1
|
Garcia-Baez J, Chaves-Negrón I, Javadov S, Bazil JN, Chapa-Dubocq XR. Developing a physiologically relevant cell model of ferroptosis in cardiomyocytes. Free Radic Biol Med 2025; 233:330-339. [PMID: 40185165 DOI: 10.1016/j.freeradbiomed.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Excessive intracellular labile iron levels exacerbate reactive oxygen species (ROS) production through the Fenton reaction, leading to lipid peroxidation and ferroptotic cell death. Ferroptosis is commonly induced experimentally using chemical inhibitors such as RSL3 (a GPX4 inhibitor) or erastin (an inhibitor of the cystine-glutamate exchanger, Xc-) or by cysteine deprivation. However, these methods often fail to replicate the physiological complexity of ferroptosis and are associated with off-target effects. This study establishes a physiologically relevant model of ferroptosis in cardiomyocytes using ferric acetate (FAC) and tert-butyl hydroperoxide (TBH) to simulate iron overload and ROS generation. The combined application of FAC and TBH induced ferroptotic cell death, characterized by increased cytoplasmic Fe2+ levels, elevated lipid peroxidation, and a 2.5-fold rise in cell death, while FAC or TBH alone had minimal effects. Ferroptosis was confirmed by the complete prevention of cell death using ferrostatin-1 (a lipid peroxidation inhibitor) and ML351 (a 15-lipoxygenase inhibitor). Notably, this model bypasses the limitations of traditional synthetic inducers, such as off-target effects and inefficient mimicry of physiological conditions. Additionally, lipid peroxidation levels induced by the FAC-TBH combination were significantly higher than those induced by RSL3, further validating the relevance of this approach. These findings underscore the critical interplay between iron and ROS in ferroptotic cell death and highlight the utility of this model in advancing our understanding of ferroptosis mechanisms. This physiologically relevant system provides a robust platform for investigating therapeutic interventions targeting iron-induced oxidative stress and ferroptosis, particularly in conditions characterized by pathological iron accumulation, such as cardiomyopathies and ischemia-reperfusion injury. By focusing on the intrinsic drivers of ferroptosis, this work lays the groundwork for developing targeted treatments to mitigate ferroptosis-associated cellular damage.
Collapse
Affiliation(s)
- Jorge Garcia-Baez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Ivana Chaves-Negrón
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Jason N Bazil
- Department of Physiology, Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824-1046, USA.
| | - Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA.
| |
Collapse
|
2
|
Hu R, Li G, Hu P, Niu H, Li W, Jiang S, Guan G, Xu Q, Liu M, Chen L. bmp10 maintains cardiac function by regulating iron homeostasis. J Genet Genomics 2024; 51:1459-1473. [PMID: 39414074 DOI: 10.1016/j.jgg.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Heart disease remains the leading cause of death worldwide. Iron imbalance, whether deficiency or overload, contributes to heart failure. However, the molecular mechanisms governing iron homeostasis in the heart are poorly understood. Here, we demonstrate that mutation of bmp10, a heart-born morphogen crucial for embryonic heart development, results in severe anemia and cardiac hypertrophy in zebrafish. Initially, bmp10 deficiency causes cardiac iron deficiency, which later progresses to iron overload due to the dysregulated hepcidin/ferroportin axis in cardiac cells, leading to ferroptosis and heart failure. Early iron supplementation in bmp10-/- mutants rescues erythropoiesis, while iron chelation in juvenile fishes significantly alleviates cardiac hypertrophy. We further demonstrate that the interplay between HIF1α-driven hypoxic signaling and the IL6/p-STAT3 inflammatory pathways is critical for regulating cardiac iron metabolism. Our findings reveal BMP10 as a key regulator of iron homeostasis in the vertebrate heart and highlight the potential of targeting the BMP10-hepcidin-iron axis as a therapeutic strategy for iron-related cardiomyopathy.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Genfang Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Hongbo Niu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Wenhao Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Shouwen Jiang
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Guijun Guan
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingli Liu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Song J, Xu S, Chen Q, Gou Y, Zhao C, Jia C, Liu H, Zhang Z, Li B, Gao Y, Zhao Y, Ji E. Cardiomyocyte-specific overexpression of FPN1 diminishes cardiac hypertrophy induced by chronic intermittent hypoxia. J Cell Mol Med 2024; 28:e18543. [PMID: 39054575 PMCID: PMC11272608 DOI: 10.1111/jcmm.18543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
