1
|
Umeno T, Takemoto H, Oba M. Plasmid DNA delivery using arginine-rich cell-penetrating L/D-peptides containing α-aminoisobutyric acids. Org Biomol Chem 2025; 23:5191-5196. [PMID: 40325951 DOI: 10.1039/d5ob00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The relationship between intracellular uptake efficacy and the folding behavior of arginine-rich cell-penetrating L/D-peptides with α,α-disubstituted α-amino acids in plasmid DNA (pDNA) delivery was examined. Nano-sized complexes formed from pDNA and L/D-peptides efficiently traversed the cell membrane regardless of the peptide conformation. This finding represents a significant deviation from previously reported covalent cargo delivery methods using cell penetrating peptides with L- and D-amino acids.
Collapse
Affiliation(s)
- Tomohiro Umeno
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| | - Hiroyasu Takemoto
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| | - Makoto Oba
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| |
Collapse
|
2
|
Ghosh P, Seitz O. Boronic Acid-Linked Apo-Zinc Finger Protein for Ubiquitin Delivery in Live Cells. Chembiochem 2025; 26:e202401040. [PMID: 39950407 DOI: 10.1002/cbic.202401040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Delivering cargo into live cells has extensive applications in chemistry, biology, and medicine. Cell-penetrating peptides (CPPs) provide an ideal solution for cellular delivery. Enhancing CPPs with additional functional units can improve delivery efficiency. We investigate the conjugation of boronic acid modules to enhance internalization through interactions with cell surface glycans. The aim of this study is to determine whether adding boronic acid can transform a peptide that typically lacks CPP properties into one that functions as a CPP, enabling the delivery of crucial biological cargo like ubiquitin (Ub). The zinc finger protein in its apo state was selected as a "boronate-enabled" CPP. Results indicate that skeletal point mutations and post-synthetic modifications, combined with conjugated benzoboroxole derivatives, enable the apo-ZFP the ability to transport Ub within A549 cells, confirmed through microscopy and flow cytometry. This effective internalization of cargo offers valuable insights for advancing the development of boronic acid-mediated cell-penetrating peptides.
Collapse
Affiliation(s)
- Pritam Ghosh
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
4
|
Xie J, Xiang J, Shen Y, Shao S. Mechanistic Insights into the Tools for Intracellular Protein Delivery. CHEM & BIO ENGINEERING 2025; 2:132-155. [PMID: 40171130 PMCID: PMC11955855 DOI: 10.1021/cbe.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 04/03/2025]
Abstract
Proteins are an important therapeutic modality in modern medicine. However, their inherent inability to traverse cell membranes essentially limits their application to extracellular targets. Recent advances in intracellular protein delivery have enabled access to traditionally "undruggable" intracellular targets and paved the way to precisely modulate cellular functions. This Review provides a comprehensive examination of the key mechanisms and emerging technologies that facilitate the transport of functional proteins across cellular membranes. Delivery methods are categorized into physical, chemical, and biological approaches, each with distinct advantages and limitations. Physical methods enable direct protein entry but often pose challenges related to invasiveness and technical complexity. Chemical strategies offer customizable solutions with enhanced control over cellular targeting and uptake, yet may face issues with cytotoxicity and scalability. Biological approaches leverage naturally occurring processes to achieve efficient intracellular transport, though regulatory and production consistency remain hurdles. By highlighting recent advancements, challenges, and opportunities within each approach, this review underscores the potential of intracellular protein delivery technologies to unlock new therapeutic pathways and transform drug development paradigms.
Collapse
Affiliation(s)
- Jingwen Xie
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiajia Xiang
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Youqing Shen
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Shiqun Shao
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
5
|
Jung W, Lee D, Kim H, Son B, Oh S, Gong JE, Kim D, Yoon J, Yeom J. Universal Chiral Nanopaint for Metal Oxide Biomaterials. ACS NANO 2025; 19:8632-8645. [PMID: 40025726 DOI: 10.1021/acsnano.4c14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chirality is widespread in nature and governs the properties of various materials including inorganic nanomaterials. However, previously reported chiral inorganic materials have been limited to a handful of compositions owing to the physicochemical restrictions that impart chirality. Herein, chiral nanopaint applicable to diverse inorganic materials is presented. Various metal oxide nanoparticles (NPs) show chiroptical properties after coating with our chiral nanopaint, while maintaining their properties, such as magnetic properties. The combination of magnetism and chirality brings biomedical functionalities to chiral NPs, such as anticancer hyperthermia treatment. In vitro, d-nanopainted iron oxide NPs showed more than 50% higher cellular uptake compared to l-nanopainted iron oxide NPs, and this was due to the enantiospecific interaction between the cellular receptors on the cell surface and the chiral NPs. In vivo, d-nanopainted iron oxide NPs showed 4-fold superior anticancer efficiency by magnetic hyperthermia compared to l-nanopainted iron oxide NPs owing to improved adsorption to tumors. These chiral nanoparticles may provide potential synthesis strategies for chiral inorganic biomaterials, which exhibit elaborate combinations of intrinsic physical properties and extrinsic enantioselective properties for a variety of applications.
Collapse
Affiliation(s)
- Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongkyu Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Boyoung Son
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seungjun Oh
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jeong Eun Gong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Daehong Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
7
|
Ziu T, Sambur E, Ruzsics Z, Hengel H, Grabherr R, Höfinger S, Harant H. In Vitro Profiling of the Antiviral Peptide TAT-I24. Int J Mol Sci 2024; 25:10463. [PMID: 39408791 PMCID: PMC11477294 DOI: 10.3390/ijms251910463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The synthetic peptide TAT-I24 (GRKKRRQRRRPPQCLAFYACFC) exerts antiviral activity against several double-stranded (ds) DNA viruses, including herpes simplex viruses, cytomegalovirus, some adenoviruses, vaccinia virus and SV40 polyomavirus. In the present study, in vitro profiling of this peptide was performed with the aim of characterizing and improving its properties for further development. As TAT-I24 contains three free cysteine residues, a potential disadvantageous feature, peptide variants with replacements or deletions of specific residues were generated and tested in various cell systems and by biochemical analyses. Some cysteine replacements had no impact on the antiviral activity, such as the deletion of cysteine 14, which also showed improved biochemical properties, while the cyclization of cysteines 14 and 20 had the most detrimental effect on antiviral activity. At concentrations below 20 µM, TAT-I24 and selected variants did not induce hemolysis in red blood cells (RBCs) nor modulated lipopolysaccharide (LPS)-induced release of cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), in human peripheral blood mononuclear cells (PBMCs). These data indicate that TAT-I24 or its peptide variants are not expected to cause unwanted effects on blood cells.
Collapse
Affiliation(s)
- Theodhora Ziu
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| | - Ezgi Sambur
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Reingard Grabherr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria;
| | - Siegfried Höfinger
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | - Hanna Harant
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| |
Collapse
|
8
|
Polderdijk SGI, Limzerwala JF, Spiess C. Plasma membrane damage limits cytoplasmic delivery by conventional cell penetrating peptides. PLoS One 2024; 19:e0305848. [PMID: 39226290 PMCID: PMC11371239 DOI: 10.1371/journal.pone.0305848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 09/05/2024] Open
Abstract
Intracellular delivery of large molecule cargo via cell penetrating peptides (CPPs) is an inefficient process and despite intense efforts in past decades, improvements in efficiency have been marginal. Utilizing a standardized and comparative analysis of the delivery efficiency of previously described cationic, anionic, and amphiphilic CPPs, we demonstrate that the delivery ceiling is accompanied by irreparable plasma membrane damage that is part of the uptake mechanism. As a consequence, intracellular delivery correlates with cell toxicity and is more efficient for smaller peptides than for large molecule cargo. The delivery of pharmaceutically relevant cargo quantities with acceptable toxicity thus seems hard to achieve with the CPPs tested in our study. Our results suggest that any engineered intracellular delivery system based on conventional cationic or amphiphilic CPPs, or the design principles underlying them, needs to accept low delivery yields due to toxicity limiting efficient cytoplasmic uptake. Novel peptide designs based on detailed study of uptake mechanisms are required to overcome these limitations.
