1
|
Zeng Q, Xue L, Li W, Liang C, Zhou W, Xiong W, Dai X. Inhibition of 5-hydroxyindoleacetic acid to reduce neutrophil extracellular trap production improves lung condition in chronic obstructive pulmonary disease mice. Ann Med 2025; 57:2474734. [PMID: 40066951 PMCID: PMC11899248 DOI: 10.1080/07853890.2025.2474734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Neutrophil extracellular trap (NET) correlate with chronic obstructive pulmonary disease (COPD) severity. Platelets can promote NET generation. However, serotonin alone or serotonin-deficient platelets do not adequately promote NET production. The metabolism of serotonin to 5-hydroxyindoleacetic acid (5-HIAA) in platelets may be the key to this difference. OBJECTIVE The study aimed to determine whether 5-HIAA can influence NET production and thus play a role in COPD. METHODS After a 4-hour co-incubation with lipopolysaccharide (LPS) and 5-HIAA, NET and ROS levels in the culture medium were measured by ELISA, and NET production with aryl hydrocarbon receptor (AHR) expression in adherent cells were analyzed by immunofluorescence.A COPD model was established in C57BL/6 mice through smoke exposure combined with LPS tracheal administration, followed by selegiline or 5-HIAA treatment. Post-intervention, lung function tests and sample collection were performed. The levels of 5-HIAA, ROS, NET, IL-6, and AHR in the samples were quantified by ELISA, pathological changes were assessed by HE staining, and NET/AHR expression was detected by immunofluorescence. RESULTS 5-HIAA promoted NET production in vitro, and the nuclei of neutrophils secreting NET-like structures express AHR. In animal experiments, 5-HIAA levels were higher in both the plasma and lung tissues of COPD mice compared with normal mice. Inhibition of 5-HIAA in COPD mice down-regulated AHR expression, reduced reactive oxygen species and NET generation, elevated lung function indices (FEV0.1, FVC, PEF, and FEV0.1/FVC), decreased interleukin-6 levels, and improved lung tissue condition. CONCLUSION Inhibiting 5-HIAA reduces NET generation, thereby improving lung conditions in COPD mice, which is associated with the 5-HIAA/AHR pathway.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lei Xue
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wu Li
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Cheng Liang
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weijia Zhou
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Xiong
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Chen H, Chen H, Hua L, Gao Y, Yao Y, Xu Y, Yang J, Xie L, Luo Y, Huang T, Chen H, Lin X, Dong W. Effects of combined stressors to TCDD and high temperature on HSP/CYPs signaling in the zebrafish embryos/larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126039. [PMID: 40073960 DOI: 10.1016/j.envpol.2025.126039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Global warming causes the release of dioxin-like deposits and increases geographical migration, increasing the risk of exposure for humans and animals. In this experiment, we used CYP1A transgenic zebrafish Tg (cyp1a: mCherry) and liver fluorescent transgenic zebrafish Tg (fabp10: Ps Red) as an animal model and exposed to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) at 26 °C and 30 °C, respectively. Morphological changes, histological changes, transcriptome and related genes expression were detected. The results showed that exposure to TCDD at 30 °C increased the mortality rate, pericardial cavity area, and reduced the number of liver cells in zebrafish larvae compared to 26 °C. Transcriptome analysis showed that, TCDD significantly altered Peroxisome Proliferators-Activated Receptors (PPARs) metabolic pathway, adipocytokine, fatty acid degradation and cell death. qRT-PCR also detected a further significant increase in the expression of ahr2, cyp-related genes (cyp1.1, cyp1b1, cyp1c1 and cyp3a65), and PPARs (pparα, pparβ and pparγ) in zebrafish larvae induced by TCDD exposure under 30 °C compared to 26 °C water temperature incubation. Our results showed that the increase of ambient temperature (from 26 °C to 30 °C) causes TCDD induced hepatotoxicity to be more intense. The observed toxic changes were likely related to lipid peroxidation.
Collapse
Affiliation(s)
- Hongsong Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Hao Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lian Hua
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Yunqi Gao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Yuehua Yao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Yangfan Xu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Jingfeng Yang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xuguang Lin
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China.
