1
|
Fang S, Clayton PT, Garg D, Yoganathan S, Zaki MS, Helgadottir EA, Palmadottir VK, Landry M, Gospe SM, Mankad K, Bonifati V, Sharma S, Tuschl K. Consensus of Expert Opinion for the Diagnosis and Management of Hypermanganesaemia With Dystonia 1 and 2. J Inherit Metab Dis 2025; 48:e70031. [PMID: 40320765 PMCID: PMC12050909 DOI: 10.1002/jimd.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Hypermanganesaemia with Dystonia 1 and 2 (HMNDYT1 and 2) are inherited, autosomal recessive disorders caused by pathogenic variants in the genes encoding the manganese transporters SLC30A10 and SLC39A14, respectively. Impaired hepatic and enterocytic manganese uptake (SLC39A14) and excretion (SLC30A10) lead to deposition of manganese in the basal ganglia resulting in childhood-onset dystonia-parkinsonism. HMNDYT1 is characterized by additional features due to manganese accumulation in the liver causing cirrhosis, polycythaemia, and depleted iron stores. High blood manganese levels and pathognomonic MRI brain appearances of manganese deposition resulting in T1 hyperintensity of the basal ganglia are diagnostic clues. Treatment is limited to chelation therapy and iron supplementation that can prevent disease progression. Due to their rarity, the awareness of the inherited manganese transporter defects is limited. Here, we provide consensus expert recommendations for the diagnosis and treatment of patients with HMNDYT1 and 2 in order to facilitate early diagnosis and optimize clinical outcome. These recommendations were developed through an evidence and consensus-based process led by a group of 13 international experts across the disciplines of metabolic medicine, neurology, hematology, genetics, and radiology, and address the clinical presentation, diagnostic investigations, principles of treatment, and monitoring of patients with HMNDYT1 and 2.
Collapse
Affiliation(s)
- Sherry Fang
- Department of Metabolic MedicineGreat Ormond Street Hospital for ChildrenLondonUK
| | - Peter T. Clayton
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Divyani Garg
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Sangeetha Yoganathan
- Paediatric Neurology Unit, Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Maha S. Zaki
- Department of Clinical GeneticsHuman Genetics and Genome Research Institute, National Research CentreCairoEgypt
| | | | | | - Maude Landry
- The Moncton Hospital, Horizon Health NetworkMonctonCanada
| | - Sidney M. Gospe
- Department of Neurology and PediatricsUniversity of WashingtonSeattleWashingtonUSA
- Department of PediatricsDuke UniversityDurhamNorth CarolinaUSA
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital for ChildrenLondonUK
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center RotterdamRotterdamthe Netherlands
| | - Suvasini Sharma
- Department of PediatricsLady Hardinge Medical College and Associated Kalawati Saran Children's HospitalDelhiIndia
| | - Karin Tuschl
- Department of Metabolic MedicineGreat Ormond Street Hospital for ChildrenLondonUK
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| |
Collapse
|
2
|
Sácký J, Liščáková V, Šnábl J, Zelenka J, Borovička J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus Agaricus crocodilinus. Fungal Biol 2025; 129:101550. [PMID: 40023530 DOI: 10.1016/j.funbio.2025.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
The gilled mushroom Agaricus crocodilinus (Agaricaceae) analyzed in this study hyperaccumulated Cd and showed common Zn and very low Mn concentrations. To gain an insight into the handling of heavy metals in this saprotrophic species, its two genes of the cation diffusion facilitator (CDF) protein family were isolated, AcCDF1 and AcCDF2, encoding the membrane transporters of the Zn-CDF and Mn-CDF subfamilies, respectively. When expressed in the model, metal-sensitive yeast, AcCDF1 conferred marked Zn tolerance and promoted the intracellular accumulation of Zn. Green fluorescent protein (GFP) tagging of AcCDF1 visualized the functional protein predominantly in the tonoplast, indicating that AcCDF1 can mediate the transport of Zn into vacuoles, which are used for deposition of excess Zn in most fungi. AcCDF2 conferred a high degree of Mn tolerance to model yeast, in which the transport-active AcCDF2:GFP fusion was localized to the plasma membrane, suggesting a role in Mn export and thus reduced Mn accumulation. Furthermore, the AcCDF2 gene appeared to be Mn-inducible in A. crocodilinus, suggesting an Mn efflux function of AcCDF2. Neither AcCDFs nor the mutant AcCDF1 variants constructed to mimic transmembrane tetrahedral Cd transport sites manifested appreciable Cd-related phenotypes in yeast models, and further efforts are needed to elucidate the mechanism underlying Cd hyperaccumulation in A. crocodilinus.