Collapse
Affiliation(s)
| | - Jazeel F. Limzerwala
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| |
Collapse
|
9
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
10
|
Abd El-Aal AAA, Jayakumar FA, Reginald K. Dual-action potential of cationic cryptides against infections and cancers. Drug Discov Today 2023; 28:103764. [PMID: 37689179 DOI: 10.1016/j.drudis.2023.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cryptides are a subfamily of bioactive peptides embedded latently in their parent proteins and have multiple biological functions. Cationic cryptides could be used as modern drugs in both infectious diseases and cancers because their mechanism of action is less likely to be affected by genetic mutations in the treated cells, therefore addressing a current unmet need in these two areas of medicine. In this review, we present the current understanding of cryptides, methods to mine them sustainably using available online databases and prediction tools, with a particular focus on their antimicrobial and anticancer potential, and their potential applicability in a clinical setting.
Collapse
Affiliation(s)
- Amr A A Abd El-Aal
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia
| | - Fairen A Jayakumar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia.
| |
Collapse
|
11
|
Arafiles JV, Franke J, Franz L, Gómez-González J, Kemnitz-Hassanin K, Hackenberger CPR. Cell-Surface-Retained Peptide Additives for the Cytosolic Delivery of Functional Proteins. J Am Chem Soc 2023; 145. [PMID: 37906525 PMCID: PMC10655119 DOI: 10.1021/jacs.3c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
The delivery of functional proteins remains a major challenge in advancing biological and pharmaceutical sciences. Herein, we describe a powerful, simple, and highly effective strategy for the intracellular delivery of functional cargoes. Previously, we demonstrated that cell-penetrating peptide (CPP) additives equipped with electrophilic thiol-reactive moieties temporarily attach to the cellular membrane, thereby facilitating the cellular uptake of protein- and antibody-CPP cargoes through direct membrane transduction at low concentrations. Now, we hypothesize that CPP-additives with an increased retention on the cellular membrane will further enhance intracellular uptake. We discovered that adding a small hydrophobic peptide sequence to an arginine-rich electrophilic CPP-additive further improved the uptake of protein-CPP conjugates, whereas larger hydrophobic anchors showed increased cytotoxicity. Cell viability and membrane integrity measurements, structure-activity relationship studies, and quantitative evaluation of protein-CPP uptake revealed important design principles for cell-surface-retained CPP-additives. These investigations allowed us to identify a nontoxic, thiol-reactive CPP-additive containing the hydrophobic ILFF sequence, which can deliver fluorescent model proteins at low micromolar concentrations. This hydrophobic CPP-additive allowed the addition of protein cargoes for intracellular delivery after initial additive incubation. Time-lapse fluorescence microscopy and membrane tension analysis of cells treated with fluorescent ILFF-CPP-additives supported the claim of increased cell surface retention and suggested that the protein-CPP cargoes enter the cell through a mechanism involving lowered cell membrane tension. Finally, we demonstrated that our newly engineered hydrophobic CPP-additive enabled the uptake of a functional macrocyclic peptidic MDM2-inhibitor and a recombinant genome editing protein. This indicates that the developed hydrophobic CPP-additive holds promise as a tool to enhance the intracellular delivery of peptide and protein cargoes.
Collapse
Affiliation(s)
- Jan Vincent
V. Arafiles
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Jonathan Franke
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
- Institut
für Chemie, Humboldt Universität
zu Berlin, Brook-Taylor-Str.
2, Berlin 12489, Germany
| | - Luise Franz
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Jacobo Gómez-González
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Kristin Kemnitz-Hassanin
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
- Institut
für Chemie, Humboldt Universität
zu Berlin, Brook-Taylor-Str.
2, Berlin 12489, Germany
| |
Collapse
|
12
|
Diaz J, Pietsch M, Davila M, Jaimes G, Hudson A, Pellois JP. Elucidating the Impact of Payload Conjugation on the Cell-Penetrating Efficiency of the Endosomal Escape Peptide dfTAT: Implications for Future Designs for CPP-Based Delivery Systems. Bioconjug Chem 2023; 34:1861-1872. [PMID: 37774419 PMCID: PMC10644971 DOI: 10.1021/acs.bioconjchem.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Cell-penetrating peptides (CPPs) are promising tools for the intracellular delivery of various biological payloads. However, the impact of payload conjugation on the cell-penetrating activity of CPPs is poorly understood. This study focused on dfTAT, a modified version of the HIV-TAT peptide with enhanced endosomal escape activity, to explore how different payloads affect its cell-penetrating activity. We systematically examined dfTAT conjugated with the SnoopTag/SnoopCatcher pair and found that while smaller payloads such as short peptides do not significantly impair dfTAT's cell delivery activity, larger payloads markedly reduce both its endocytic uptake and endosomal escape efficiency. Our results highlight the role of the payload size and bulk in limiting CPP-mediated delivery. While further research is needed to understand the molecular underpinnings of these effects, our findings pave the way for developing more effective CPP-based delivery systems.
Collapse
Affiliation(s)
- Joshua Diaz
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Miles Pietsch
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Marissa Davila
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Gerardo Jaimes
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Alexis Hudson
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
14
|
Wang Y, Wei Y, Chen L, Yang Y, Jia F, Yu W, Zhou S, Yu S. Research progress of siVEGF complex and their application in antiangiogenic therapy. Int J Pharm 2023; 643:123251. [PMID: 37481098 DOI: 10.1016/j.ijpharm.2023.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important factor in the development of some diseases such as tumors, ocular neovascular disease and endometriosis. Inhibition of abnormal VEGF expression is one of the most effective means of treating these diseases. The resistance and side effects of currently used VEGF drugs limit their application. Herein, small interfering RNA for VEGF (siVEGF) are developed to inhibit VEGF expression at the genetic level by means of RNA interference. However, as a foreign substance entering the organism, siVEGF is prone to induce an immune response or mismatch, which adversely affects the organism. It is also subjected to enzymatic degradation and cell membrane blockage, which greatly reduces its therapeutic effect. Targeted siVEGF complexes are constructed by nanocarriers to avoid their clearance by the body and precisely target cells, exerting anti-vascular effects for the treatment of relevant diseases. In addition, some multifunctional complexes allow for the combination of siVEGF with other therapeutic tools to improve the treat efficiency of the disease. Therefore, this review describes the construction of the siVEGF complex, its mechanism of action, application in anti-blood therapy, and provides an outlook on its current problems and prospects.
