbc.ra119.008321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs), enzymes that contribute to cancer and many inflammatory and degenerative diseases. The TIMP N-terminal domain binds and inhibits an MMP catalytic domain, but the role of the TIMP C-terminal domain in MMP inhibition is poorly understood. Here, we employed yeast surface display for directed evolution of full-length human TIMP-1 to develop MMP-3-targeting ultrabinders. By simultaneously incorporating diversity into both domains, we identified TIMP-1 variants that were up to 10-fold improved in binding MMP-3 compared with WT TIMP-1, with inhibition constants (Ki ) in the low picomolar range. Analysis of individual and paired mutations from the selected TIMP-1 variants revealed cooperative effects between distant residues located on the N- and C-terminal TIMP domains, positioned on opposite sides of the interaction interface with MMP-3. Crystal structures of MMP-3 complexes with TIMP-1 variants revealed conformational changes in TIMP-1 near the cooperative mutation sites. Affinity was strengthened by cinching of a reciprocal "tyrosine clasp" formed between the N-terminal domain of TIMP-1 and proximal MMP-3 interface and by changes in secondary structure within the TIMP-1 C-terminal domain that stabilize interdomain interactions and improve complementarity to MMP-3. Our protein engineering and structural studies provide critical insight into the cooperative function of TIMP domains and the significance of peripheral TIMP epitopes in MMP recognition. Our findings suggest new strategies to engineer TIMP proteins for therapeutic applications, and our directed evolution approach may also enable exploration of functional domain interactions in other protein systems.
Collapse
Affiliation(s)
| | - Kerrie A Greene
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gregory P Downey
- Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado 80206, and.,Departments of Medicine, Immunology, and Microbiology, University of Colorado, Aurora, Colorado 80045
| | - Derek C Radisky
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Evette S Radisky
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224,
| |
Collapse
|