| |
Collapse
|
3
|
Kim HY, Kang YJ, Kim DH, Jang J, Lee SJ, Kim G, Koh HB, Ko YE, Shin HM, Lee H, Yoo TH, Lee WW. Uremic toxin indoxyl sulfate induces trained immunity via the AhR-dependent arachidonic acid pathway in end-stage renal disease (ESRD). eLife 2024; 12:RP87316. [PMID: 38980302 PMCID: PMC11233136 DOI: 10.7554/elife.87316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Microbiology and Immunology, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Jiyeon Jang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Su Jeong Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hee Byung Koh
- Department of Internal Medicine, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Ye Eun Ko
- Department of Internal Medicine, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
- Wide River Institute of Immunology, Seoul National UniversityHongcheonRepublic of Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University HospitalSeoulRepublic of Korea
| | - Tae-Hyun Yoo
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
- Seoul National University Cancer Research Institute; Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul National University Hospital Biomedical Research InstituteSeoulRepublic of Korea
| |
Collapse
|
4
|
Yuan M, Sano H, Nishino T, Chen H, Li RS, Matsuo Y, Nishida K, Koga T, Takeda T, Tanaka Y, Ishii Y. α-Lipoic acid eliminates dioxin-induced offspring sexual immaturity by improving abnormalities in folic acid metabolism. Biochem Pharmacol 2023; 210:115490. [PMID: 36893816 DOI: 10.1016/j.bcp.2023.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes developmental and reproductive disorders in pups due to the attenuated luteinizing hormone (LH) production during the perinatal stage; however, the administration of α-lipoic acid (LA) to TCDD-exposed pregnant rats reversed the attenuated LH production. Therefore, reproductive disorders in pups are expected to be ameliorated with LA supplementation. To address this issue, pregnant rats orally received low dose TCDD at gestational day 15 (GD15) and proceeded to parturition. The control received a corn oil vehicle. To examine the preventive effects of LA, supplementation with LA was provided until postnatal day 21. In this study, we demonstrated that maternal administration of LA restored the sexually dimorphic behavior of male and female offspring. TCDD-induced LA insufficiency is likely a direct cause of TCDD reproductive toxicity. In the analysis to clarify the mechanism of the decrease in LA, we found evidence suggesting that TCDD inhibits the synthesis and increases the utilization of S-adenosylmethionine (SAM), a cofactor for LA synthesis, resulting in a decrease in the SAM level. Furthermore, folate metabolism, which is involved in SAM synthesis, is disrupted by TCDD, which may adversely affect infant growth. Maternal supplementation of LA restored SAM to its original level in the fetal hypothalamus; in turn, SAM ameliorated abnormal folate consumption and suppressed aryl hydrocarbon receptor activation induced by TCDD. The study demonstrates that the application of LA could prevent and recover next-generation dioxin reproductive toxicity, which provides the potential to establish effective protective measures against dioxin toxicity.
Collapse
Affiliation(s)
- Ming Yuan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroe Sano
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takaaki Nishino
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hongbin Chen
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ren-Shi Li
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, PR China
| | - Yuki Matsuo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kyoko Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takayuki Koga
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa 257-0015, Japan
| | - Yoshitaka Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
5
|
Nault R, Saha S, Bhattacharya S, Sinha S, Maiti T, Zacharewski T. Single-cell transcriptomics shows dose-dependent disruption of hepatic zonation by TCDD in mice. Toxicol Sci 2023; 191:135-148. [PMID: 36222588 PMCID: PMC9887712 DOI: 10.1093/toxsci/kfac109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dose-dependently induces the development of hepatic fat accumulation and inflammation with fibrosis in mice initially in the portal region. Conversely, differential gene and protein expression is first detected in the central region. To further investigate cell-specific and spatially resolved dose-dependent changes in gene expression elicited by TCDD, single-nuclei RNA sequencing and spatial transcriptomics were used for livers of male mice gavaged with TCDD every 4 days for 28 days. The proportion of 11 cell (sub)types across 131 613 nuclei dose-dependently changed with 68% of all portal and central hepatocyte nuclei in control mice being overtaken by macrophages following TCDD treatment. We identified 368 (portal fibroblasts) to 1339 (macrophages) differentially expressed genes. Spatial analyses revealed initial loss of portal identity that eventually spanned the entire liver lobule with increasing dose. Induction of R-spondin 3 (Rspo3) and pericentral Apc, suggested dysregulation of the Wnt/β-catenin signaling cascade in zonally resolved steatosis. Collectively, the integrated results suggest disruption of zonation contributes to the pattern of TCDD-elicited NAFLD pathologies.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Satabdi Saha
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Biomedical Engineering Department, Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, Texas 77840, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tim Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
6
|
Maier AM, Huth K, Alessandrini F, Schnautz B, Arifovic A, Riols F, Haid M, Koegler A, Sameith K, Schmidt-Weber CB, Esser-von-Bieren J, Ohnmacht C. The aryl hydrocarbon receptor regulates lipid mediator production in alveolar macrophages. Front Immunol 2023; 14:1157373. [PMID: 37081886 PMCID: PMC10110899 DOI: 10.3389/fimmu.2023.1157373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.