Collapse
Affiliation(s)
- Yan Wang
- Shanxi Medical University, Taiyuan 030001, China
| | - Yingying Wei
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Jia
- Shanxi Medical University, Taiyuan 030001, China
| | - Weiran Yu
- The Affiliated High School of Shanxi University, Taiyuan 030006, China
| | - Shizhao Zhou
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| |
Collapse
|
15
|
Zhang H, Zhang Y, Zhang C, Yu H, Ma Y, Li Z, Shi N. Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules. Pharmaceutics 2023; 15:2093. [PMID: 37631307 PMCID: PMC10459450 DOI: 10.3390/pharmaceutics15082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Peptides and proteins, two important classes of biomacromolecules, play important roles in the biopharmaceuticals field. As compared with traditional drugs based on small molecules, peptide- and protein-based drugs offer several advantages, although most cannot traverse the cell membrane, a natural barrier that prevents biomacromolecules from directly entering cells. However, drug delivery via cell-penetrating peptides (CPPs) is increasingly replacing traditional approaches that mediate biomacromolecular cellular uptake, due to CPPs' superior safety and efficiency as drug delivery vehicles. In this review, we describe the discovery of CPPs, recent developments in CPP design, and recent advances in CPP applications for enhanced cellular delivery of peptide- and protein-based drugs. First, we discuss the discovery of natural CPPs in snake, bee, and spider venom. Second, we describe several synthetic types of CPPs, such as cyclic CPPs, glycosylated CPPs, and D-form CPPs. Finally, we summarize and discuss cell membrane permeability characteristics and therapeutic applications of different CPPs when used as vehicles to deliver peptides and proteins to cells, as assessed using various preclinical disease models. Ultimately, this review provides an overview of recent advances in CPP development with relevance to applications related to the therapeutic delivery of biomacromolecular drugs to alleviate diverse diseases.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Yanfei Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Chuang Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Yinghui Ma
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Nianqiu Shi
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China
| |
Collapse
|
16
|
Zhao S, Zhang Y, Xu Z, Wang H, Xu L, Wu Y, Zeng X, Luo X. A low-fouling electrochemical biosensor for biomarker detection in serum based on designed α/β-peptides with anti-enzymolysis and antifouling capabilities. Anal Chim Acta 2023; 1263:341244. [PMID: 37225330 DOI: 10.1016/j.aca.2023.341244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
The zwitterionic peptides, especially those composed of glutamic (E) and lysine (K) groups have drawn enormous attention as antifouling biomaterials owing to their strong hydration capability and biocompatibility. However, the susceptibility of α-amino acid K to the proteolytic enzymes in human serum limited the broad application of such peptides in biological media. Herein, a new multifunctional peptide with favorable stability in human serum was designed, and it was composed of three sections with immobilizing, recognizing and antifouling capabilities, respectively. The antifouling section was composed of alternating E and K amino acids, but the enzymolysis-susceptive amino acid α-K was replaced by the unnatural β-K. Compared with the conventional peptide composed of all α-amino acids, the α/β-peptide exhibited significantly enhanced stability and longer antifouling performance in human serum and blood. The electrochemical biosensor based on the α/β-peptide showed a favorable sensitivity to its target IgG, with a quite wide linear range from 100 pg mL-1 to 10 μg mL-1 and a low detection limit (33.7 pg mL-1, S/N = 3), and it was promising for the detection of IgG in complex human serum. The tactic of designing antifouling α/β-peptides offered an efficient way to develop low-fouling biosensors with robust operation in complex body fluids.
Collapse
Affiliation(s)
- Shuju Zhao
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yuxi Zhang
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhenying Xu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Hao Wang
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Liang Xu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yumin Wu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
17
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
18
|
Azari M, Bahreini F, Uversky VN, Rezaei N. Current therapeutic approaches and promising perspectives of using bioengineered peptides in fighting chemoresistance in triple-negative breast cancer. Biochem Pharmacol 2023; 210:115459. [PMID: 36813121 DOI: 10.1016/j.bcp.2023.115459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Breast cancer is a collation of malignancies that manifest in the mammary glands at the early stages. Among breast cancer subtypes, triple-negative breast cancer (TNBC) shows the most aggressive behavior, with apparent stemness features. Owing to the lack of response to hormone therapy and specific targeted therapies, chemotherapy remains the first line of the TNBC treatment. However, the acquisition of resistance to chemotherapeutic agents increase therapy failure, and promotes cancer recurrence and distant metastasis. Invasive primary tumors are the birthplace of cancer burden, though metastasis is a key attribute of TNBC-associated morbidity and mortality. Targeting the chemoresistant metastases-initiating cells via specific therapeutic agents with affinity to the upregulated molecular targets is a promising step in the TNBC clinical management. Exploring the capacity of peptides as biocompatible entities with the specificity of action, low immunogenicity, and robust efficacy provides a principle for designing peptide-based drugs capable of increasing the efficacy of current chemotherapy agents for selective targeting of the drug-tolerant TNBC cells. Here, we first focus on the resistance mechanisms that TNBC cells acquire to evade the effect of chemotherapeutic agents. Next, the novel therapeutic approaches employing tumor-targeting peptides to exploit the mechanisms of drug resistance in chemorefractory TNBC are described.
Collapse
Affiliation(s)
- Mandana Azari
- School of Chemical Engineering-Biotechnology, College of Engineering, University of Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Schissel CK, Farquhar CE, Loas A, Malmberg AB, Pentelute BL. In-Cell Penetration Selection-Mass Spectrometry Produces Noncanonical Peptides for Antisense Delivery. ACS Chem Biol 2023; 18:615-628. [PMID: 36857503 PMCID: PMC10460143 DOI: 10.1021/acschembio.2c00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Peptide-mediated delivery of macromolecules in cells has significant potential therapeutic benefits, but no therapy employing cell-penetrating peptides (CPPs) has reached the market after 30 years of investigation due to challenges in the discovery of new, more efficient sequences. Here, we demonstrate a method for in-cell penetration selection-mass spectrometry (in-cell PS-MS) to discover peptides from a synthetic library capable of delivering macromolecule cargo to the cytosol. This method was inspired by recent in vivo selection approaches for cell-surface screening, with an added spatial dimension resulting from subcellular fractionation. A representative peptide discovered in the cytosolic extract, Cyto1a, is nearly 100-fold more active toward antisense phosphorodiamidate morpholino oligomer (PMO) delivery compared to a sequence identified from a whole cell extract, which includes endosomes. Cyto1a is composed of d-residues and two non-α-amino acids, is more stable than its all-l isoform, and is less toxic than known CPPs with comparable activity. Pulse-chase and microscopy experiments revealed that while the PMO-Cyto1a conjugate is likely taken up by endosomes, it can escape to localize to the nucleus without nonspecifically releasing other endosomal components. In-cell PS-MS introduces a means to empirically discover unnatural synthetic peptides for subcellular delivery of therapeutically relevant cargo.
Collapse
Affiliation(s)
- Carly K Schissel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charlotte E Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Annika B Malmberg
- Sarepta Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
20
|
Kandhol N, Singh VP, Herrera-Estrella L, Tran LSP, Tripathi DK. Nanocarrier spray: a nontransgenic approach for crop engineering. TRENDS IN PLANT SCIENCE 2023; 28:259-261. [PMID: 36585337 DOI: 10.1016/j.tplants.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Genetic modification allows engineering of important traits in crops through expensive and tedious procedures to alter their genetic background. Recently, Thagun et al. developed a nanocarrier-based foliar spray method to translocate bioactive molecules of interest into plant cells to engineer important traits without introducing a transgene.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Luis Herrera-Estrella
- Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politecnico Nacional, Irapuato 36821, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
21
|
Serulla M, Anees P, Hallaj A, Trofimenko E, Kalia T, Krishnan Y, Widmann C. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides. Eur J Pharm Biopharm 2023; 184:116-124. [PMID: 36709921 DOI: 10.1016/j.ejpb.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) are short (<30 amino acids), generally cationic, peptides that deliver diverse cargos into cells. CPPs access the cytosol either by direct translocation through the plasma membrane or via endocytosis followed by endosomal escape. Both direct translocation and endosomal escape can occur simultaneously, making it non-trivial to specifically study endosomal escape alone. Here we depolarize the plasma membrane and showed that it inhibits the direct translocation of several CPPs but does not affect their uptake into endosomes. Despite good endocytic uptake many CPPs previously considered to access the cytosol via endosomal escape, failed to access the cytosol once direct translocation was abrogated. Even CPPs designed for enhanced endosomal escape actually showed negligible endosomal escape into the cytosol. Our data reveal that cytosolic localization of CPPs occurs mainly by direct translocation across the plasma membrane. Cell depolarization represents a simple manipulation to stringently test the endosomal escape capacity of CPPs.