Collapse
Affiliation(s)
- Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Veronika Liščáková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jan Šnábl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague 6, 16500, Czech Republic; Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, Husinec-Řež, 25068, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Prajapati M, Zhang JZ, Chong GS, Chiu L, Mercadante CJ, Kowalski HL, Antipova O, Lai B, Ralle M, Jackson BP, Punshon T, Guo S, Aghajan M, Bartnikas TB. Studies of Slc30a10 Deficiency in Mice Reveal That Intestinal Iron Transporters Dmt1 and Ferroportin Transport Manganese. Cell Mol Gastroenterol Hepatol 2025; 19:101489. [PMID: 40024532 DOI: 10.1016/j.jcmgh.2025.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND & AIMS SLC11A2 (DMT1) and SLC40A1 (ferroportin) are essential for dietary iron absorption, but their role in manganese transport is debated. SLC30A10 deficiency causes severe manganese excess due to loss of gastrointestinal manganese excretion. Patients are treated with chelators but also respond to oral iron, suggesting that iron can outcompete manganese for absorption in this disease. Here, we determine if divalent metal transport 1 (Dmt1) and ferroportin can transport manganese using Slc30a10-deficient mice as a model. METHODS Manganese absorption and levels and other disease parameters were assessed in Slc30a10-/- mice with and without intestinal Dmt1 and ferroportin deficiency using gastric gavage, surgical bile collections, multiple metal assays, and other techniques. The contribution of intestinal Slc30a10 deficiency to ferroportin-dependent manganese absorption was explored by determining if intestinal Slc30a10 deficiency increases manganese absorption in a mouse model of hereditary hemochromatosis, a disease of iron excess due to ferroportin upregulation. RESULTS Manganese absorption was increased in Slc30a10-deficient mice despite manganese excess. Intestinal Dmt1 and ferroportin deficiency attenuated manganese absorption and excess in Slc30a10-deficient mice. Intestinal Slc30a10 deficiency increased manganese absorption and levels in the hemochromatosis mouse model. CONCLUSIONS Aberrant absorption contributes prominently to SLC30A10 deficiency, a disease previously attributed to impaired excretion, and is dependent upon intestinal Dmt1 and ferroportin and exacerbated by loss of intestinal Slc30a10. This work expands our understanding of overlaps between manganese and iron transport and the mechanisms by which the body regulates absorption of 2 nutrients that can share transport pathways. We propose that a reconsideration of the role of Dmt1 and ferroportin in manganese homeostasis is warranted.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Jared Z Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Grace S Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Courtney J Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island; Currently at Ensoma, Boston, Massachusetts
| | - Heather L Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island; Currently at BlueRock Therapeutics, Cambridge, Massachusetts
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Brian P Jackson
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, New Hampshire
| | - Tracy Punshon
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, New Hampshire
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, California
| | | | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| |
Collapse
|
4
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
5
|
Choi EK, Aring L, Peng Y, Correia AB, Lieberman AP, Iwase S, Seo YA. Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis. JCI Insight 2024; 9:e168440. [PMID: 39435657 PMCID: PMC11530126 DOI: 10.1172/jci.insight.168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yujie Peng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N. The Manganese-Bone Connection: Investigating the Role of Manganese in Bone Health. J Clin Med 2024; 13:4679. [PMID: 39200820 PMCID: PMC11355939 DOI: 10.3390/jcm13164679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn's interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential.
Collapse
Affiliation(s)
- Gulaim Taskozhina
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulnara Batyrova
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Zhamilya Issanguzhina
- Department of Children Disease No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Nurgul Kereyeva
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
7
|
Almatrafi AM, Alayoubi AM, Alluqmani M, Hashmi JA, Basit S. Exome Sequence Analysis to Characterize Undiagnosed Family Segregating Motor Impairment and Dystonia. J Clin Med 2024; 13:4252. [PMID: 39064292 PMCID: PMC11278008 DOI: 10.3390/jcm13144252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Hypermanganesemia with dystonia 1 (HMNDYT1) is a rare genetic disorder characterized by elevated blood manganese levels. This condition is associated with polycythemia, motor neurodegeneration with extrapyramidal features, and hepatic dysfunction, which can progress to cirrhosis in some patients. Materials and Methods: In this study, a consanguineous Saudi family with two affected individuals exhibiting symptoms of severe motor impairment, spastic paraparesis, postural instability, and dystonia was studied. Clinical and radiographic evaluations were conducted on the affected individuals. Whole exome sequencing (WES) was performed to diagnose the disease and to determine the causative variant underlying the phenotype. Moreover, Sanger sequencing was used for validation and segregation analysis of the identified variant. Bioinformatics tools were utilized to predict the pathogenicity of candidate variants based on ACMG criteria. Results: Exome sequencing detected a recurrent homozygous missense variant (c.266T>C; p.L89P) in exon 1 of the SLC30A10 gene. Sanger sequencing was employed to validate the segregation of the discovered variant in all available family members. Bioinformatics tools predicted that the variant is potentially pathogenic. Moreover, conservation analysis showed that the variant is highly conserved in vertebrates. Conclusions: This study shows that exome sequencing is instrumental in diagnosing undiagnosed neurodevelopmental disorders. Moreover, this study expands the mutation spectrum of SLC30A10 in distinct populations.
Collapse
Affiliation(s)
- Ahmad M. Almatrafi
- Department of Biology, College of Science, Taibah University, Medina 42353, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
| | - Abdulfatah M. Alayoubi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| | - Majed Alluqmani
- Department of Neurology, College of Medicine, Taibah University, Medina 42353, Saudi Arabia;
| | - Jamil A. Hashmi
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