Collapse
Affiliation(s)
- Ann-Marie Maier
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Huth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anela Arifovic
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anja Koegler
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Katrin Sameith
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Julia Esser-von-Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
7
|
Germolec DR, Lebrec H, Anderson SE, Burleson GR, Cardenas A, Corsini E, Elmore SE, Kaplan BL, Lawrence BP, Lehmann GM, Maier CC, McHale CM, Myers LP, Pallardy M, Rooney AA, Zeise L, Zhang L, Smith MT. Consensus on the Key Characteristics of Immunotoxic Agents as a Basis for Hazard Identification. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:105001. [PMID: 36201310 PMCID: PMC9536493 DOI: 10.1289/ehp10800] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.
Collapse
Affiliation(s)
- Dori R. Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Herve Lebrec
- Translational Safety & Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Gary R. Burleson
- Burleson Research Technologies, Inc., Morrisville, North Carolina, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sarah E. Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Barbara L.F. Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Curtis C. Maier
- In Vitro In Vivo Translation, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - L. Peyton Myers
- Division of Pharm/Tox, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Federal Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marc Pallardy
- Inserm, Inflammation microbiome immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Andrew A. Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Shan Q, Tian G, Han X, Hui H, Yamamoto M, Hao M, Wang J, Wang K, Sang X, Qin L, Chen G, Cao G. Toxicity of Tetradium ruticarpum: Subacute Toxicity Assessment and Metabolomic Identification of Relevant Biomarkers. Front Pharmacol 2022; 13:803855. [PMID: 35295336 PMCID: PMC8918793 DOI: 10.3389/fphar.2022.803855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Tetradium ruticarpum (TR) is widely used in Asia to treat gastrointestinal disorders and pain. Stir-frying with licorice aqueous extract is a traditional processing procedure of TR formed in a long-term practice and performed before clinical application, and believed to reduce TR’s toxicity. However, its toxicity and possible toxicity attenuation approach are yet to be well investigated. Subacute toxicity and metabolomics studies were conducted to help understand the toxicity of TR. The subacute toxicity assessment indicated that 3 fold of the recommended therapeutic dose of TR did not show obvious subacute toxicity in rats. Although an extremely high dose (i.e., 60 fold of the recommended dose) may cause toxicity in rats, it reversed to normal after 2 weeks of recovery. Hepatocellular injury was the major toxic phenotype of TR-induced liver damage, indicating as aspartate aminotransferase (AST) and liver index increasing, with histopathologic findings as local hepatocyte necrosis, focal inflammatory cell infiltration, slightly bile duct hyperplasia, and partial hepatocyte vacuolation. Moreover, we evaluated the impact of processing in toxicity. TR processed with licorice could effectively reduce drug-induced toxicity, which is a valuable step in TR pretreatment before clinical application. Metabolomics profiling revealed that primary bile acid biosynthesis, steroid biosynthesis, and arachidonic acid metabolism were mainly involved in profiling the toxicity metabolic regulatory network. The processing procedure could back-regulate these three pathways, and may be in an Aryl hydrocarbon Receptor (AhR) dependent manner to alleviate the metabolic perturbations induced by TR. 7α-hydroxycholesterol, calcitriol, and taurocholic acid were screened and validated as the toxicity biomarkers of TR for potential clinical translation. Overall, the extensive subacute toxicity evaluation and metabolomic analysis would not only expand knowledge of the toxicity mechanisms of TR, but also provide scientific insight of traditional processing theory, and support clinical rational use of TR.