Collapse
Affiliation(s)
- Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Ali Hallaj
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Tara Kalia
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
22
|
Hausig-Punke F, Richter F, Hoernke M, Brendel JC, Traeger A. Tracking the Endosomal Escape: A Closer Look at Calcein and Related Reporters. Macromol Biosci 2022; 22:e2200167. [PMID: 35933579 DOI: 10.1002/mabi.202200167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Crossing the cellular membrane and delivering active pharmaceuticals or biologicals into the cytosol of cells is an essential step in the development of nanomedicines. One of the most important intracellular processes regarding the cellular uptake of biologicals is the endolysosomal pathway. Sophisticated nanocarriers have been developed overcoming a major hurdle, the endosomal entrapment, and delivering their cargo to the required site of action. In parallel, in vitro assays have been established analyzing the performance of these nanocarriers. Among them, the release of the membrane-impermeable dye calcein has become a popular and straightforward method. It is accessible for most researchers worldwide, allows for rapid conclusions about the release potential, and enables the study of release mechanisms. This review is intended to provide an overview and guidance for scientists applying the calcein release assay. It comprises a survey of several applications in the study of endosomal escape, considerations of potential pitfalls, challenges and limitations of the assay, and a brief summary of complementary methods. Based on this review, we hope to encourage further research groups to take advantage of the calcein release assay for their own purposes and help to create a database for more efficient cross-correlations between nanocarriers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Franziska Hausig-Punke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Maria Hoernke
- Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, 79104, Freiburg i.Br., Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
23
|
He X, Qu Y, Lin X, Sun J, Jiang Z, Wang C, Deng Y, Yan F, Sun Y. Self-assembled D-arginine derivatives based on click chemical reactions for intracellular codelivery of antigens and adjuvants for potential immunotherapy. J Mater Chem B 2022; 10:3491-3500. [PMID: 35403659 DOI: 10.1039/d2tb00346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled amino acid derivatives could form well-defined nanostructures which have great application value for drug delivery systems. In particular, D-amino acid derivatives possess tremendous advantages including anti-degradation and good lysosome escape compared with L-amino acid derivatives. In this work, 9-fluorenylmethyloxycarbonyl (Fmoc) neighboring D-arginine derivatives were replaced by dibenzocyclooctyne (DBCO) to extend the class of functional D-arginine derivatives, which were further reacted with various cross-linkers including azide to construct a library of self-assembled supramolecular nanovehicles and strengthen the stability of nanostructures for disease immunotherapy. Moreover, in vitro studies demonstrated that the combination of DBCO modified D-arginine derivative DR3 and cross-linker C1 not only reinforced the cellular uptake efficiency of ovalbumin (OVA) which was chosen as the model antigen, but also promoted the cytokine TNF-α release of RAW 264.7 cells after the introduction of adjuvant unmethylated cytosine-phosphate-guanine dinucleotides (CpG). Furthermore, the nanovaccine based on DR3C1 could enhance the antigen OVA and adjuvant cytosolic delivery of marrow derived dendritic cells (BMDCs), which improved the antigen-presentation cross efficiency and induced the maturation of BMDCs. Taken together, we believe that D-arginine derivatives functionalized by DBCO provide an effective strategy for disease immunotherapy and act as a great potential delivery tool.
Collapse
Affiliation(s)
- Xiao He
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Yannv Qu
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Xiaohong Lin
- Department of Infertility and Reproductive Health, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, Guangdong, 518109, China
| | - Jiapan Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Zhiru Jiang
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yuanfei Deng
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Fei Yan
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
24
|
Szabó I, Yousef M, Soltész D, Bató C, Mező G, Bánóczi Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022; 14:pharmaceutics14050907. [PMID: 35631493 PMCID: PMC9146218 DOI: 10.3390/pharmaceutics14050907] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Cell-penetrating peptides (CPP) are promising tools for the transport of a broad range of compounds into cells. Since the discovery of the first members of this peptide family, many other peptides have been identified; nowadays, dozens of these peptides are known. These peptides sometimes have very different chemical–physical properties, but they have similar drawbacks; e.g., non-specific internalization, fast elimination from the body, intracellular/vesicular entrapment. Although our knowledge regarding the mechanism and structure–activity relationship of internalization is growing, the prediction and design of the cell-penetrating properties are challenging. In this review, we focus on the different modifications of well-known CPPs to avoid their drawbacks, as well as how these modifications may increase their internalization and/or change the mechanism of penetration.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Correspondence: (I.S.); (Z.B.)
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Dóra Soltész
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
- Correspondence: (I.S.); (Z.B.)
| |
Collapse
|
25
|
Schissel C, Farquhar CE, Malmberg AB, Loas A, Pentelute BL. Cell-Penetrating d-Peptides Retain Antisense Morpholino Oligomer Delivery Activity. ACS BIO & MED CHEM AU 2022; 2:150-160. [PMID: 37101743 PMCID: PMC10114648 DOI: 10.1021/acsbiomedchemau.1c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell-penetrating peptides (CPPs) can cross the cell membrane to enter the cytosol and deliver otherwise nonpenetrant macromolecules such as proteins and oligonucleotides. For example, recent clinical trials have shown that a CPP attached to phosphorodiamidate morpholino oligomers (PMOs) resulted in higher muscle concentration, increased exon skipping, and dystrophin production relative to another study of the PMO alone in patients of Duchenne muscular dystrophy. Therefore, effective design and the study of CPPs could help enhance therapies for difficult-to-treat diseases. So far, the study of CPPs for PMO delivery has been restricted to predominantly canonical l-peptides. We hypothesized that mirror-image d-peptides could have similar PMO delivery activity as well as enhanced proteolytic stability, facilitating their characterization and quantification from biological milieu. We found that several enantiomeric peptide sequences could deliver a PMO-biotin cargo with similar activities while remaining stable against serum proteolysis. The biotin label allowed for affinity capture of fully intact PMO-peptide conjugates from whole-cell and cytosolic lysates. By profiling a mixture of these constructs in cells, we determined their relative intracellular concentrations. When combined with PMO activity, these concentrations provide a new metric for delivery efficiency, which may be useful for determining which peptide sequence to pursue in further preclinical studies.