8
|
Prajapati M, Zhang JZ, Chong GS, Chiu L, Mercadante CJ, Kowalski HL, Antipova O, Lai B, Ralle M, Jackson BP, Punshon T, Guo S, Aghajan M, Bartnikas TB. Manganese transporter SLC30A10 and iron transporters SLC40A1 and SLC11A2 impact dietary manganese absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603814. [PMID: 39071439 PMCID: PMC11275741 DOI: 10.1101/2024.07.17.603814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
SLC30A10 deficiency is a disease of severe manganese excess attributed to loss of SLC30A10-dependent manganese excretion via the gastrointestinal tract. Patients develop dystonia, cirrhosis, and polycythemia. They are treated with chelators but also respond to oral iron, suggesting that iron can outcompete manganese for absorption in this disease. Here we explore the latter observation. Intriguingly, manganese absorption is increased in Slc30a10-deficient mice despite manganese excess. Studies of multiple mouse models indicate that increased dietary manganese absorption reflects two processes: loss of manganese export from enterocytes into the gastrointestinal tract lumen by SLC30A10, and increased absorption of dietary manganese by iron transporters SLC11A2 (DMT1) and SLC40A1 (ferroportin). Our work demonstrates that aberrant absorption contributes prominently to SLC30A10 deficiency and expands our understanding of biological interactions between iron and manganese. Based on these results, we propose a reconsideration of the role of iron transporters in manganese homeostasis is warranted.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Jared Z. Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Grace S. Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Heather L. Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brian P. Jackson
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, NH, 03755, USA
| | - Tracy Punshon
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, NH, 03755, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | | | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
9
|
Hutchens S, Melkote A, Jursa T, Shawlot W, Trasande L, Smith DR, Mukhopadhyay S. Elevated thyroid manganese reduces thyroid iodine to induce hypothyroidism in mice, but not rats, lacking SLC30A10 transporter. Metallomics 2024; 16:mfae029. [PMID: 38866719 PMCID: PMC11216084 DOI: 10.1093/mtomcs/mfae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Elevated manganese (Mn) accumulates in the brain and induces neurotoxicity. SLC30A10 is an Mn efflux transporter that controls body Mn levels. We previously reported that full-body Slc30a10 knockout mice (1) recapitulate the body Mn retention phenotype of humans with loss-of-function SLC30A10 mutations and (2) unexpectedly develop hypothyroidism induced by Mn accumulation in the thyroid, which reduces intra-thyroid thyroxine. Subsequent analyses of National Health and Nutrition Examination Survey data identified an association between serum Mn and subclinical thyroid changes. The emergence of thyroid deficits as a feature of Mn toxicity suggests that changes in thyroid function may be an underappreciated, but critical, modulator of Mn-induced disease. To better understand the relationship between thyroid function and Mn toxicity, here we further defined the mechanism of Mn-induced hypothyroidism using mouse and rat models. Slc30a10 knockout mice exhibited a profound deficit in thyroid iodine levels that occurred contemporaneously with increases in thyroid Mn levels and preceded the onset of overt hypothyroidism. Wild-type Mn-exposed mice also exhibited increased thyroid Mn levels, an inverse correlation between thyroid Mn and iodine levels, and subclinical hypothyroidism. In contrast, thyroid iodine levels were unaltered in newly generated Slc30a10 knockout rats despite an increase in thyroid Mn levels, and the knockout rats were euthyroid. Thus, Mn-induced thyroid dysfunction in genetic or Mn exposure-induced mouse models occurs due to a reduction in thyroid iodine subsequent to an increase in thyroid Mn levels. Moreover, rat and mouse thyroids have differential sensitivities to Mn, which may impact the manifestations of Mn-induced disease in these routinely used animal models.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Ashvini Melkote
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - William Shawlot
- Mouse Genetic Engineering Facility, The University of Texas at Austin, Austin, TX, USA
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics and Departments of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
- New York University Wagner School of Public Service, New York, NY, USA
- New York University College of Global Public Health, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Gurol KC, Jursa T, Cho EJ, Fast W, Dalby KN, Smith DR, Mukhopadhyay S. PHD2 enzyme is an intracellular manganese sensor that initiates the homeostatic response against elevated manganese. Proc Natl Acad Sci U S A 2024; 121:e2402538121. [PMID: 38905240 PMCID: PMC11214094 DOI: 10.1073/pnas.2402538121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Intracellular sensors detect changes in levels of essential metals to initiate homeostatic responses. But, a mammalian manganese (Mn) sensor is unknown, representing a major gap in understanding of Mn homeostasis. Using human-relevant models, we recently reported that: 1) the primary homeostatic response to elevated Mn is upregulation of hypoxia-inducible factors (HIFs), which increases expression of the Mn efflux transporter SLC30A10; and 2) elevated Mn blocks the prolyl hydroxylation of HIFs by prolyl hydroxylase domain (PHD) enzymes, which otherwise targets HIFs for degradation. Thus, the mammalian mechanism for sensing elevated Mn likely relates to PHD inhibition. Moreover, 1) Mn substitutes for a catalytic iron (Fe) in PHD structures; and 2) exchangeable cellular levels of Fe and Mn are comparable. Therefore, we hypothesized that elevated Mn directly inhibits PHD by replacing its catalytic Fe. In vitro assays using catalytically active PHD2, the primary PHD isoform, revealed that Mn inhibited, and Fe supplementation rescued, PHD2 activity. However, a mutation in PHD2 (D315E) that selectively reduced Mn binding without substantially impacting Fe binding or enzymatic activity resulted in complete insensitivity of PHD2 to Mn in vitro. Additionally, hepatic cells expressing full-length PHD2D315E were less sensitive to Mn-induced HIF activation and SLC30A10 upregulation than PHD2wild-type. These results: 1) define a fundamental Mn sensing mechanism for controlling Mn homeostasis-elevated Mn inhibits PHD2, which functions as a Mn sensor, by outcompeting its catalytic Fe, and PHD2 inhibition activates HIF signaling to up-regulate SLC30A10; and 2) identify a unique mode of metal sensing that may have wide applicability.