The significance of iron in myocardial mitochondria function cannot be underestimated, because deviations in iron levels within cardiomyocytes may have profound detrimental effects on cardiac function. In this study, we investigated the effects of ferroportin 1 (FPN1) on cardiac iron levels and pathological alterations in mice subjected to chronic intermittent hypoxia (CIH). The cTNT-FPN1 plasmid was administered via tail vein injection to induce the mouse with FPN1 overexpression in the cardiomyocytes. CIH was established by exposing the mice to cycles of 21%-5% FiO2 for 3 min, 8 h per day. Subsequently, the introduction of hepcidin resulted in a reduction in FPN1 expression, and H9C2 cells were used to establish an IH model to further elucidate the role of FPN1. First, FPN1 overexpression ameliorated CIH-induced cardiac dysfunction, myocardial hypertrophy, mitochondrial damage and apoptosis. Second, FPN1 overexpression attenuated ROS levels during CIH. In addition, FPN1 overexpression mitigated CIH-induced cardiac iron accumulation. Moreover, the administration of hepcidin resulted in a reduction in FPN1 levels, further accelerating the CIH-induced levels of ROS, LIP and apoptosis in H9C2 cells. These findings indicate that the overexpression of FPN1 in cardiomyocytes inhibits CIH-induced cardiac iron accumulation, subsequently reducing ROS levels and mitigating mitochondrial damage. Conversely, the administration of hepcidin suppressed FPN1 expression and worsened cardiomyocyte iron toxicity injury.
Collapse
Affiliation(s)
- Ji‐Xian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Shan Xu
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Turbidity Toxin SyndromeThe First Affiliated Hospital Hebei University of Chinese MedicineShijiazhuangChina
| | - Qi Chen
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Yujing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Chen‐Bing Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Cui‐Ling Jia
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Han Liu
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Bo‐liang Li
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Yuhui Gao
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Turbidity Toxin SyndromeThe First Affiliated Hospital Hebei University of Chinese MedicineShijiazhuangChina
| | - En‐Sheng Ji
- Hebei Technology Innovation Center of TCM Combined Hydrogen MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Physiology, Institute of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| |
Collapse
|
4
|
Liu J, Deng L, Qu L, Li X, Wang T, Chen Y, Jiang M, Zou W. Herbal medicines provide regulation against iron overload in cardiovascular diseases: Informing future applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117941. [PMID: 38387684 DOI: 10.1016/j.jep.2024.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofen Li
- School of Basic Medicine Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Miao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Zhao K, Chen X, Bian Y, Zhou Z, Wei X, Zhang J. Broadening horizons: The role of ferroptosis in myocardial ischemia-reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2269-2286. [PMID: 37119287 DOI: 10.1007/s00210-023-02506-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) discovered in recent years, where abnormal intracellular iron accumulation leads to the onset of lipid peroxidation, which further leads to the disruption of intracellular redox homeostasis and triggers cell death. Iron accumulation with lipid peroxidation is considered a hallmark of ferroptosis that distinguishes it from other RCDs. Myocardial ischemia-reperfusion injury (MIRI) is a process of increased myocardial cell injury that occurs during coronary reperfusion after myocardial ischemia and is associated with high post-infarction mortality. Multiple experiments have shown that ferroptosis plays an important role in MIRI pathophysiology. This review systematically summarized the latest research progress on the mechanisms of ferroptosis. Then we report the possible link between the occurrence of MIRI and ferroptosis in cardiomyocytes. Finally, we discuss and analyze the related drugs that target ferroptosis to attenuate MIRI and its action targets, and point out the shortcomings of the current state of relevant research and possible future research directions. It is hoped to provide a new avenue for improving the prognosis of the acute coronary syndrome.
Collapse
Affiliation(s)
- Ke Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yujing Bian
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Zhou Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xijin Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Juan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| |
Collapse
|
6
|
Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during aging - Role of inflammation and proteolysis. Mech Ageing Dev 2023; 215:111869. [PMID: 37678569 DOI: 10.1016/j.mad.2023.111869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.