Collapse
Affiliation(s)
- Carly
K. Schissel
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charlotte E. Farquhar
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Annika B. Malmberg
- Sarepta
Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Andrei Loas
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute
of Technology, 500 Main
Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
26
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
27
|
Behzadi M, Eghtedardoost M, Bagheri M. Endocytosis Involved d-Oligopeptide of Tryptophan and Arginine Displays Ordered Nanostructures and Cancer Cell Stereoselective Toxicity by Autophagy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14928-14943. [PMID: 35319877 DOI: 10.1021/acsami.1c23846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their self-aggregation propensity and selective interaction with the anionic membranes, the peptides rich in tryptophan (Trp) and arginine (Arg) are considered for the development of novel anticancer therapeutics. However, the structural insights from the perspective of backbone chirality and spatial orientation of side chains into the selective toxicity of peptides are limited. Here, we investigated the selectivity and cellular uptake of HHC36, a Trp/Arg-rich nonapeptide, and its d-enantiomer (allDHHC36) and a retroinverso analogue in the lung A549 and breast MDA-MB-231 cancer cells. We realized that the d-peptides can specifically induce autophagy at nontoxic concentrations only in the A549 cells supported from the LC 3-II immunostaining expression in the vicinity of the nucleus and the ultrastructural analysis revealing the autophagosome formation. The autophagic flux was also remarkable in the cells exposed to d-peptides at a far lower concentration in synergism with doxorubicin (DOX). In marked contrast, nonselective cell death was observed only if a high amount of HHC36 was applied. HHC36 tended to irregular collagen-like fibrils relative to allDHHC36 that distinctly formed higher-order coiled nanostructures. Interestingly, the short d-peptide fragments were generated in a harsh oxidative condition. Compared with the direct membrane transduction of HHC36, the entry of d-peptides into the lung cancer cells was controlled by endocytosis through the contribution of heparan sulfate proteoglycans (HSPGs) and cholesterol (CHO). However, both l- and d-peptides feasibly crossed the membrane and localized inside the S-phase-arrested cell nucleus. This suggested the likelihood of peptide intercalation with DNA that might differently appear in selective and/or nonselective deaths. These results unraveled the d-handedness-selective toxicity of a self-assembling Trp/Arg-rich sequence that is dependent on the cell type from the aspects of the density of anionic charges and CHO in the outer leaflet of the plasma membrane, as well as the intracellular redox imbalance that may drive the formation of toxic peptide nanostructure fragments.
Collapse
Affiliation(s)
- Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Marzieh Eghtedardoost
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| |
Collapse
|
28
|
Design of Membrane Active Peptides Considering Multi-Objective Optimization for Biomedical Application. MEMBRANES 2022; 12:membranes12020180. [PMID: 35207101 PMCID: PMC8880019 DOI: 10.3390/membranes12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
A multitude of membrane active peptides exists that divides into subclasses, such as cell penetrating peptides (CPPs) capable to enter eukaryotic cells or antimicrobial peptides (AMPs) able to interact with prokaryotic cell envelops. Peptide membrane interactions arise from unique sequence motifs of the peptides that account for particular physicochemical properties. Membrane active peptides are mainly cationic, often primary or secondary amphipathic, and they interact with membranes depending on the composition of the bilayer lipids. Sequences of these peptides consist of short 5–30 amino acid sections derived from natural proteins or synthetic sources. Membrane active peptides can be designed using computational methods or can be identified in screenings of combinatorial libraries. This review focuses on strategies that were successfully applied to the design and optimization of membrane active peptides with respect to the fact that diverse features of successful peptide candidates are prerequisites for biomedical application. Not only membrane activity but also degradation stability in biological environments, propensity to induce resistances, and advantageous toxicological properties are crucial parameters that have to be considered in attempts to design useful membrane active peptides. Reliable assay systems to access the different biological characteristics of numerous membrane active peptides are essential tools for multi-objective peptide optimization.
Collapse
|
29
|
Lucana MC, Arruga Y, Petrachi E, Roig A, Lucchi R, Oller-Salvia B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021; 13:2065. [PMID: 34959346 PMCID: PMC8708026 DOI: 10.3390/pharmaceutics13122065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation bio- and nano-therapeutics. However, the proteolytic susceptibility of peptides is one of the major limitations of their activity in biological environments. Numerous strategies have been devised to chemically enhance the resistance of peptides to proteolysis, ranging from N- and C-termini protection to cyclization, and including backbone modification, incorporation of amino acids with non-canonical side chains and conjugation. Since conjugation of nanocarriers or other cargoes to peptides for targeting and cell penetration may already provide some degree of shielding, the question arises about the relevance of using protease-resistant sequences for these applications. Aiming to answer this question, here we provide a critical review on protease-resistant targeting peptides and cell-penetrating peptides (CPPs). Two main approaches have been used on these classes of peptides: enantio/retro-enantio isomerization and cyclization. On one hand, enantio/retro-enantio isomerization has been shown to provide a clear enhancement in peptide efficiency with respect to parent L-amino acid peptides, especially when applied to peptides for drug delivery to the brain. On the other hand, cyclization also clearly increases peptide transport capacity, although contribution from enhanced protease resistance or affinity is often not dissected. Overall, we conclude that although conjugation often offers some degree of protection to proteolysis in targeting peptides and CPPs, modification of peptide sequences to further enhance protease resistance can greatly increase homing and transport efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamí Oller-Salvia
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain; (M.C.L.); (Y.A.); (E.P.); (A.R.); (R.L.)
| |
Collapse
|
30
|
Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep 2021; 11:20531. [PMID: 34654836 PMCID: PMC8519957 DOI: 10.1038/s41598-021-00085-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Although siRNA is a promising technology for cancer gene therapy, effective cytoplasmic delivery has remained a significant challenge. In this paper, a potent siRNA transfer system with active targeting moieties toward cancer cells and a high loading capacity is introduced to inhibit drug resistance. Mesoporous silica nanoparticles are of great potential for developing targeted gene delivery. Amino-modified MSNs (NH2-MSNs) were synthesized using a modified sol–gel method and characterized by FTIR, BET, TEM, SEM, X-ray diffraction, DLS, and 1H-NMR. MDR1-siRNA was loaded within NH2-MSNs, and the resulting negative surface was capped by functionalized chitosan as a protective layer. Targeting moieties such as TAT and folate were anchored to chitosan via PEG-spacers. The loading capacity of siRNA and the protective effect of chitosan for siRNA were determined by gel retardation assay. MTT assay, flow cytometry, real-time PCR, and western blot were performed to study the cytotoxicity, cellular uptake assay, targeting evaluation, and MDR1 knockdown efficiency. The synthesized NH2-MSNs had a particle size of ≈ 100 nm and pore size of ≈ 5 nm. siRNA was loaded into NH2-MSNs with a high loading capacity of 20% w/w. Chitosan coating on the surface of siRNA-NH2-MSNs significantly improved the siRNA protection against enzyme activity compared to naked siRNA-NH2-MSNs. MSNs and modified MSNs did not exhibit significant cytotoxicity at therapeutic concentrations in the EPG85.257-RDB and HeLa-RDB lines. The folate-conjugated nanoparticles showed a cellular uptake of around two times higher in folate receptor-rich HeLa-RDB than EPG85.257-RDB cells. The chitosan-coated siRNA-NH2-MSNs produced decreased MDR1 transcript and protein levels in HeLa-RDB by 0.20 and 0.48-fold, respectively. The results demonstrated that functionalized chitosan-coated siRNA-MSNs could be a promising carrier for targeted cancer therapy. Folate-targeted nanoparticles were specifically harvested by folate receptor-rich HeLa-RDB and produced a chemosensitized phenotype of the multidrug-resistant cancer cells.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran. .,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
31
|
Lv S, Sylvestre M, Song K, Pun SH. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials 2021; 277:121076. [PMID: 34461456 DOI: 10.1016/j.biomaterials.2021.121076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Melittin, the primary peptide component of bee venom, is a potent cytolytic anti-cancer peptide with established anti-tumor activity. However, practical application of melittin in oncology is hampered by its strong, nonspecific hemolytic activity and intrinsic instability. To address these shortcomings, delivery systems are used to overcome the drawbacks of melittin and facilitate its safe delivery. Yet, a recent study revealed that encapsulated melittin remains immunogenic and can act as an adjuvant to elicit a fatal antibody immune response against the delivery carrier. We discovered that substitution of l-amino acids with d-amino acids mitigates this problem: D-melittin nanoformulations induce significantly decreased immune response, resulting in excellent safety without compromising cytolytic potential. We now report the first application of D-melittin and its micellar formulations for cancer treatment. D-melittin was delivered by a pH-sensitive polymer carrier that (i) forms micellar nanoparticles at normal physiological conditions, encapsulating melittin, and (ii) dissociates at endosomal pH, restoring melittin activity. D-melittin micelles (DMM) exhibits significant cytotoxicity and induces hemolysis in a pH-dependent manner. In addition, DMM induce immunogenic cell death, revealing its potential for cancer immunotherapy. Indeed, in vivo studies demonstrated the superior safety profile of DMM over free peptide and improved efficacy at prohibiting tumor growth. Overall, we present the first application of micellar D-melittin for cancer therapy. These findings establish a new strategy for safe, systemic delivery of melittin, unlocking a potential pathway toward clinical translation for cytotoxic peptides as anti-cancer agents. which can revolutionize in vivo delivery of therapeutic peptides and peptide antigens.