Collapse
Affiliation(s)
- Kerem C. Gurol
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Eun Jeong Cho
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
| | - Walter Fast
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Kevin N. Dalby
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
11
|
Warden A, Mayfield RD, Gurol KC, Hutchens S, Liu C, Mukhopadhyay S. Loss of SLC30A10 manganese transporter alters expression of neurotransmission genes and activates hypoxia-inducible factor signaling in mice. Metallomics 2024; 16:mfae007. [PMID: 38285613 PMCID: PMC10883138 DOI: 10.1093/mtomcs/mfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The essential metal manganese (Mn) induces neuromotor disease at elevated levels. The manganese efflux transporter SLC30A10 regulates brain Mn levels. Homozygous loss-of-function mutations in SLC30A10 induce hereditary Mn neurotoxicity in humans. Our prior characterization of Slc30a10 knockout mice recapitulated the high brain Mn levels and neuromotor deficits reported in humans. But, mechanisms of Mn-induced motor deficits due to SLC30A10 mutations or elevated Mn exposure are unclear. To gain insights into this issue, we characterized changes in gene expression in the basal ganglia, the main brain region targeted by Mn, of Slc30a10 knockout mice using unbiased transcriptomics. Compared with littermates, >1000 genes were upregulated or downregulated in the basal ganglia sub-regions (i.e. caudate putamen, globus pallidus, and substantia nigra) of the knockouts. Pathway analyses revealed notable changes in genes regulating synaptic transmission and neurotransmitter function in the knockouts that may contribute to the motor phenotype. Expression changes in the knockouts were essentially normalized by a reduced Mn chow, establishing that changes were Mn dependent. Upstream regulator analyses identified hypoxia-inducible factor (HIF) signaling, which we recently characterized to be a primary cellular response to elevated Mn, as a critical mediator of the transcriptomic changes in the basal ganglia of the knockout mice. HIF activation was also evident in the liver of the knockout mice. These results: (i) enhance understanding of the pathobiology of Mn-induced motor disease; (ii) identify specific target genes/pathways for future mechanistic analyses; and (iii) independently corroborate the importance of the HIF pathway in Mn homeostasis and toxicity.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kerem C Gurol
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Liu
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Liu J, Zhao K, Qian T, Li X, Yi W, Pan R, Huang Y, Ji Y, Su H. Association between ambient air pollution and thyroid hormones levels: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166780. [PMID: 37660827 DOI: 10.1016/j.scitotenv.2023.166780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Growing studies have focused on the effects of ambient air pollution on thyroid hormones (THs), but the results were controversial. Therefore, a systematic review and meta-analysis was conducted by pooling current evidence on this association. METHODS Four databases were searched for studies examining the associations of particulate matter [diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5)] and gaseous [sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO)] pollutants with THs levels. Random effects models were used to pool the changes in THs levels with increasing air pollutant concentrations. Subgroup analyses were constructed by region, design, sample size, pollutant concentrations, evaluated methods, and potential risk exposure windows. RESULTS A total of 14 studies covering 357,226 participants were included in this meta-analysis. The pooled results showed significant associations of exposure to PM2.5, PM10, NO2, SO2, and CO with decreases in free thyroxine (FT4) with percent changes (PC) ranging from -0.593 % to -3.925 %. PM2.5, NO2, and CO were negatively associated with levels of FT4/FT3 (PC: from -0.604 % to -2.975 %). In addition, results showed significant associations of PM2.5 with hypothyroxinemia and high thyroid-stimulating hormone (TSH). Subgroup analyses indicated that PM2.5 and NO2 were significantly associated with FT4 in studies of Chinese, and similar significant findings were found in studies of PM2.5 and FT4/FT3 in areas with higher concentrations of air pollutants and larger samples. PM2.5 exposure in the first trimester was found to be associated with lower FT4 levels in pregnant women. CONCLUSION Our findings suggest that exposure to air pollution is associated with changes in THs levels. Enhanced management of highly polluted areas, identification of harmful components and sources of PM, and protection from harmful exposures in early pregnancy may be of great public health importance for the population's thyroid function.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Kefu Zhao
- Hefei Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Tingting Qian
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yuee Huang
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yifu Ji
- Anhui Mental Health Center, Hefei, Anhui, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
13
|
Hutchens S, Jursa TP, Melkote A, Grant SM, Smith DR, Mukhopadhyay S. Hepatic and intestinal manganese excretion are both required to regulate brain manganese during elevated manganese exposure. Am J Physiol Gastrointest Liver Physiol 2023; 325:G251-G264. [PMID: 37461848 PMCID: PMC10511180 DOI: 10.1152/ajpgi.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Manganese (Mn) is essential but neurotoxic at elevated levels. Under physiological conditions, Mn is primarily excreted by the liver, with the intestines playing a secondary role. Recent analyses of tissue-specific Slc30a10 or Slc39a14 knockout mice (SLC30A10 and SLC39A14 are Mn transporters) revealed that, under physiological conditions: 1) excretion of Mn by the liver and intestines is a major pathway that regulates brain Mn; and surprisingly, 2) the intestines compensate for loss of hepatic Mn excretion in controlling brain Mn. The unexpected importance of the intestines in controlling physiological brain Mn led us to determine the role of hepatic and intestinal Mn excretion in regulating brain Mn during elevated Mn exposure. We used liver- or intestine-specific Slc30a10 knockout mice as models to inhibit hepatic or intestinal Mn excretion. Compared with littermates, both knockout strains exhibited similar increases in brain Mn after elevated Mn exposure in early or later life. Thus, unlike physiological conditions, both hepatic and intestinal Mn excretion are required to control brain Mn during elevated Mn exposure. However, brain Mn levels of littermates and both knockout strains exposed to elevated Mn only in early life were normalized in later life. Thus, hepatic and intestinal Mn excretion play compensatory roles in clearing brain Mn accumulated by early life Mn exposure. Finally, neuromotor assays provided evidence consistent with a role for hepatic and intestinal Mn excretion in functionally modulating Mn neurotoxicity during Mn exposure. Put together, these findings substantially enhance understanding of the regulation of brain Mn by excretion.NEW & NOTEWORTHY This article shows that, in contrast with expectations from prior studies and physiological conditions, excretion of manganese by the intestines and liver is equally important in controlling brain manganese during human-relevant manganese exposure. The results provide foundational insights about the interorgan mechanisms that control brain manganese homeostasis at the organism level and have important implications for the development of therapeutics to treat manganese-induced neurological disease.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Thomas P Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Ashvini Melkote
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Stephanie M Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
14
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
15
|