Collapse
Affiliation(s)
- Qiyuan Shan
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Gang Tian
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Hui
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mai Yamamoto
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Min Hao
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwei Wang
- The Public Platform of Medical Research Center, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Luping Qin, ; Guanqun Chen, ; Gang Cao,
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Luping Qin, ; Guanqun Chen, ; Gang Cao,
| | - Gang Cao
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Luping Qin, ; Guanqun Chen, ; Gang Cao,
| |
Collapse
|
9
|
Li R, Peng X, Wu Y, Lv W, Xie H, Ishii Y, Zhang C. Exposure to PM 2.5 during pregnancy causes lung inflammation in the offspring: Mechanism of action of mogrosides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112955. [PMID: 34781127 DOI: 10.1016/j.ecoenv.2021.112955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological and toxicological studies have demonstrated that exposure to fine particulate matter (PM2.5) during pregnancy is harmful to the tissues of the offspring. However, the mechanism by which PM2.5 exposure causes lung damage in the offspring or potential dietary therapy for this condition remains unclear. Mogrosides (MGs) are derived from the traditional plant Siraitia grosvenorii and are used medicinally, where they can moisten the lungs and relieve coughing. In this study, pregnant rats were exposed to PM2.5 by intratracheal instillation and treated with MGs by gavage to model the effect of PM2.5 in the offspring and the interventional effect of MGs on lung tissue. We then used transcriptomics, metabolomics, and RT-qPCR as tools to look for metabolite and genetic changes in the offspring. We found that when compared to the control group, the mRNA levels of the inflammatory mediator Pla2g2d and the metabolites lysophosphatidylcholines (LysoPCs) and arachidonic acid (AA) were up-regulated in the lung tissues of PM2.5 group. In contrast, these inflammatory changes were restored after treatment with MGs during pregnancy. In addition, the levels of AA, LPC 15:0 and LPC 18:0 were elevated in the PM2.5 group compared with control group. This increase was inhibited by co-administration of MGs. The change of PGA1 was adverse. In conclusion, even a relatively low exposure to PM2.5 in rats during pregnancy produces inflammation in the lungs of the male offspring, and an intervention with MGs could significantly alleviate this effect. Furthermore, Pla2g2d may represent a potential target for MGs resulting in the improvement of PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuewei Peng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanliang Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weichao Lv
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haifeng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu 611130, China
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Schiffrin M, Winkler C, Quignodon L, Naldi A, Trötzmüller M, Köfeler H, Henry H, Parini P, Desvergne B, Gilardi F. Sex Dimorphism of Nonalcoholic Fatty Liver Disease (NAFLD) in Pparg-Null Mice. Int J Mol Sci 2021; 22:9969. [PMID: 34576136 PMCID: PMC8467431 DOI: 10.3390/ijms22189969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Men with nonalcoholic fatty liver disease (NAFLD) are more exposed to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of NALFD sex dimorphism are unclear. We combined gene expression, histological and lipidomic analyses to systematically compare male and female liver steatosis. We characterized hepatosteatosis in three independent mouse models of NAFLD, ob/ob and lipodystrophic fat-specific (PpargFΔ/Δ) and whole-body PPARγ-null (PpargΔ/Δ) mice. We identified a clear sex dimorphism occurring only in PpargΔ/Δ mice, with females showing macro- and microvesicular hepatosteatosis throughout their entire life, while males had fewer lipid droplets starting from 20 weeks. This sex dimorphism in hepatosteatosis was lost in gonadectomized PpargΔ/Δ mice. Lipidomics revealed hepatic accumulation of short and highly saturated TGs in females, while TGs were enriched in long and unsaturated hydrocarbon chains in males. Strikingly, sex-biased genes were particularly perturbed in both sexes, affecting lipid metabolism, drug metabolism, inflammatory and cellular stress response pathways. Most importantly, we found that the expression of key sex-biased genes was severely affected in all the NAFLD models we tested. Thus, hepatosteatosis strongly affects hepatic sex-biased gene expression. With NAFLD increasing in prevalence, this emphasizes the urgent need to specifically address the consequences of this deregulation in humans.
Collapse
Affiliation(s)
- Mariano Schiffrin
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Carine Winkler
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Laure Quignodon
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Aurélien Naldi
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Medical University of Graz, 8036 Graz, Austria; (M.T.); (H.K.)
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, 8036 Graz, Austria; (M.T.); (H.K.)
| | - Hugues Henry
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne Faculty of Biology and Medicine, CH-1011 Lausanne, Switzerland;
| | - Paolo Parini
- CardioMetabolic Unit, Department of Medicine and Department of Laboratory Medicine, Karolinska Insititutet and Theme Inflammation and Ageing Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| | - Béatrice Desvergne
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Federica Gilardi
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
- Faculty Unit of Toxicology, University Center of Legal Medicine, Faculty of Biology and Medicine, Lausanne University Hospital, CH-1000 Lausanne, Switzerland
| |
Collapse
|
11
|
Song Y, Kurose A, Li R, Takeda T, Onomura Y, Koga T, Mutoh J, Ishida T, Tanaka Y, Ishii Y. Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney. Int J Mol Sci 2021; 22:ijms22105334. [PMID: 34069420 PMCID: PMC8159118 DOI: 10.3390/ijms22105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.