Collapse
Affiliation(s)
- Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, United States.
| | - Meilyn Sylvestre
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, United States.
| | - Kefan Song
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, United States.
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
32
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
33
|
Batta G, Kárpáti L, Henrique GF, Tóth G, Tarapcsák S, Kovacs T, Zakany F, Mándity IM, Nagy P. Statin-boosted cellular uptake and endosomal escape of penetratin due to reduced membrane dipole potential. Br J Pharmacol 2021; 178:3667-3681. [PMID: 33908640 DOI: 10.1111/bph.15509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Cell penetrating peptides are promising tools for delivery of cargo into cells, but factors limiting or facilitating their cellular uptake are largely unknown. We set out to study the effect of the biophysical properties of the cell membrane on the uptake of penetratin, a cell penetrating peptide. EXPERIMENTAL APPROACH Using labelling with pH-insensitive and pH-sensitive dyes, the kinetics of cellular uptake and endo-lysosomal escape of penetratin were studied by flow cytometry. KEY RESULTS We report that escape of penetratin from acidic endo-lysosomal compartments is retarded compared with its total cellular uptake. The membrane dipole potential, known to alter transmembrane transport of charged molecules, is shown to be negatively correlated with the concentration of penetratin in the cytoplasmic compartment. Treatment of cells with therapeutically relevant concentrations of atorvastatin, an inhibitor of HMG-CoA reductase and cholesterol synthesis, significantly increased endosomal escape of penetratin in two different cell types. This effect of atorvastatin correlated with its ability to decrease the membrane dipole potential. CONCLUSION AND IMPLICATIONS These results highlight the importance of the dipole potential in regulating cellular uptake of cell penetrating peptides and suggest a clinically relevant way of boosting this process.
Collapse
Affiliation(s)
- Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Levente Kárpáti
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Gabriela Fulaneto Henrique
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gabriella Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István M Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
34
|
Gallo M, Moreno E, Defaus S, Ortega-Alvaro A, Gonzalez A, Robledo P, Cavaco M, Neves V, Castanho MARB, Casadó V, Pardo L, Maldonado R, Andreu D. Orally Active Peptide Vector Allows Using Cannabis to Fight Pain While Avoiding Side Effects. J Med Chem 2021; 64:6937-6948. [PMID: 33887904 PMCID: PMC8486167 DOI: 10.1021/acs.jmedchem.1c00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The
activation of cannabinoid CB1 receptors (CB1R) by Δ9-tetrahydrocannabinol (THC), the
main component of Cannabis sativa,
induces analgesia. CB1R activation, however, also causes
cognitive impairment via the serotonin 5HT2A receptor (5HT2AR), a component of a CB1R–5HT2AR heteromer, posing a serious drawback for cannabinoid therapeutic
use. We have shown that peptides reproducing CB1R transmembrane
(TM) helices 5 and 6, fused to a cell-penetrating sequence (CPP),
can alter the structure of the CB1R–5HT2AR heteromer and avert THC cognitive impairment while preserving analgesia.
Here, we report the optimization of these prototypes into drug-like
leads by (i) shortening the TM5, TM6, and CPP sequences, without losing
the ability to disturb the CB1R–5HT2AR heteromer, and (ii) extensive sequence remodeling to achieve protease
resistance and blood–brain barrier penetration. Our efforts
have culminated in the identification of an ideal candidate for cannabis-based
pain management, an orally active 16-residue peptide preserving THC-induced
analgesia.
Collapse
Affiliation(s)
- Maria Gallo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Antonio Ortega-Alvaro
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Angel Gonzalez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rafael Maldonado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| |
Collapse
|
35
|
Mandal S, Mann G, Satish G, Brik A. Enhanced Live-Cell Delivery of Synthetic Proteins Assisted by Cell-Penetrating Peptides Fused to DABCYL. Angew Chem Int Ed Engl 2021; 60:7333-7343. [PMID: 33615660 PMCID: PMC8048964 DOI: 10.1002/anie.202016208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Live-cell delivery of a fully synthetic protein having selectivity towards a particular target is a promising approach with potential applications for basic research and therapeutics. Cell-penetrating peptides (CPPs) allow the cellular delivery of proteins but mostly result in endosomal entrapment, leading to lack of bioavailability. Herein, we report the design and synthesis of a CPP fused to 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL) to enhance cellular uptake of fluorescently labelled synthetic protein analogues in low micromolar concentration. The attachment of cyclic deca-arginine (cR10) modified with a single lysine linked to DABCYL to synthetic ubiquitin (Ub) and small ubiquitin-like modifier-2 (SUMO-2) scaffolds resulted in a threefold higher uptake efficacy in live cells compared to the unmodified cR10. We could also achieve cR10DABCYL-assisted delivery of Ub and a Ub variant (Ubv) based activity-based probes for functional studies of deubiquitinases in live cells.
Collapse
Affiliation(s)
- Shaswati Mandal
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology3200008HaifaIsrael
| | - Guy Mann
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology3200008HaifaIsrael
| | - Gandhesiri Satish
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology3200008HaifaIsrael
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology3200008HaifaIsrael
| |
Collapse
|
36
|
Mandal S, Mann G, Satish G, Brik A. Enhanced Live‐Cell Delivery of Synthetic Proteins Assisted by Cell‐Penetrating Peptides Fused to DABCYL. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shaswati Mandal
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology 3200008 Haifa Israel
| | - Guy Mann
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology 3200008 Haifa Israel
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology 3200008 Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology 3200008 Haifa Israel
| |
Collapse
|
37
|
Kato T, Kita Y, Iwanari K, Asano A, Oba M, Tanaka M, Doi M. Synthesis of six-membered carbocyclic ring α,α-disubstituted amino acids and arginine-rich peptides to investigate the effect of ring size on the properties of the peptide. Bioorg Med Chem 2021; 38:116111. [PMID: 33838611 DOI: 10.1016/j.bmc.2021.116111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Cell-penetrating peptides (CPPs) have been attracting attention as tools for intracellular delivery of membrane-impermeant functional molecules. Among the variety of CPPs that have been developed, many are composed of both natural and unnatural amino acids. We previously synthesized α,α-disubstituted α-amino acids (dAAs) containing a five-membered carbocyclic ring in its side chain and revealed the utility of dAAs for the development of novel CPPs. In the present study, we designed a six-membered carbocyclic ring dAA with an amino group on the ring and introduced it into arginine (Arg)-rich peptides to further investigate the value of dAAs for developing CPPs. We also assessed the effects of the size of the dAA carbocyclic ring on cellular uptake of dAA-containing peptides. The stability of the peptide's secondary structure and its membrane permeability were both greater in dAA-containing peptides than in an Arg nonapeptide. However, the number of carbon atoms in the dAA side chain ring had little effect. Nevertheless, these results show the utility of cyclic dAAs in the design of novel CPPs containing unnatural amino acids.