Taylor CA, Grant SM, Jursa T, Melkote A, Fulthorpe R, Aschner M, Smith DR, Gonzales RA, Mukhopadhyay S. SLC30A10 manganese transporter in the brain protects against deficits in motor function and dopaminergic neurotransmission under physiological conditions. Metallomics 2023; 15:mfad021. [PMID: 36990693 PMCID: PMC10103839 DOI: 10.1093/mtomcs/mfad021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Loss-of-function mutations in SLC30A10 induce hereditary manganese (Mn)-induced neuromotor disease in humans. We previously identified SLC30A10 to be a critical Mn efflux transporter that controls physiological brain Mn levels by mediating hepatic and intestinal Mn excretion in adolescence/adulthood. Our studies also revealed that in adulthood, SLC30A10 in the brain regulates brain Mn levels when Mn excretion capacity is overwhelmed (e.g. after Mn exposure). But, the functional role of brain SLC30A10 under physiological conditions is unknown. We hypothesized that, under physiological conditions, brain SLC30A10 may modulate brain Mn levels and Mn neurotoxicity in early postnatal life because body Mn excretion capacity is reduced in this developmental stage. We discovered that Mn levels of pan-neuronal/glial Slc30a10 knockout mice were elevated in specific brain regions (thalamus) during specific stages of early postnatal development (postnatal day 21), but not in adulthood. Furthermore, adolescent or adult pan-neuronal/glial Slc30a10 knockouts exhibited neuromotor deficits. The neuromotor dysfunction of adult pan-neuronal/glial Slc30a10 knockouts was associated with a profound reduction in evoked striatal dopamine release without dopaminergic neurodegeneration or changes in striatal tissue dopamine levels. Put together, our results identify a critical physiological function of brain SLC30A10-SLC30A10 in the brain regulates Mn levels in specific brain regions and periods of early postnatal life, which protects against lasting deficits in neuromotor function and dopaminergic neurotransmission. These findings further suggest that a deficit in dopamine release may be a likely cause of early-life Mn-induced motor disease.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephanie M Grant
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ashvini Melkote
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Fulthorpe
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rueben A Gonzales
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Obsekov V, Ghassabian A, Mukhopadhyay S, Trasande L. Manganese and thyroid function in the national health and nutrition examination survey, 2011-2012. ENVIRONMENTAL RESEARCH 2023; 222:115371. [PMID: 36709872 DOI: 10.1016/j.envres.2023.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Manganese (Mn) exposure is prevalent, as it is found naturally as ionized trace elements and released into the environment as a byproduct of manufacturing and waste disposal. Animal and human studies have suggested variable effects on thyroid function, but the association of Mn exposure with thyroid function has not been evaluated in a national sample. OBJECTIVE To investigate the associations between serum and urinary Mn levels and serum thyroid hormone concentrations in a nationally representative sample. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION This was a cross-sectional analysis of data from the 2011-2012 National Health and Nutrition Examination Survey among 1360 participants. MAIN OUTCOME MEASURES Serum thyroid stimulating hormone (TSH), total triiodothyronine (T3), total thyroxine (T4), free T3, and free T4. RESULTS Serum Mn levels were positively associated with increasing total T4, free T3, and total T3 in the whole cohort (p < 0.01). Urinary Mn levels were not associated with thyroid hormone levels. When subgroup analyses were performed by gender, only males had total T4 associated with serum Mn [β = 0.01, p < 0.01, confidence interval (CI): 0.004-0.018]. In individuals under 22 years old, serum Mn was significantly associated with total T4 (β = 0.02, p = 0.002, CI: 0.008-0.029). Serum Mn was positively associated with Free T3 in both genders (β = 0.07, p < 0.001). CONCLUSION While our findings do not suggest clinical thyroid dysfunction, there is an association between serum Mn and subclinical changes in thyroid function that warrant further studies. Regulatory action should be considered as Mn-based organometallic compounds are being considered as replacements for lead in gasoline and may pose future risks to human health.
Collapse
Affiliation(s)
- Vladislav Obsekov
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Akhgar Ghassabian
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Departments of Population Health and Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Departments of Population Health and Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|
17
|
Liu C, Ju R. Manganese-induced neuronal apoptosis: new insights into the role of endoplasmic reticulum stress in regulating autophagy-related proteins. Toxicol Sci 2023; 191:193-200. [PMID: 36519822 DOI: 10.1093/toxsci/kfac130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Manganese (Mn) is an essential trace element that participates in various physiological and pathological processes. However, epidemiological observations indicate that overexposure to Mn is strongly associated with neurodegenerative disorders and has been recognized as a potential risk factor of neuronal apoptosis. Many mechanisms are involved in the pathogenesis of Mn-induced neuronal apoptosis, such as reactive oxygen species generation, neuroinflammation reactions, protein accumulation, endoplasmic reticulum stress (ER stress), and autophagy, all of which collectively accelerate the process of nerve cell damage. As sophisticated cellular processes for maintaining intracellular homeostasis, ER-mediated unfolded protein response and autophagy both play bilateral roles including cell protection and cell injury under pathophysiological conditions, which might interact with each other. Although emerging evidence suggests that ER stress is involved in regulating the compensatory activation of autophagy to promote cell survival, the inherent relationship between ER stress and autophagy on Mn-induced neurotoxicity remains obscure. Here, our review focuses on discussing the existing mechanisms and connections between ER stress, autophagy, and apoptosis, which provide a new perspective on Mn-induced neuronal apoptosis, and the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu Women's and Children's Central Hospital, Chengdu 611731, China
| | - Rong Ju
- School of Medicine, University of Electronic Science and Technology of China, Chengdu Women's and Children's Central Hospital, Chengdu 611731, China
| |
Collapse
|
18
|
Gurol KC, Li D, Broberg K, Mukhopadhyay S. Manganese efflux transporter SLC30A10 missense polymorphism T95I associated with liver injury retains manganese efflux activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G78-G88. [PMID: 36414535 PMCID: PMC9829465 DOI: 10.1152/ajpgi.00213.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The activity of the manganese (Mn) efflux transporter SLC30A10 in the liver and intestines is critical for Mn excretion and preventing Mn toxicity. Homozygous loss-of-function mutations in SLC30A10 are a well-established cause of hereditary Mn toxicity. But, the relationship between more common SLC30A10 polymorphisms, Mn homeostasis, and disease is only recently emerging. In 2021, the first coding SNP in SLC30A10 (T95I) was associated with liver disease raising the hypothesis that the T95I substitution may induce disease by inhibiting the Mn efflux function of SLC30A10. Here, we test this hypothesis using structural, viability, and metal quantification approaches. Analyses of a predicted structure of SLC30A10 revealed that the side chain of T95 pointed away from the putative Mn-binding cavity, raising doubts about the impact of the T95I substitution on SLC30A10 function. In HeLa or HepG2 cells, overexpression of SLC30A10-WT or T95I resulted in comparable reductions of intracellular Mn levels and protection against Mn-induced cell death. Furthermore, ΔSLC30A10 HepG2 cells, generated using CRISPR/Cas9, exhibited elevated Mn levels and heightened sensitivity to Mn-induced cell death, and these phenotypic changes were similarly rescued by expression of SLC30A10-WT or T95I. Finally, turnover rates of SLC30A10-WT or T95I were also comparable. In summary, our results indicate that the Mn transport activity of SLC30A10-T95I is essentially comparable to the WT protein. Our findings imply that SLC30A10-T95I either has a complex association with liver injury that extends beyond the simple reduction in SLC30A10 activity or alternatively the T95I mutation lacks a causal role in liver disease.NEW & NOTEWORTHY This study demonstrates that the T95I polymorphism in the manganese transporter SLC30A10, which has been associated with liver disease in human GWAS studies, does not impact transporter function in cell culture. These findings raise doubts about the causal relationship of the T95I polymorphism with human disease and highlight the importance of validating GWAS findings using mechanistic approaches.