Collapse
Affiliation(s)
- Sophia Walter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
8
|
Vali SW, Lindahl PA. Low-temperature Mössbauer spectroscopy of organs from 57Fe-enriched HFE (-/-) hemochromatosis mice: an iron-dependent threshold for generating hemosiderin. J Biol Inorg Chem 2023; 28:173-185. [PMID: 36512071 PMCID: PMC9981716 DOI: 10.1007/s00775-022-01975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022]
Abstract
Hereditary hemochromatosis is an iron-overload disease most often arising from a mutation in the Homeostatic Fe regulator (HFE) gene. HFE organs become overloaded with iron which causes damage. Iron-overload is commonly detected by NMR imaging, but the spectroscopic technique is insensitive to diamagnetic iron. Here, we used Mössbauer spectroscopy to examine the iron content of liver, spleen, kidney, heart, and brain of 57Fe-enriched HFE(-/-) mice of ages 3-52 wk. Overall, the iron contents of all investigated HFE organs were similar to the same healthy organ but from an older mouse. Livers and spleens were majorly overloaded, followed by kidneys. Excess iron was generally present as ferritin. Iron-sulfur clusters and low-spin FeII hemes (combined into the central quadrupole doublet) and nonheme high-spin FeII species were also observed. Spectra of young and middle-aged HFE kidneys were dominated by the central quadrupole doublet and were largely devoid of ferritin. Collecting and comparing spectra at 5 and 60 K allowed the presence of hemosiderin, a decomposition product of ferritin, to be quantified, and it also allowed the diamagnetic central doublet to be distinguished from ferritin. Hemosiderin was observed in spleens and livers from HFE mice, and in spleens from controls, but only when iron concentrations exceeded 2-3 mM. Even in those cases, hemosiderin represented only 10-20% of the iron in the sample. NMR imaging can identify iron-overload under non-invasive room-temperature conditions, but Mössbauer spectroscopy of 57Fe-enriched mice can detect all forms of iron and perhaps allow the process of iron-overloading to be probed in greater detail.
Collapse
Affiliation(s)
- Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA.
| |
Collapse
|
9
|
Protective Effect of Sevoflurane Preconditioning on Cardiomyocytes Against Hypoxia/Reoxygenation Injury by Modulating Iron Homeostasis and Ferroptosis. Cardiovasc Toxicol 2023; 23:86-92. [PMID: 36800141 DOI: 10.1007/s12012-023-09782-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
To investigate the mechanism whereby sevoflurane (Sev) protects cardiomyocytes from hypoxia/reoxygenation (H/R) injury. The rat cardiomyocyte line H9C2 was exposed to hypoxia (1% oxygen) for 24 h, followed by reoxygenation for 2 h to construct a model of H/R injury. H9C2 was exposed to 2.4% Sev for 45 min before creating a hypoxic environment to observe the effect of Sev. MTT was taken to assess the viability of each group of cells, flow cytometry to detect cell apoptosis, and qRT-PCR or western blot to detect the expression of iron metabolism-related proteins and apoptosis-related proteins in the cells. And the kit determined the levels of total Fe and Fe2+ as well as factors related to oxidative stress in the cells. Administration of Sev significantly increased the cell viability of the H/R group while decreasing the expression of apoptosis-related proteins (Bax, cleaved caspase-3). Ferroportin 1 and mitochondrial ferritin, which are associated with iron metabolism, were considerably up-regulated by Sev, while iron regulatory protein 1, divalent metal transporter 1, and transferrin receptor 1 were significantly down-regulated in H/R cells. Additionally, Sev substantially reduced the levels of total Fe and Fe2+, reactive oxygen species, malondialdehyde, and 4-hydroxynonenal in H/R cells. In conclusion, Sev relieves H/R-induced cardiomyocyte injury by regulating iron homeostasis and ferroptosis.
Collapse
|
10
|
Longo T, Kim S, Srivastava AK, Hurley L, Ji K, Viescas AJ, Flint N, Foucher AC, Yates D, Stach EA, Bou-Abdallah F, Papaefthymiou GC. Micromagnetic and morphological characterization of heteropolymer human ferritin cores. NANOSCALE ADVANCES 2022; 5:208-219. [PMID: 36605807 PMCID: PMC9765448 DOI: 10.1039/d2na00544a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.