Collapse
Affiliation(s)
- Takuma Kato
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yuki Kita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazuki Iwanari
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Akiko Asano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Makoto Oba
- Graduate School of Medicine, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsunobu Doi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
38
|
Ito S, Torii Y, Chikamatsu S, Harada T, Yamaguchi S, Ogata S, Sonoda K, Wakayama T, Masuda T, Ohtsuki S. Oral Coadministration of Zn-Insulin with d-Form Small Intestine-Permeable Cyclic Peptide Enhances Its Blood Glucose-Lowering Effect in Mice. Mol Pharm 2021; 18:1593-1603. [PMID: 33617269 DOI: 10.1021/acs.molpharmaceut.0c01010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oral delivery of insulin remains a challenge owing to its poor permeability across the small intestine and enzymatic digestion in the gastrointestinal tract. In a previous study, we identified a small intestine-permeable cyclic peptide, C-DNPGNET-C (C-C disulfide bond, cyclic DNP peptide), which facilitated the permeation of macromolecules. Here, we showed that intraintestinal and oral coadministration of insulin with the cyclic DNP derivative significantly reduced blood glucose levels by increasing the portal plasma insulin concentration following permeation across the small intestine of mice. We also found that protecting the cyclic DNP derivative from enzymatic digestion in the small intestine of mice using d-amino acids and by the cyclization of DNP peptide was essential to enhance cyclic DNP derivative-induced insulin absorption across the small intestine. Furthermore, intraintestinal and oral coadministration of insulin hexamer stabilized by zinc ions (Zn-insulin) with cyclic D-DNP derivative was more effective in facilitating insulin absorption and inducing hypoglycemic effects in mice than the coadministration of insulin with the cyclic D-DNP derivative. Moreover, Zn-insulin was more resistant to degradation in the small intestine of mice compared to insulin. Intraintestinal and oral coadministration of Zn-insulin with cyclic DNP derivative also reduced blood glucose levels in a streptozotocin-induced diabetes mellitus mouse model. A single intraintestinal administration of the cyclic D-DNP derivative did not induce any cytotoxicity, either locally in the small intestine or systemically. In summary, we demonstrated that coadministration of Zn-insulin with cyclic D-DNP derivative could enhance oral insulin absorption across the small intestine in mice.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuta Torii
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shoma Chikamatsu
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tomonori Harada
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shunsuke Yamaguchi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Technical Office for Life Science, Technical Division, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
39
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
40
|
Wang T, Meng Z, Kang Z, Ding G, Zhao B, Han Z, Zheng Z, Wang C, Meng Q. Peptide Gene Delivery Vectors for Specific Transfection of Glioma Cells. ACS Biomater Sci Eng 2020; 6:6778-6789. [DOI: 10.1021/acsbiomaterials.0c01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhenbin Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| |
Collapse
|
41
|
Hidaka T, Tsubono Y, Hashiya K, Bando T, Pandian GN, Sugiyama H. Enhanced nuclear accumulation of pyrrole-imidazole polyamides by incorporation of the tri-arginine vector. Chem Commun (Camb) 2020; 56:12371-12374. [PMID: 32930253 DOI: 10.1039/d0cc05158f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tri-arginine moiety enhanced nuclear accumulation of a 12-ring pyrrole-imidazole polyamide (PIP) without compromising sequence-selectivity and achieved efficient repression of SOX2-downstream genes and HER2 transcription in live cells. This simple vector expands the application of long PIPs in live cells by overcoming the compound delivery problems associated with them.
Collapse
Affiliation(s)
- Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Vaithiyanathan M, Hymel HC, Safa N, Sanchez OM, Pettigrew JH, Kirkpatrick CS, Gauthier TJ, Melvin AT. Kinetic analysis of cellular internalization and expulsion of unstructured D‐chirality cell penetrating peptides. AIChE J 2020. [DOI: 10.1002/aic.17087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Hannah C. Hymel
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Nora Safa
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Olivia M. Sanchez
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Jacob H. Pettigrew
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Cole S. Kirkpatrick
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| | - Ted J. Gauthier
- LSU AgCenter Biotechnology Lab Louisiana State University Louisiana USA
| | - Adam T. Melvin
- Cain Department of Chemical Engineering Louisiana State University Louisiana USA
| |
Collapse
|
43
|
Ng CX, Lee SH. The Potential Use of Anticancer Peptides (ACPs) in the Treatment of Hepatocellular Carcinoma. Curr Cancer Drug Targets 2020; 20:187-196. [PMID: 31713495 DOI: 10.2174/1568009619666191111141032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
Peptides have acquired increasing interest as promising therapeutics, particularly as anticancer alternatives during recent years. They have been reported to demonstrate incredible anticancer potentials due to their low manufacturing cost, ease of synthesis and great specificity and selectivity. Hepatocellular carcinoma (HCC) is among the leading cause of cancer death globally, and the effectiveness of current liver treatment has turned out to be a critical issue in treating the disease efficiently. Hence, new interventions are being explored for the treatment of hepatocellular carcinoma. Anticancer peptides (ACPs) were first identified as part of the innate immune system of living organisms, demonstrating promising activity against infectious diseases. Differentiated beyond the traditional effort on endogenous human peptides, the discovery of peptide drugs has evolved to rely more on isolation from other natural sources or through the medicinal chemistry approach. Up to the present time, the pharmaceutical industry intends to conduct more clinical trials for the development of peptides as alternative therapy since peptides possess numerous advantages such as high selectivity and efficacy against cancers over normal tissues, as well as a broad spectrum of anticancer activity. In this review, we present an overview of the literature concerning peptide's physicochemical properties and describe the contemporary status of several anticancer peptides currently engaged in clinical trials for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
44
|
Meloni BP, Blacker DJ, Mastaglia FL, Knuckey NW. Emerging cytoprotective peptide therapies for stroke. Expert Rev Neurother 2020; 20:887-890. [PMID: 32580598 DOI: 10.1080/14737175.2020.1788390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bruno P Meloni
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia , Nedlands, Western Australia, Australia
| | - David J Blacker
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Science , Nedlands, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre , Nedlands, Western Australia, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia , Nedlands, Western Australia, Australia
| |
Collapse
|
45
|
Batta G, Kárpáti L, Henrique GF, Tarapcsák S, Kovács T, Zákány F, Mándity IM, Nagy P. Statin-boosted cellular uptake of penetratin due to reduced membrane dipole potential.. [DOI: 10.1101/2020.08.04.236984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
AbstractSince cell penetrating peptides are promising tools for delivery of cargo into cells, factors limiting or facilitating their cellular uptake are intensely studied. Using labeling with pH-insensitive and pH-sensitive dyes we report that escape of penetratin from acidic endo-lysosomal compartments is retarded compared to its cellular uptake. The membrane dipole potential, known to alter transmembrane transport of charged molecules, is shown to be negatively correlated with the concentration of penetratin in the cytoplasmic compartment. Treatment of cells with therapeutically relevant concentrations of atorvastatin, an inhibitor of HMG-CoA reductase and cholesterol synthesis, significantly increased the release of penetratin from acidic endocytic compartments in two different cell types. This effect of atorvastatin correlated with its ability to decrease the membrane dipole potential. These results highlight the importance of the dipole potential in regulating cellular uptake of cell penetrating peptides and suggest a clinically relevant way of boosting this process.