Collapse
Affiliation(s)
- Kerem C Gurol
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Danyang Li
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
19
|
Campbell JL, Clewell HJ, Van Landingham C, Gentry PR, Keene AM, Taylor MD, Andersen ME. Incorporation of rapid association/dissociation processes in tissues into the monkey and human physiologically based pharmacokinetic models for manganese. Toxicol Sci 2022; 191:212-226. [PMID: 36453847 PMCID: PMC9936208 DOI: 10.1093/toxsci/kfac123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In earlier physiologically based pharmacokinetic (PBPK) models for manganese (Mn), the kinetics of transport of Mn into and out of tissues were primarily driven by slow rates of association and dissociation of Mn with tissue binding sites. However, Mn is known to show rapidly reversible binding in tissues. An updated Mn model for primates, following similar work with rats, was developed that included rapid association/dissociation processes with tissue Mn-binding sites, accumulation of free Mn in tissues after saturation of these Mn-binding sites and rapid rates of entry into tissues. This alternative structure successfully described Mn kinetics in tissues in monkeys exposed to Mn via various routes including oral, inhalation, and intraperitoneal, subcutaneous, or intravenous injection and whole-body kinetics and tissue levels in humans. An important contribution of this effort is showing that the extension of the rate constants for binding and cellular uptake established in the monkey were also able to describe kinetic data from humans. With a consistent model structure for monkeys and humans, there is less need to rely on cadaver data and whole-body tracer studies alone to calibrate a human model. The increased biological relevance of the Mn model structure and parameters provides greater confidence in applying the Mn PBPK models to risk assessment. This model is also well-suited to explicitly incorporate emerging information on the role of transporters in tissue disposition, intestinal uptake, and hepatobiliary excretion of Mn.
Collapse
Affiliation(s)
- Jerry L Campbell
- To whom correspondence should be addressed at Ramboll US Corporation, 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, USA. E-mail:
| | | | | | | | | | | | | |
Collapse
|
20
|
Garg D, Yoganathan S, Shamim U, Mankad K, Gulati P, Bonifati V, Botre A, Kalane U, Saini AG, Sankhyan N, Srivastava K, Gowda VK, Juneja M, Kamate M, Padmanabha H, Panigrahi D, Pachapure S, Udani V, Kumar A, Pandey S, Thomas M, Danda S, Iqbalahmed SA, Subramanian A, Pemde H, Singh V, Faruq M, Sharma S. Clinical Profile and Treatment Outcomes of Hypermanganesemia with Dystonia 1 and 2 among 27 Indian Children. Mov Disord Clin Pract 2022; 9:886-899. [PMID: 36247901 PMCID: PMC9547147 DOI: 10.1002/mdc3.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Hypermanganesemia with dystonia 1 and 2 (HMNDYT1 and 2) are rare, inherited disorders of manganese transport. Objectives We aimed to describe clinical, laboratory features, and outcomes among children with HMNDYT. Methods We conducted a retrospective multicenter study involving tertiary centers across India. We enrolled children between 1 month to 18 years of age with genetically confirmed/clinically probable HMNDYT. Clinical, laboratory profile, genetic testing, treatment details, and outcomes scored by treating physicians on a Likert scale were recorded. Results We enrolled 27 children (19 girls). Fourteen harbored SLC30A10 mutations; nine had SLC39A14 mutations. The SLC39A14 cohort had lower median age at onset (1.3 [interquartile range (IQR), 0.7-5.5] years) versus SLC30A10 cohort (2.0 [IQR, 1.5-5.1] years). The most frequent neurological features were dystonia (100%; n = 27), gait abnormality (77.7%; n = 21), falls (66.7%; n = 18), and parkinsonism (59.3%; n = 16). Median serum manganese (Mn) levels among SLC39A14 (44.9 [IQR, 27.3-147.7] mcg/L) cohort were higher than SLC30A10 (29.4 [17.1-42.0] mcg/L); median hemoglobin was higher in SLC30A10 (16.3 [IQR, 15.2-17.5] g/dL) versus SLC39A14 cohort (12.5 [8.8-13.2] g/dL). Hepatic involvement and polycythaemia were observed exclusively in SLC30A10 variants. A total of 26/27 children underwent chelation with disodium calcium edetate. Nine demonstrated some improvement, three stabilized, two had marked improvement, and one had normalization. Children with SLC39A14 mutations had poorer response. Two children died and nine were lost to follow-up. Conclusions We found female predominance. Children with SLC39A14 mutations presented at younger age and responded less favorably to chelation compared to SLC30A10 mutations. There is emerging need to better define management strategies, especially in low resource settings.