Collapse
Affiliation(s)
- Yingxia Song
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Atsushi Kurose
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Renshi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Yuko Onomura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan;
| | - Junpei Mutoh
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Daigakudori 1-1-1, Sanyo-Onoda 756-0884, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa, Fukuoka 831-8501, Japan;
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Correspondence: ; Tel.: +81-92-642-6586
| |
Collapse
|
12
|
Hattori Y, Takeda T, Fujii M, Taura J, Yamada H, Ishii Y. Attenuation of growth hormone production at the fetal stage is critical for dioxin-induced developmental disorder in rat offspring. Biochem Pharmacol 2021; 186:114495. [PMID: 33711284 DOI: 10.1016/j.bcp.2021.114495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Although dioxins and related chemicals have been suspected to disrupt child development, their toxic mechanism remains poorly understood. Our previous studies in rat fetuses revealed that maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly-toxic dioxin, suppresses fetal synthesis of pituitary growth hormone (GH) that is essential for development. This study examined the hypothesis that attenuating GH expression in fetuses triggers developmental disorders. Treating pregnant rats with 1 μg/kg TCDD reduced the circulating level of GH and its downstream factor, insulin-like growth factor-1 (IGF-1), in the offspring only during the fetal and early neonatal stages. Although maternal TCDD exposure resulted in low body weight and length at babyhood and defects in the learning and memory ability at adulthood, GH supplementation in TCDD-exposed fetuses restored or tended to restore the defects including IGF-1 downregulation. Moreover, maternal TCDD exposure decreased the number of GH-positive cells during the fetal/neonatal stage. A microarray analysis showed that TCDD reduced the expression of death-associated protein-like 1 (DAPL1), a cell cycle-dependent proliferation regulator, in the fetal pituitary gland. In addition, TCDD treatment attenuated proliferating cells and cyclin mRNA expression in the fetal pituitary gland. Aryl hydrocarbon receptor (AHR)-knockout fetuses were insensitive to TCDD treatment, indicating that the TCDD-induced reduction in DAPL1 and GH mRNAs expression was due to AHR activation. Finally, DAPL1 knockdown suppressed GH and cyclin D2 expression in fetal pituitary cells. These results provide a novel evidence that dioxin suppresses GH-producing cell proliferation and GH synthesis due to partly targeting DAPL1, thereby impairing offspring development.
Collapse
Affiliation(s)
- Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Junki Taura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Ye G, Gao H, Zhang X, Liu X, Chen J, Liao X, Zhang H, Huang Q. Aryl hydrocarbon receptor mediates benzo[a]pyrene-induced metabolic reprogramming in human lung epithelial BEAS-2B cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144130. [PMID: 33288249 DOI: 10.1016/j.scitotenv.2020.144130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/09/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbon exposure accelerates the initiation and progression of lung cancer through aryl hydrocarbon receptor (AHR) signaling. Metabolic reprogramming is a hallmark of cancer. However, how AHR reprograms metabolism related to the malignant transformation in of benzo[a]pyrene (BaP)-exposed lung cells remains unclear. After confirming that BaP exposure activated AHR signaling and relevant downstream factors and then promoted epithelial-mesenchymal transition, an untargeted metabolomics approach was employed to discover AHR-mediated metabolic reprogramming and potential therapeutic targets in BaP-exposed BEAS-2B cells. We found that 52 metabolites were significantly altered in BaP-exposed BEAS-2B cells and responsive to resveratrol (RSV) intervention. Pathway analysis revealed that 28 and 30 metabolic pathways were significantly altered in response to BaP exposure and RSV intervention, respectively. Notably, levels of most amino acids were significantly decreased, while those of most fatty acids were significantly increased in BaP-exposed BEAS-2B cells, and above changes were abolished by RSV intervention. Besides, levels of amino acids and fatty acids were highly correlated with those of many metabolites and AHR signaling upon BaP exposure and RSV intervention (the absolute values of Pearson correlation coefficients above 0.8). We further discovered a decrease in peroxisome proliferator-activated receptor (PPAR) A/G signaling and an increase in fatty acid import by the transporter FATP1 in BaP-exposed BEAS-2B cells. Furthermore, inhibition of AHR signaling by CH-223191 abolished BaP-induced repression of PPARA/G signaling and activation of FATP1 in BEAS-2B cells, demonstrating the regulatory role of AHR signaling in fatty acid accumulation via mediating PPARA/G-FATP1 signaling. These data suggested amino acid and fatty acid metabolism, AHR and PPAR-FATP1 signaling as potential therapeutic targets for intervening BaP-induced toxicity and related diseases. As far as we known, fatty acid accumulation and high correlations of AHR signaling with amino acid and fatty acid metabolism are novel phenomena discovered in BaP-exposed lung epithelial cells.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xu Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
14
|