Collapse
Affiliation(s)
- Thomas Longo
- Department of Physics, Villanova University Villanova PA USA
| | - Steve Kim
- Department of Physics, Villanova University Villanova PA USA
| | | | - Lauren Hurley
- Department of Physics, Villanova University Villanova PA USA
| | - Kaixuan Ji
- Department of Physics, Villanova University Villanova PA USA
| | | | - Nicholas Flint
- Department of Chemistry, State University of New York Potsdam NY USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania Philadelphia PA USA
| | - Douglas Yates
- Singh Center for Nanotechnology, University of Pennsylvania Philadelphia PA USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania Philadelphia PA USA
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York Potsdam NY USA
| | | |
Collapse
|
11
|
Yang X, Kawasaki NK, Min J, Matsui T, Wang F. Ferroptosis in heart failure. J Mol Cell Cardiol 2022; 173:141-153. [PMID: 36273661 PMCID: PMC11225968 DOI: 10.1016/j.yjmcc.2022.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
With its complicated pathobiology and pathophysiology, heart failure (HF) remains an increasingly prevalent epidemic that threatens global human health. Ferroptosis is a form of regulated cell death characterized by the iron-dependent lethal accumulation of lipid peroxides in the membrane system and is different from other types of cell death such as apoptosis and necrosis. Mounting evidence supports the claim that ferroptosis is mainly regulated by several biological pathways including iron handling, redox homeostasis, and lipid metabolism. Recently, ferroptosis has been identified to play an important role in HF induced by different stimuli such as myocardial infarction, myocardial ischemia reperfusion, chemotherapy, and others. Thus, it is of great significance to deeply explore the role of ferroptosis in HF, which might be a prerequisite to precise drug targets and novel therapeutic strategies based on ferroptosis-related medicine. Here, we review current knowledge on the link between ferroptosis and HF, followed by critical perspectives on the development and progression of ferroptotic signals and cardiac remodeling in HF.
Collapse
Affiliation(s)
- Xinquan Yang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, USA.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
12
|
Zhang F, Li Z, Gao P, Zou J, Cui Y, Qian Y, Gu R, Xu W, Hu J. HJ11 decoction restrains development of myocardial ischemia-reperfusion injury in rats by suppressing ACSL4-mediated ferroptosis. Front Pharmacol 2022; 13:1024292. [PMID: 36483736 PMCID: PMC9723372 DOI: 10.3389/fphar.2022.1024292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/07/2022] [Indexed: 08/12/2023] Open
Abstract
HJ11 is a novel traditional Chinese medicine developed from the appropriate addition and reduction of Si-Miao-Yong-An decoction, which has been commonly used to treat ischemia-reperfusion (I/R) injury in the clinical setting. However, the mechanism of action of HJ11 components remains unclear. Ferroptosis is a critical factor that promotes myocardial I/R injury, and the pathophysiological ferroptosis-mediated lipid peroxidation causes I/R injury. Therefore, this study explored whether HJ11 decoction ameliorates myocardial I/R injury by attenuating ACSL4-mediated ferroptosis. This study also explored the effect of ACSL4 expression on iron-dependent programmed cell death by preparing a rat model of myocardial I/R injury and oxygen glucose deprivation/reperfusion (OGD/R)-induced H9c2 cells. The results showed that HJ11 decoction improved cardiac function; attenuated I/R injury, apoptosis, oxidative stress, mitochondrial damage, and iron accumulation; and reduced infarct size in the myocardial I/R injury rat model. Additionally, HJ11 decoction suppressed the expression of ferroptosis-promoting proteins [Acyl-CoA synthetase long-chain family member 4 (ACSL4) and cyclooxygenase-2 (COX2)] but promoted the expression of ferroptosis-inhibiting proteins [ferritin heavy chain 1 (FTH1) and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4)] in the myocardial tissues of the I/R injury rat model. Similar results were found with the OGD/R-induced H9c2 cells. Interestingly, ACSL4 knockdown attenuated iron accumulation, oxidative stress, and ferroptosis in the OGD/R-treated H9c2 cells. However, ACSL4 overexpression counteracted the inhibitory effect of the HJ11 decoction on OGD/R-triggered oxidative stress and ferroptosis in H9c2 cells. These findings suggest that HJ11 decoction restrained the development of myocardial I/R injury by regulating ACSL4-mediated ferroptosis. Thus, HJ11 decoction may be an effective medication to treat myocardial I/R injury.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxi Zou
- School·of·Basic·Medical·Sciences Chengdu·University·of Traditional·Chinese Medicine, Chengdu, China
| | - Yuting Cui
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yi Qian
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming Xu
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
- The First Affilliated Hospital of Henan University of CM, Zhengzhou, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Karmi O, Rowland L, King SD, Manrique-Acevedo C, Cabantchik IZ, Nechushtai R, Mittler R. The [2Fe-2S] protein CISD2 plays a key role in preventing iron accumulation in cardiomyocytes. FEBS Lett 2022; 596:747-761. [PMID: 34997963 DOI: 10.1002/1873-3468.14277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 11/08/2022]
Abstract