Collapse
Affiliation(s)
- Divyani Garg
- Department of NeurologyLady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | | | - Uzma Shamim
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital NHS Foundation TrustLondonUnited Kingdom
| | - Parveen Gulati
- Department of RadiodiagnosisDoctor Gulati Imaging InstituteNew DelhiIndia
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | | | - Umesh Kalane
- Department of PediatricsDeenanath Mangeshkar HospitalPuneIndia
| | - Arushi Gahlot Saini
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Naveen Sankhyan
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Kavita Srivastava
- Department of PediatricsBharati Vidyapeeth Deemed University Medical CollegePuneIndia
| | - Vykuntaraju K. Gowda
- Division of Pediatric NeurologyIndira Gandhi Institute of Child HealthBangaloreIndia
| | - Monica Juneja
- Department of Pediatrics, Lok Nayak Hospital, Maulana Azad Medical CollegeUniversity of DelhiNew DelhiIndia
| | - Mahesh Kamate
- Child Development and Pediatric Neurology Division, Department of PediatricsKAHER's J N Medical CollegeBelgaumIndia
| | - Hansashree Padmanabha
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | | | - Shaila Pachapure
- Department of Pediatrics, KAHER's J N Medical CollegeBelgaumIndia
| | - Vrajesh Udani
- Department of Child NeurologyPD Hinduja Hospital and Medical Research CentreMumbaiIndia
| | - Atin Kumar
- Department of RadiodiagnosisAll India Institute of Medical SciencesNew DelhiIndia
| | - Sanjay Pandey
- Department of NeurologyGovind Ballabh Pant Institute of Postgraduate medical education and researchNew DelhiIndia
| | - Maya Thomas
- Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Sumita Danda
- Department of Clinical GeneticsChristian Medical CollegeVelloreIndia
| | | | | | - Harish Pemde
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Varinder Singh
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Suvasini Sharma
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| |
Collapse
|
21
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
22
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
23
|
Seidelin AS, Nordestgaard BG, Tybjærg-Hansen A, Yaghootkar H, Stender S. A rare genetic variant in the manganese transporter SLC30A10 and elevated liver enzymes in the general population. Hepatol Int 2022; 16:702-711. [PMID: 35397106 DOI: 10.1007/s12072-022-10331-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND A genetic variant in the manganese transporter SLC30A10 (rs188273166, p.Thr95Ile) was associated with increased plasma alanine transaminase (ALT) in a recent genome-wide association study in the UK Biobank (UKB). The aims of the present study were to test the association of rs188273166 with ALT in an independent cohort, and to begin to assess the clinical, hepatic, and biochemical phenotypes associated with the variant. METHODS We included n = 334,886 white participants from UKB, including 14,462 with hepatic magnetic resonance imaging (MRI), and n = 113,612 individuals from the Copenhagen City Heart Study and the Copenhagen General Population Study combined. RESULTS Genotyping SLC30A10 p.Thr95Ile identified 816 heterozygotes in the UKB and 111 heterozygotes in the Copenhagen cohort. Compared to noncarriers, heterozygotes had 4 and 5 U/L higher levels of ALT in the UKB and Copenhagen cohort, respectively, and 3 U/L higher plasma aspartate transaminase and gamma-glutamyl transferase in the UKB. Heterozygotes also had higher corrected T1 on liver MRI, a marker of hepatic inflammation (p = 4 × 10-7), but no change in MRI-quantified steatosis (p = 0.57). Plasma manganese was within the normal range in nine heterozygotes that provided new blood samples. SLC30A10 p.Thr95Ile heterozygotes had an eightfold increased risk of biliary tract cancer in UKB (p = 4 × 10-7), but this association was not replicated in the Copenhagen cohort. CONCLUSIONS SLC30A10 p.Thr95Ile was associated with elevated liver enzymes in two large general population cohorts, and with MRI-quantified hepatic inflammation. A rare genetic variant (p.Thr95Ile) in the manganese transporter SLC30A10 is associated with elevated plasma alanine transaminase (ALT) and higher corrected T1 on liver MRI, markers of liver inflammation. These data support that the variant may increase the risk of liver disease.
Collapse
Affiliation(s)
- Anne-Sofie Seidelin
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanieh Yaghootkar
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UK
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
24
|
Gurol KC, Aschner M, Smith DR, Mukhopadhyay S. Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective. Am J Physiol Gastrointest Liver Physiol 2022; 322:G79-G92. [PMID: 34786983 PMCID: PMC8714252 DOI: 10.1152/ajpgi.00299.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The essential metal manganese (Mn) induces incurable neurotoxicity at elevated levels that manifests as parkinsonism in adults and fine motor and executive function deficits in children. Studies on Mn neurotoxicity have largely focused on the role and mechanisms of disease induced by elevated Mn exposure from occupational or environmental sources. In contrast, the critical role of excretion in regulating Mn homeostasis and neurotoxicity has received less attention although 1) studies on Mn excretion date back to the 1920s; 2) elegant radiotracer Mn excretion assays in the 1940s to 1960s established the routes of Mn excretion; and 3) studies on patients with liver cirrhosis in the 1990s to 2000s identified an association between decreased Mn excretion and the risk of developing Mn-induced parkinsonism in the absence of elevated Mn exposure. Notably, the last few years have seen renewed interest in Mn excretion largely driven by the discovery that hereditary Mn neurotoxicity due to mutations in SLC30A10 or SLC39A14 is caused, at least in part, by deficits in Mn excretion. Quite remarkably, some of the recent results on SLC30A10 and SLC39A14 provide explanations for observations made ∼40-50 years ago. The goal of the current review is to integrate the historic studies on Mn excretion with more contemporary recent work and provide a comprehensive state-of-the-art overview of Mn excretion and its role in regulating Mn homeostasis and neurotoxicity. A related goal is to discuss the significance of some of the foundational studies on Mn excretion so that these highly consequential earlier studies remain influential in the field.