Pu S, Li Y, Liu Q, Zhang X, Chen L, Li R, Zhang J, Wu T, Tang Q, Yang X, Zhang Z, Huang Y, Kuang J, Li H, Zou M, Jiang W, He J. Inhibition of 5-Lipoxygenase in Hepatic Stellate Cells Alleviates Liver Fibrosis. Front Pharmacol 2021; 12:628583. [PMID: 33679410 PMCID: PMC7930623 DOI: 10.3389/fphar.2021.628583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose: Activation of hepatic stellate cells (HSC) is a central driver of liver fibrosis. 5-lipoxygenase (5-LO) is the key enzyme that catalyzes arachidonic acid into leukotrienes. In this study, we examined the role of 5-LO in HSC activation and liver fibrosis. Main Methods: Culture medium was collected from quiescent and activated HSC for target metabolomics analysis. Exogenous leukotrienes were added to culture medium to explore their effect in activating HSC. Genetic ablation of 5-LO in mice was used to study its role in liver fibrosis induced by CCl4 and a methionine-choline-deficient (MCD) diet. Pharmacological inhibition of 5-LO in HSC was used to explore the effect of this enzyme in HSC activation and liver fibrosis. Key Results: The secretion of LTB4 and LTC4 was increased in activated vs. quiescent HSC. LTB4 and LTC4 contributed to HSC activation by activating the extracellular signal-regulated protein kinase pathway. The expression of 5-LO was increased in activated HSC and fibrotic livers of mice. Ablation of 5-LO in primary HSC inhibited both mRNA and protein expression of fibrotic genes. In vivo, ablation of 5-LO markedly ameliorated the CCl4- and MCD diet-induced liver fibrosis and liver injury. Pharmacological inhibition of 5-LO in HSC by targeted delivery of the 5-LO inhibitor zileuton suppressed HSC activation and improved CCl4- and MCD diet-induced hepatic fibrosis and liver injury. Finally, we found increased 5-LO expression in patients with non-alcoholic steatohepatitis and liver fibrosis. Conclusion: 5-LO may play a critical role in activating HSC; genetic ablation or pharmacological inhibition of 5-LO improved CCl4-and MCD diet-induced liver fibrosis.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Lei Chen
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Wu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Tang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Xuping Yang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Zijing Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangying Kuang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zou
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Furue M, Ishii Y, Tsukimori K, Tsuji G. Aryl Hydrocarbon Receptor and Dioxin-Related Health Hazards-Lessons from Yusho. Int J Mol Sci 2021; 22:ijms22020708. [PMID: 33445793 PMCID: PMC7828254 DOI: 10.3390/ijms22020708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Poisoning by high concentrations of dioxin and its related compounds manifests variable toxic symptoms such as general malaise, chloracne, hyperpigmentation, sputum and cough, paresthesia or numbness of the extremities, hypertriglyceridemia, perinatal abnormalities, and elevated risks of cancer-related mortality. Such health hazards are observed in patients with Yusho (oil disease in Japanese) who had consumed rice bran oil highly contaminated with 2,3,4,7,8-pentachlorodibenzofuran, polychlorinated biphenyls, and polychlorinated quaterphenyls in 1968. The blood concentrations of these congeners in patients with Yusho remain extremely elevated 50 years after onset. Dioxins exert their toxicity via aryl hydrocarbon receptor (AHR) through the generation of reactive oxygen species (ROS). In this review article, we discuss the pathogenic implication of AHR in dioxin-induced health hazards. We also mention the potential therapeutic use of herbal drugs targeting AHR and ROS in patients with Yusho.
Collapse
Affiliation(s)
- Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kiyomi Tsukimori
- Department of Obstetrics, Perinatal Center, Fukuoka Children’s Hospital, Fukuoka 813-0017, Japan;
| | - Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Doskey CM, Fader KA, Nault R, Lydic T, Matthews J, Potter D, Sharratt B, Williams K, Zacharewski T. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters hepatic polyunsaturated fatty acid metabolism and eicosanoid biosynthesis in female Sprague-Dawley rats. Toxicol Appl Pharmacol 2020; 398:115034. [PMID: 32387183 PMCID: PMC7294678 DOI: 10.1016/j.taap.2020.115034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist that elicits a broad spectrum of dose-dependent hepatic effects including lipid accumulation, inflammation, and fibrosis. To determine the role of inflammatory lipid mediators in TCDD-mediated hepatotoxicity, eicosanoid metabolism was investigated. Female Sprague-Dawley (SD) rats were orally gavaged with sesame oil vehicle or 0.01-10 μg/kg TCDD every 4 days for 28 days. Hepatic RNA-Seq data was integrated with untargeted metabolomics of liver, serum, and urine, revealing dose-dependent changes in linoleic acid (LA) and arachidonic acid (AA) metabolism. TCDD also elicited dose-dependent differential gene expression associated with the cyclooxygenase, lipoxygenase, and cytochrome P450 epoxidation/hydroxylation pathways with corresponding changes in ω-6 (e.g. AA and LA) and ω-3 polyunsaturated fatty acids (PUFAs), as well as associated eicosanoid metabolites. Overall, TCDD increased the ratio of ω-6 to ω-3 PUFAs. Phospholipase A2 (Pla2g12a) was induced consistent with increased AA metabolism, while AA utilization by induced lipoxygenases Alox5 and Alox15 increased leukotrienes (LTs). More specifically, TCDD increased pro-inflammatory eicosanoids including leukotriene LTB4, and LTB3, known to recruit neutrophils to damaged tissue. Dose-response modeling suggests the cytochrome P450 hydroxylase/epoxygenase and lipoxygenase pathways are more sensitive to TCDD than the cyclooxygenase pathway. Hepatic AhR ChIP-Seq analysis found little enrichment within the regulatory regions of differentially expressed genes (DEGs) involved in eicosanoid biosynthesis, suggesting TCDD-elicited dysregulation of eicosanoid metabolism is a downstream effect of AhR activation. Overall, these results suggest alterations in eicosanoid metabolism may play a key role in TCDD-elicited hepatotoxicity associated with the progression of steatosis to steatohepatitis.