Considered a key aging gene, CISD2, encoding CDGSH iron-sulfur domain-containing protein 2, plays a central role in regulating calcium homeostasis, preventing mitochondrial dysfunction, and the activation of autophagy and apoptosis in different cells. Here, we show that cardiomyocytes from CISD2-null mice accumulate high levels of iron and contain high levels of transferrin receptor and ferritin. Using proteomics and transmission electron microscopy, we further show that the lack of CISD2 induces several features of the aging process in young mice, but other features are not induced. Taken together, our findings suggest that CISD2 protects cardiomyocytes from overaccumulation of iron, which is common in aging hearts and can contribute to the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Ola Karmi
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Israel
| | - Linda Rowland
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Skylar D King
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Ioav Z Cabantchik
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Israel
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Israel
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- The Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
14
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
15
|
Li JY, Liu SQ, Yao RQ, Tian YP, Yao YM. A Novel Insight Into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Front Cell Dev Biol 2021; 9:799499. [PMID: 34926476 PMCID: PMC8675329 DOI: 10.3389/fcell.2021.799499] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemia-reperfusion injury (IRI), critically involved in the pathology of reperfusion therapy for myocardial infarction, is closely related to oxidative stress the inflammatory response, and disturbances in energy metabolism. Emerging evidence shows that metabolic imbalances of iron participate in the pathophysiological process of cardiomyocyte IRI [also termed as myocardial ischemia-reperfusion injury (MIRI)]. Iron is an essential mineral required for vital physiological functions, including cellular respiration, lipid and oxygen metabolism, and protein synthesis. Nevertheless, cardiomyocyte homeostasis and viability are inclined to be jeopardized by iron-induced toxicity under pathological conditions, which is defined as ferroptosis. Upon the occurrence of IRI, excessive iron is transported into cells that drive cardiomyocytes more vulnerable to ferroptosis by the accumulation of reactive oxygen species (ROS) through Fenton reaction and Haber–Weiss reaction. The increased ROS production in ferroptosis correspondingly leads cardiomyocytes to become more sensitive to oxidative stress under the exposure of excess iron. Therefore, ferroptosis might play an important role in the pathogenic progression of MIRI, and precisely targeting ferroptosis mechanisms may be a promising therapeutic option to revert myocardial remodeling. Notably, targeting inhibitors are expected to prevent MIRI deterioration by suppressing cardiomyocyte ferroptosis. Here, we review the pathophysiological alterations from iron homeostasis to ferroptosis together with potential pathways regarding ferroptosis secondary to cardiovascular IRI. We also provide a comprehensive analysis of ferroptosis inhibitors and initiators, as well as regulatory genes involved in the setting of MIRI.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang-qing Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| |
Collapse
|
16
|
Kamnev AA, Tugarova AV. Bioanalytical applications of Mössbauer spectroscopy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Data on the applications of Mössbauer spectroscopy in the transmission (mainly on 57Fe nuclei) and emission (on 57Co nuclei) variants for analytical studies at the molecular level of metal-containing components in a wide range of biological objects (from biocomplexes and biomacromolecules to supramolecular structures, cells, tissues and organisms) and of objects that are participants or products of biological processes, published in the last 15 years are discussed and systematized. The prospects of the technique in its biological applications, including the developing fields (emission variant, use of synchrotron radiation), are formulated.
The bibliography includes 248 references.
Collapse
|
17
|
Zheng H, Shi L, Tong C, Liu Y, Hou M. circSnx12 Is Involved in Ferroptosis During Heart Failure by Targeting miR-224-5p. Front Cardiovasc Med 2021; 8:656093. [PMID: 33969020 PMCID: PMC8097164 DOI: 10.3389/fcvm.2021.656093] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNA (circRNA) is a subclass of non-coding RNAs that enables the circular transcripts resistant to the exonuclease digestion. Iron homeostasis is essential for the body to maintain normal physiological functions. At present, the relationship among circRNA, iron metabolism and heart failure remains largely unknown. This study aimed to explore the regulatory mechanism of circRNA and iron metabolism in heart failure. We obtained circRNA, miRNA and mRNA data from public databases and built a ceRNA network. The prediction results were verified in the myocardial tissues of pressure overload-induced heart failure mice through the use of histopathological staining methods, iron and malondialdehyde (MDA) measurement tests, quantitative real-time PCR (qRT-PCR), Western blot analysis and luciferase reporter assay. A total of 4 genes related to iron metabolism and oxidative stress were identified, and a ceRNA network involving 7 circRNAs, 7 miRNAs, and 