Collapse
|
46
|
Gandbhir O, Sundaram P. Effect of AmyTrap, an amyloid-β binding drug, on Aβ induced mitochondrial dysfunction and tau phosphorylation in cultured neuroblastoma cells. Metab Brain Dis 2020; 35:923-931. [PMID: 32367269 PMCID: PMC7358124 DOI: 10.1007/s11011-019-00520-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 10/24/2022]
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, affecting 25 million people worldwide. Accumulation of Amyloid-β (Aβ) in the mitochondria has been shown to adversely affect key enzymes including pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), oxoglutarate dehydrogenase (OGDH). Accumulation of Aβ is also believed to increase Tau expression and pathology. Tau, in its toxic state, results in synaptic damage causing memory and cognitive dysfunction. We are developing a drug to treat AD namely AmyTrap. The active pharmacological ingredient is a retro inverso, Aβ-binding peptide which sequesters Aβ. We wanted to examine the effect of AmyTrap peptide on Aβ-induced mitochondrial dysfunction and Tau phosphorylation. Therefore, we treated SH-SY5Y neuroblastoma cells with wild-type Aβ, a mutant AβY10A, AmyTrap peptide (RI-peptide), or Aβ and RI-peptide for 72 h. The mutant AβY10A is known to impact the self-aggregating property of Aβ as this Tyr10 is essential for self-aggregation. As expected, AβY10A reversed PDH, OGDH and SDH dysfunction to near normal levels. Further, AβY10A successfully reversed Tau phosphorylation, suggesting that Tyr10 is also associated with Aβ-induced cytotoxicity. RI-peptide was able to significantly reverse SDH dysfunction with limited effect on PDH and Tau phosphorylation. The findings are suggestive that the Tyr10 on Aβ plays a critical role in the self-aggregation. Further studies are warranted to expand these findings.
Collapse
Affiliation(s)
- Omkar Gandbhir
- Recombinant Technologies LLC, 1090 Meriden Waterbury Turnpike, Suite 1, Cheshire, CT, 06410, USA
| | - Pazhani Sundaram
- Recombinant Technologies LLC, 1090 Meriden Waterbury Turnpike, Suite 1, Cheshire, CT, 06410, USA.
| |
Collapse
|
47
|
Nishihara S, Kawasaki K. Enhanced cellular uptake of CpG DNA by α-helical antimicrobial peptide Kn2-7: Effects on macrophage responsiveness to CpG DNA. Biochem Biophys Res Commun 2020; 530:100-106. [PMID: 32828270 DOI: 10.1016/j.bbrc.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
DNA containing unmethylated cytosine-guanine motifs (CpG DNA) initiates innate immune responses, including the secretion of cytokines from macrophages. Some antimicrobial peptides modulate the responses to CpG DNA, although the molecular mechanisms of this process remain unclear. This study examined the effects of four α-helical antimicrobial peptides on the immune responses induced by CpG DNA. The antimicrobial peptide FIKRIARLLRKIF, known as Kn2-7, increased the CpG DNA-dependent secretion of interleukin-10 (IL-10) and tumor necrosis factor-α from mouse macrophage-like RAW264.7 cells. Kn2-7 enhanced the cellular uptake of CpG DNA; this effect was decreased by the substitution of arginine residues with alanine residues, and increased by the substitution of lysine residues with arginine residues. The degree to which these peptides enhanced the cellular uptake of CpG DNA correlated well with their ability to increase CpG DNA-dependent IL-10 secretion. In contrast, Kn2-7 synthesized with d-amino acids did not increase CpG DNA-dependent IL-10 secretion, although the ability of the D-form of Kn2-7 to enhance the cellular uptake of CpG DNA was not diminished relative to that of Kn2-7. These results indicate that enhanced cellular uptake of CpG DNA is necessary but insufficient to augment CpG DNA-dependent immune responses.
Collapse
Affiliation(s)
- Saeka Nishihara
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0395, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0395, Japan.
| |
Collapse
|
48
|
Song J, Huang S, Zhang Z, Jia B, Xie H, Kai M, Zhang W. SPA: a peptide antagonist that acts as a cell-penetrating peptide for drug delivery. Drug Deliv 2020; 27:91-99. [PMID: 31870182 PMCID: PMC6968712 DOI: 10.1080/10717544.2019.1706669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although cell-penetrating peptides (CPPs) has been proven to be efficient transporter for drug delivery, ideal peptide vectors for tumor therapy are still being urgently sought. Peptide antagonists have attracted substantial attention as targeting molecules because of their high tumor accumulation and antitumor activity compared with agonists. SPA, a derivative of substance P, is a potent antagonist that exhibits antitumor activity. Based on the amino acid composition of SPA, we speculate that it can translocate across cell membranes as CPPs do. In this study, our results demonstrated that SPA could enter cells similarly to a CPP. As a vector, SPA could efficiently deliver camptothecin and plasmids into cells. In addition, our results showed that SPA exhibited low toxicity to normal cells and high enzymatic stability. Taken together, our results validated the ability of SPA for efficient drug delivery. More importantly, our study opens a new avenue for designing ideal CPPs based on peptide antagonists.
Collapse
Affiliation(s)
- Jingjing Song
- Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sujie Huang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhengzheng Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bo Jia
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Huan Xie
- Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ming Kai
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Komin A, Bogorad MI, Lin R, Cui H, Searson PC, Hristova K. A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action. J Control Release 2020; 324:633-643. [PMID: 32474121 DOI: 10.1016/j.jconrel.2020.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
The rate of transport of small molecule drugs across biological barriers, such as the blood-brain barrier, is often a limiting factor in achieving a therapeutic dose. One proposed strategy to enhance delivery across endothelial or epithelial monolayers is conjugation to cell-penetrating peptides (CPPs); however, very little is known about the design of CPPs for efficient transcellular transport. Here, we report on transcellular transport of a CPP, designated the CL peptide, that increases the delivery of small-molecule cargoes across model epithelium approximately 10-fold. The CL peptide contains a helix-like motif and a polyarginine tail. We investigated the effect of cargo, helix-like motif sequence, polyarginine tail length, and peptide stereochemistry on cargo delivery. We showed that there is an optimal helix-like motif sequence (RLLRLLR) and polyarginine tail length (R7) for cargo delivery. Furthermore, we demonstrated that the peptide-cargo conjugate is cleaved by cells in the epithelium at the site of a two-amino acid linker. The cleavage releases the cargo with the N-terminal linker amino acid from the peptide prior to transport out of the epithelium. These studies provide new insight into the sequence requirements for developing novel CPPs for transcellular delivery of cargo.
Collapse
Affiliation(s)
- Alexander Komin
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Maxim I Bogorad
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Ran Lin
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | - Kalina Hristova
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
50
|
Nadal‐Bufí F, Henriques ST. How to overcome endosomal entrapment of cell‐penetrating peptides to release the therapeutic potential of peptides? Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ferran Nadal‐Bufí
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology Translational Research Institute Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology Translational Research Institute Brisbane Queensland Australia
| |
Collapse
|