Collapse
Affiliation(s)
- Claire M Doskey
- Department of Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Kelly A Fader
- Department of Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Rance Nault
- Department of Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0316, Norway
| | - Dave Potter
- Wellington Laboratories Inc., Guelph, Ontario NIG 3M5, Canada
| | - Bonnie Sharratt
- Wellington Laboratories Inc., Guelph, Ontario NIG 3M5, Canada
| | - Kurt Williams
- Department of Pathobiology and Diagnostic Investigation, Michigan State, East Lansing, MI 48824, United States
| | - Tim Zacharewski
- Department of Biochemistry & Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
17
|
Takeda T, Fujii M, Izumoto W, Hattori Y, Matsushita T, Yamada H, Ishii Y. Gestational dioxin exposure suppresses prolactin-stimulated nursing in lactating dam rats to impair development of postnatal offspring. Biochem Pharmacol 2020; 178:114106. [PMID: 32569627 DOI: 10.1016/j.bcp.2020.114106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
A number of epidemiological studies have implicated environmental chemicals including dioxins in the induction of negative effects on child development. To clarify the underlying mechanisms, almost all toxicologists have concentrated on effects on the offspring themselves. We examined an alternative hypothesis that gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly-toxic dioxin, targets factors related to maternal childcare to disturb offspring development. Oral administration of TCDD (1 µg/kg) to pregnant rats on gestational day 15 suppressed maternal licking behavior, a nursing behavior, and mammary gland maturation during the lactational stage, as well as the body weight and short-term memory of postnatal offspring. In support of these findings, maternal production of prolactin, a pituitary hormone essential for nursing including milk production, was decreased during the same period. Intracerebroventricular infusion of prolactin to dioxin-exposed dams restored or tended to restore many of the above defects observed both in mothers and offspring. The TCDD-dependent defects in maternal nursing behaviors can be due to a direct action on aryl hydrocarbon receptor (AHR) of lactating dams, because they did not emerge in AHR-knockout dams or control dams with TCDD-exposed offspring. Further examinations revealed that TCDD induces transforming growth factor β1 expression, which suppresses prolactin-producing cell proliferation, in a nursing period-specific manner. In agreement with this, the number of prolactin-positive cells in nursing dams was decreased by TCDD. These results provide novel evidence that gestational dioxin exposure attenuates prolactin-stimulated nursing in lactating dams to impair offspring development, and that immaturity of prolactin-producing cells can contribute to them.
Collapse
Affiliation(s)
- Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Waka Izumoto
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Matsushita
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
18
|
Li RS, Fukumori R, Takeda T, Song Y, Morimoto S, Kikura-Hanajiri R, Yamaguchi T, Watanabe K, Aritake K, Tanaka Y, Yamada H, Yamamoto T, Ishii Y. Elevation of endocannabinoids in the brain by synthetic cannabinoid JWH-018: mechanism and effect on learning and memory. Sci Rep 2019; 9:9621. [PMID: 31270353 PMCID: PMC6610139 DOI: 10.1038/s41598-019-45969-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
The impairment of learning and memory is a well-documented effect of both natural and synthetic cannabinoids. In the present study, we aimed to investigate the effect of acute administration of JWH-018, a synthetic cannabinoid, on the hippocampal metabolome to assess biochemical changes in vivo. JWH-018 elevated levels of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The increase of endocannabinoid levels in response to JWH-018 could be inhibited by co-administration of AM251, a CB1 receptor antagonist. Biochemical analyses revealed that this was the result of suppression of two hydrolases involved in endocannabinoid degradation (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL]). Additionally, we showed that JWH-018 causes a reduction in the levels of brain-derived neurotrophic factor (BDNF), which is known to modulate synaptic plasticity and adaptive processes underlying learning and memory. The decrease of BDNF following JWH-018 treatment was also rescued by co-administration of AM251. As both endocannabinoids and BDNF have been shown to modulate learning and memory in the hippocampus, the alteration of their levels in response to JWH-018 may explain the contribution of synthetic cannabinoids to impairment of memory.