4 mRNAs was constructed using bioinformatics tools. The results of qRT-PCR and Western blot analyses indicated that the expression level of FTH1 was similar with that predicted by bioinformatics analysis. Echocardiographic measurement showed that heart failure mice have lower fractional shortening and ejection fraction. Moreover, the myocardium of heart failure mice displayed obvious fibrosis as well as increased levels of iron and MDA compared to control mice. Besides, circSnx12 could act as an endogenous sponge to bind with miR-224-5p, and the 3'UTR region of FTH1 also had miRNA binding sites. A circRNA-miRNA-mRNA regulatory network was successfully constructed by identifying differentially expressed genes related to iron metabolism. This new approach reveals potential circRNA targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Haoyuan Zheng
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China
| | - Lin Shi
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, China
| | - Changci Tong
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, China
| | - Yunen Liu
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Mingxiao Hou
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China.,The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| |
Collapse
|
18
|
The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci 2020; 21:ijms21217889. [PMID: 33114290 PMCID: PMC7660609 DOI: 10.3390/ijms21217889] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential mineral participating in different functions of the organism under physiological conditions. Numerous biological processes, such as oxygen and lipid metabolism, protein production, cellular respiration, and DNA synthesis, require the presence of iron, and mitochondria play an important role in the processes of iron metabolism. In addition to its physiological role, iron may be also involved in the adaptive processes of myocardial "conditioning". On the other hand, disorders of iron metabolism are involved in the pathological mechanisms of the most common human diseases and include a wide range of them, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease, and accelerate the development of atherosclerosis. Furthermore, iron also exerts potentially deleterious effects that may be manifested under conditions of ischemia/reperfusion (I/R) injury, myocardial infarction, heart failure, coronary artery angioplasty, or heart transplantation, due to its involvement in reactive oxygen species (ROS) production. Moreover, iron has been recently described to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". Ferroptosis is a form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been shown to be associated with I/R injury and several other cardiac diseases as a significant form of cell death in cardiomyocytes. In this review, we will discuss the role of iron in cardiovascular diseases, especially in myocardial I/R injury, and protective mechanisms stimulated by different forms of "conditioning" with a special emphasis on the novel targets for cardioprotection.
Collapse
|
19
|
Charitou G, Tsertos C, Parpottas Y, Kleanthous M, Lederer CW, Phylactides M. Study of iron complexes in visceral organs and brain from a 57Fe enriched β-thalassaemia mouse model via Mössbauer spectroscopy. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Smith MJ, Fowler M, Naftalin RJ, Siow RCM. UVA irradiation increases ferrous iron release from human skin fibroblast and endothelial cell ferritin: Consequences for cell senescence and aging. Free Radic Biol Med 2020; 155:49-57. [PMID: 32387586 DOI: 10.1016/j.freeradbiomed.2020.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
UVA irradiation of human dermal fibroblasts and endothelial cells induces an immediate transient increase in cytosolic Fe(II), as monitored by the fluorescence Fe(II) reporters, FeRhonox1 in cytosol and MitoFerroGreen in mitochondria. Both superoxide dismutase (SOD) inhibition by tetrathiomolybdate (ATM) and catalase inhibition by 3-amino-1, 2, 4-triazole (ATZ) increase and prolong the cytosolic Fe(II) signal after UVA irradiation. SOD inhibition with ATM also increases mitochondrial Fe(II). Thus, mitochondria do not source the UV-dependent increase in cytosolic Fe(II), but instead reflect and amplify raised cytosolic labile Fe(II) concentration. Hence control of cytosolic ferritin iron release is key to preventing UVA-induced inflammation. UVA irradiation also increases dermal endothelial cell H2O2, as monitored by the adenovirus vector Hyper-DAAO-NES(HyPer). These UVA-dependent changes in intracellular Fe(II) and H2O2 are mirrored by increases in cell superoxide, monitored with the luminescence probe L-012. UV-dependent increases in cytosolic Fe(II), H2O2 and L-012 chemiluminescence are prevented by ZnCl2 (10 μM), an effective inhibitor of Fe(II) transport via ferritin's 3-fold channels. Quercetin (10 μM), a potent membrane permeable Fe(II) chelator, abolishes the cytosolic UVA-dependent FeRhonox1, Fe(II) and HyPer, H2O2 and increase in MitoFerroGreen Fe(II) signals. The time course of the quercetin-dependent decrease in endothelial H2O2 correlates with the decrease in FeRhox1 signal and both signals are fully suppressed by preloading cells with ZnCl2. These results confirm that antioxidant enzyme activity is the key factor in controlling intracellular iron levels, and hence maintenance of cell antioxidant capacity is vitally important in prevention of skin aging and inflammation initiated by labile iron and UVA.
Collapse
Affiliation(s)
- Matthew J Smith
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK
| | - Mark Fowler
- Unilever Colworth Science Park, Bedfordshire, UK
| | - Richard J Naftalin
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK.
| | - Richard C M Siow
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
21
|
Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland AS, Duce JA, Devedjian JC. Conservative iron chelation for neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2020; 127:189-203. [PMID: 31912279 DOI: 10.1007/s00702-019-02138-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Focal iron accumulation associated with brain iron dyshomeostasis is a pathological hallmark of various neurodegenerative diseases (NDD). The application of iron-sensitive sequences in magnetic resonance imaging has provided a useful tool to identify the underlying NDD pathology. In the three major NDD, degeneration occurs in central nervous system (CNS) regions associated with memory (Alzheimer's disease, AD), automaticity (Parkinson's disease, PD) and motor function (amyotrophic lateral sclerosis, ALS), all of which require a high oxygen demand for harnessing neuronal energy. In PD, a progressive degeneration of the substantia nigra pars compacta (SNc) is associated with the appearance of siderotic foci, largely caused by increased labile iron levels resulting from an imbalance between cell iron import, storage and export. At a molecular level, α-synuclein regulates dopamine and iron transport with PD-associated mutations in this protein causing functional disruption to these processes. Equally, in ALS, an early iron accumulation is present in neurons of the cortico-spinal motor pathway before neuropathology and secondary iron accumulation in microglia. High serum ferritin is an indicator of poor prognosis in ALS and the application of iron-sensitive sequences in magnetic resonance imaging has become a useful tool in identifying pathology. The molecular pathways that cascade down from such dyshomeostasis still remain to be fully elucidated but strong inroads have been made in recent years. Far from being a simple cause or consequence, it has recently been discovered that these alterations can trigger susceptibility to an iron-dependent cell-death pathway with unique lipoperoxidation signatures called ferroptosis. In turn, this has now provided insight into some key modulators of this cell-death pathway that could be therapeutic targets for the NDD. Interestingly, iron accumulation and ferroptosis are highly sensitive to iron chelation. However, whilst chelators that strongly scavenge intracellular iron protect against oxidative neuronal damage in mammalian models and are proven to be effective in treating systemic siderosis, these compounds are not clinically suitable due to the high risk of developing iatrogenic iron depletion and ensuing anaemia. Instead, a moderate iron chelation modality that conserves systemic iron offers a novel therapeutic strategy for neuroprotection. As demonstrated with the prototype chelator deferiprone, iron can be scavenged from labile iron complexes in the brain and transferred (conservatively) either to higher affinity acceptors in cells or extracellular transferrin. Promising preclinical and clinical proof of concept trials has led to several current large randomized clinical trials that aim to demonstrate the efficacy and safety of conservative iron chelation for NDD, notably in a long-term treatment regimen.
Collapse
Affiliation(s)
- David Devos
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France.
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France.
- Département de Pharmacologie Médicale, Université Lille INSERM 1171, CHU de Lille, 59037, Lille, France.
| | - Z Ioav Cabantchik
- Della Pergola Chair, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904, Jerusalem, Israel
| | - Caroline Moreau
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Véronique Danel
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Laura Mahoney-Sanchez
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Hind Bouchaoui
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Flore Gouel
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Anne-Sophie Rolland
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - James A Duce
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jean-Christophe Devedjian
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
- Université du Littoral Côte d'Opale-1, place de l'Yser, BP 72033, 59375, Dunkerque Cedex, France
| |
Collapse
|
22
|
Vela D. Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiol (Oxf) 2020; 228:e13324. [PMID: 31162883 DOI: 10.1111/apha.13324] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Highly active cardiomyocytes need iron for their metabolic activity. In physiological conditions, iron turnover is a delicate process which is dependent on global iron supply and local autonomous regulatory mechanisms. Though less is known about the autonomous regulatory mechanisms, data suggest that these mechanisms can preserve cellular iron turnover even in the presence of systemic iron disturbance. Therefore, activity of local iron protein machinery and its relationship with global iron metabolism is important to understand cardiac iron metabolism in physiological conditions and in cardiac disease. Our knowledge in this respect has helped in designing therapeutic strategies for different cardiac diseases. This review is a synthesis of our current knowledge concerning the regulation of cardiac iron metabolism. In addition, different models of cardiac iron dysmetabolism will be discussed through the examples of heart failure (cardiomyocyte iron deficiency), myocardial infarction (acute changes in cardiac iron turnover), doxorubicin-induced cardiotoxicity (cardiomyocyte iron overload in mitochondria), thalassaemia (cardiomyocyte cytosolic and mitochondrial iron overload) and Friedreich ataxia (asymmetric cytosolic/mitochondrial cardiac iron dysmetabolism). Finally, future perspectives will be discussed in order to resolve actual gaps in knowledge, which should be helpful in finding new treatment possibilities in different cardiac diseases.