Collapse
Affiliation(s)
- Ren-Shi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ryo Fukumori
- Department of Pharmacotherapeutics and Neuropsychopharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yingxia Song
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Morimoto
- Division of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences (NIHS), 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-city, Kanagawa, 210-9501, Japan
| | - Taku Yamaguchi
- Department of Pharmacotherapeutics and Neuropsychopharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Kazuhito Watanabe
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka, 815-8511, Japan
| | - Kousuke Aritake
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka, 815-8511, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tsuneyuki Yamamoto
- Department of Pharmacotherapeutics and Neuropsychopharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
19
|
Pelclova D, Navratil T, Vlckova S, Fenclova Z, Pelcl T, Kacerova T, Kacer P. Exhaled breath condensate biomarkers reflect systemic changes in patients with chronic dioxin intoxication. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2211-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
Purpose of review This review will critically highlight the role of leukotrienes as mediators of renal diseases and drug nephrotoxicity. It will also discuss the recently identified mechanism of cysteinyl leukotrienes induction and action, and will propose clinical implementation of these findings. Recent findings Since last reviewed in 1994, leukotrienes were shown to mediate drug-associated nephrotoxicity, transplant rejection and morbidity in several models of renal diseases. Although leukotrienes may be released by various infiltrating leukocytes, a recent study demonstrated that cytotoxic agents trigger production of leukotriene C4 (LTC4) in mouse kidney cells by activating a biosynthetic pathway based on microsomal glutathione-S-transferase 2 (MGST2). LTC4 then elicits nuclear accumulation of hydrogen peroxide-generating NADPH oxidase 4, leading to oxidative DNA damage and cell death. LTC4 inhibitors, commonly used as systemic asthma drugs, alleviated drug-associated damage to proximal tubular cells and attenuated mouse morbidity. Summary Cysteinyl leukotrienes released by mast cells trigger the symptoms of asthma, including bronchoconstriction and vasoconstriction. Therefore, effective leukotriene inhibitors were approved as orally administered asthma drugs. The findings that leukotrienes mediate the cytotoxicity of nephrotoxic drugs, and are involved in numerous renal diseases, suggest that such asthma drugs may ameliorate drug-induced nephrotoxicity, as well as some renal diseases.
Collapse
|
21
|
Hattori Y, Takeda T, Nakamura A, Nishida K, Shioji Y, Fukumitsu H, Yamada H, Ishii Y. The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats. Biochem Pharmacol 2018; 154:213-221. [PMID: 29753751 DOI: 10.1016/j.bcp.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/09/2018] [Indexed: 12/30/2022]
Abstract
Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood.
Collapse
Affiliation(s)
- Yukiko Hattori
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Arisa Nakamura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Shioji
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruki Fukumitsu
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
22
|
Takeda T. [Molecular Mechanism Whereby Maternal Exposure to Dioxin Suppresses Sexual Maturation of the Offspring after Growing Up]. YAKUGAKU ZASSHI 2018; 137:1373-1379. [PMID: 29093374 DOI: 10.1248/yakushi.17-00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dioxins, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are responsible for producing serious toxic effects in the next generation, such as sexual immaturity. Our laboratory found that treating pregnant rats on gestational day 15 with TCDD (1 μg/kg orally) targets pituitary luteinizing hormone (LH) to attenuate testicular steroidogenesis in fetuses. Because sex steroids during a short window ("the critical period") in the perinatal stage stimulate brain differentiation closely linked to sexual maturation, it is likely that TCDD imprints sexual immaturity on the offspring due to the lowered expression of LH during the fetal period. To address this hypothesis, we first investigated the effect of supplementation of equine chorionic gonadotropin (eCG), an LH-mimicking hormone, in fetuses exposed to TCDD. The result showed that eCG ameliorated defects in sexual behavior in adulthood as well as in steroidogenesis during the fetal stage. We also found that maternal exposure to TCDD induced the pituitary expression of histone deacetylases (HDACs) in fetuses. In agreement with this, TCDD deacetylated the histones wrapped around the LHβ gene, and valproic acid, an HDAC inhibitor, blocked the reduced level of LHβ caused by TCDD. These observations strongly suggest that TCDD induces the expression of HDACs to attenuate fetal LH production. Finally, such a transient reduction in steroidogenesis of the pituitary-gonadal axis causes a decrease in the expression of hypothalamic gonadotropin-releasing hormone, resulting in defects in sexual behavior in adulthood. This review increases our understanding of the developmental toxicities caused by endocrine disruptors including dioxins.
Collapse
Affiliation(s)
- Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|