Collapse
Affiliation(s)
- Driton Vela
- Faculty of Medicine, Department of Physiology University of Prishtina Prishtina Kosovo
| |
Collapse
|
23
|
Iron Deficiency as a Therapeutic Target in Cardiovascular Disease. Pharmaceuticals (Basel) 2019; 12:ph12030125. [PMID: 31466321 PMCID: PMC6789619 DOI: 10.3390/ph12030125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency is the most common nutritional disorder in the world. It is prevalent amongst patients with cardiovascular disease, in whom it is associated with worse clinical outcomes. The benefits of iron supplementation have been established in chronic heart failure, but data on their effectiveness in other cardiovascular diseases are lacking or conflicting. Realising the potential of iron therapies in cardiovascular disease requires understanding of the mechanisms through which iron deficiency affects cardiovascular function, and the cell types in which such mechanisms operate. That understanding has been enhanced by recent insights into the roles of hepcidin and iron regulatory proteins (IRPs) in cellular iron homeostasis within cardiovascular cells. These studies identify intracellular iron deficiency within the cardiovascular tissue as an important contributor to the disease process, and present novel therapeutic strategies based on targeting the machinery of cellular iron homeostasis rather than direct iron supplementation. This review discusses these new insights and their wider implications for the treatment of cardiovascular diseases, focusing on two disease conditions: chronic heart failure and pulmonary arterial hypertension.
Collapse
|
24
|
Paterek A, Mackiewicz U, Mączewski M. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities. J Cell Physiol 2019; 234:21613-21629. [DOI: 10.1002/jcp.28820] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Aleksandra Paterek
- Department of Clinical Physiology Centre of Postgraduate Medical Education Warsaw Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology Centre of Postgraduate Medical Education Warsaw Poland
| | - Michał Mączewski
- Department of Clinical Physiology Centre of Postgraduate Medical Education Warsaw Poland
| |
Collapse
|
25
|
Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic Biol Med 2019; 133:234-237. [PMID: 30107217 PMCID: PMC6375725 DOI: 10.1016/j.freeradbiomed.2018.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
Heart disease is a common manifestation in conditions of iron imbalance. Normal heart function requires coupling of iron supply for oxidative phosphorylation and redox signalling with tight control of intracellular iron to below levels at which excessive ROS are generated. Iron supply to the heart is dependent on systemic iron availability which is controlled by the systemic hepcidin/ferroportin axis. Intracellular iron in cardiomyocytes is controlled in part by the iron regulatory proteins IRP1/2. This mini-review summarises current understanding of how cardiac cells regulate intracellular iron levels, and of the mechanisms linking cardiac dysfunction with iron imbalance. It also highlights a newly-recognised mechanism of intracellular iron homeostasis in cardiomyocytes, based on a cell-autonomous cardiac hepcidin/ferroportin axis. This new understanding raises pertinent questions on the interplay between systemic and local iron control in the context of heart disease, and the effects on heart function of therapies targeting the systemic hepcidin/ferroportin axis.
Collapse
Affiliation(s)
- Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
26
|
Kamnev AA, Tugarova AV. Sample treatment in Mössbauer spectroscopy for protein-related analyses: Nondestructive possibilities to look inside metal-containing biosystems. Talanta 2017; 174:819-837. [PMID: 28738659 DOI: 10.1016/j.talanta.2017.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 01/07/2023]
Abstract
In this review, the unique possibilities are considered of the 57Fe transmission (TMS) and 57Co emission (EMS) variants of Mössbauer (nuclear γ-resonance) spectroscopy as nondestructive techniques with minimal sample preparation/treatment and a significant analytical potential, with a focus on the analysis of cation-binding sites in metalloproteins. The techniques are shown to provide unique structural and quantitative information on the coordination microenvironment, the chemical state and transformations of the Mössbauer nuclides in sophisticated metal-containing proteins, including those within complicated supramolecular structures, and in microbial cells or tissues. Recent representative examples of analyses of Fe-containing proteins by 57Fe TMS are briefly discussed, along with the newly emerging data on using 57Co EMS for probing the structural organisation of 57Co-doped cation-binding sites in sophisticated biocomplexes including metalloenzymes. Finally, some rare or exotic applications of Mössbauer spectroscopy (including the synchrotron-based methodology) in protein-related studies are outlined.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049, Saratov, Russia.
| | - Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049, Saratov, Russia
| |
Collapse
|