Collapse
Affiliation(s)
- Kerem C. Gurol
- 1Division of Pharmacology & Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Michael Aschner
- 2Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Donald R. Smith
- 3Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| | - Somshuvra Mukhopadhyay
- 1Division of Pharmacology & Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
25
|
Up-regulation of the manganese transporter SLC30A10 by hypoxia-inducible factors defines a homeostatic response to manganese toxicity. Proc Natl Acad Sci U S A 2021; 118:2107673118. [PMID: 34446561 DOI: 10.1073/pnas.2107673118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Manganese (Mn) is an essential metal that induces incurable parkinsonism at elevated levels. However, unlike other essential metals, mechanisms that regulate mammalian Mn homeostasis are poorly understood, which has limited therapeutic development. Here, we discovered that the exposure of mice to a translationally relevant oral Mn regimen up-regulated expression of SLC30A10, a critical Mn efflux transporter, in the liver and intestines. Mechanistic studies in cell culture, including primary human hepatocytes, revealed that 1) elevated Mn transcriptionally up-regulated SLC30A10, 2) a hypoxia response element in the SLC30A10 promoter was necessary, 3) the transcriptional activities of hypoxia-inducible factor (HIF) 1 or HIF2 were required and sufficient for the SLC30A10 response, 4) elevated Mn activated HIF1/HIF2 by blocking the prolyl hydroxylation of HIF proteins necessary for their degradation, and 5) blocking the Mn-induced up-regulation of SLC30A10 increased intracellular Mn levels and enhanced Mn toxicity. Finally, prolyl hydroxylase inhibitors that stabilize HIF proteins and are in advanced clinical trials for other diseases reduced intracellular Mn levels and afforded cellular protection against Mn toxicity and also ameliorated the in vivo Mn-induced neuromotor deficits in mice. These findings define a fundamental homeostatic protective response to Mn toxicity-elevated Mn levels activate HIF1 and HIF2 to up-regulate SLC30A10, which in turn reduces cellular and organismal Mn levels, and further indicate that it may be possible to repurpose prolyl hydroxylase inhibitors for the management of Mn neurotoxicity.
Collapse
|
26
|
Wang X, An P, Gu Z, Luo Y, Luo J. Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int J Mol Sci 2021; 22:7525. [PMID: 34299144 PMCID: PMC8305404 DOI: 10.3390/ijms22147525] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| |
Collapse
|
27
|
Prajapati M, Conboy HL, Hojyo S, Fukada T, Budnik B, Bartnikas TB. Biliary excretion of excess iron in mice requires hepatocyte iron import by Slc39a14. J Biol Chem 2021; 297:100835. [PMID: 34051234 PMCID: PMC8214222 DOI: 10.1016/j.jbc.2021.100835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Iron is essential for erythropoiesis and other biological processes, but is toxic in excess. Dietary absorption of iron is a highly regulated process and is a major determinant of body iron levels. Iron excretion, however, is considered a passive, unregulated process, and the underlying pathways are unknown. Here we investigated the role of metal transporters SLC39A14 and SLC30A10 in biliary iron excretion. While SLC39A14 imports manganese into the liver and other organs under physiological conditions, it imports iron under conditions of iron excess. SLC30A10 exports manganese from hepatocytes into the bile. We hypothesized that biliary excretion of excess iron would be impaired by SLC39A14 and SLC30A10 deficiency. We therefore analyzed biliary iron excretion in Slc39a14-and Slc30a10-deficient mice raised on iron-sufficient and -rich diets. Bile was collected surgically from the mice, then analyzed with nonheme iron assays, mass spectrometry, ELISAs, and an electrophoretic assay for iron-loaded ferritin. Our results support a model in which biliary excretion of excess iron requires iron import into hepatocytes by SLC39A14, followed by iron export into the bile predominantly as ferritin, with iron export occurring independently of SLC30A10. To our knowledge, this is the first report of a molecular determinant of mammalian iron excretion and can serve as basis for future investigations into mechanisms of iron excretion and relevance to iron homeostasis.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Heather L Conboy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Toshiyuki Fukada
- Department of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, Massachusetts, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
28
|
Prajapati M, Pettiglio MA, Conboy HL, Mercadante CJ, Hojyo S, Fukada T, Bartnikas TB. Characterization of in vitro models of SLC30A10 deficiency. Biometals 2021; 34:573-588. [PMID: 33713241 DOI: 10.1007/s10534-021-00296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
Manganese (Mn), an essential metal, can be toxic at elevated levels. In 2012, the first inherited cause of Mn excess was reported in patients with mutations in SLC30A10, a Mn efflux transporter. To explore the function of SLC30A10 in vitro, the current study used CRISPR/Cas9 gene editing to develop a stable SLC30A10 mutant Hep3B hepatoma cell line and collagenase perfusion in live mice to isolate primary hepatocytes deficient in Slc30a10. We also compared phenotypes of primary vs. non-primary cell lines to determine if they both serve as reliable in vitro models for the known physiological roles of SLC30A10. Mutant SLC30A10 Hep3B cells had increased Mn levels and decreased viability when exposed to excess Mn. Transport studies indicated a reduction of 54Mn import and export in mutant cells. While impaired 54Mn export was hypothesized given the essential role for SLC30A10 in cellular Mn export, impaired 54Mn import was unexpected. Whole genome sequencing did not identify any additional mutations in known Mn transporters in the mutant Hep3B mutant cell line. We then evaluated 54Mn transport in primary hepatocytes cultures isolated from genetically altered mice with varying liver Mn levels. Based on results from these experiments, we suggest that the effects of SLC30A10 deficiency on Mn homeostasis can be interrogated in vitro but only in specific types of cell lines.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA.
| | - Michael A Pettiglio
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA.,Vor Biopharma, Cambridge, MA, USA
| | - Heather L Conboy
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Courtney J Mercadante
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA.,Sanofi-Bioverativ, Waltham, MA, USA
| | - Shintaro Hojyo
- Deutsches Rheuma-Forschungszentrum Berlin, 10117, Berlin, Germany.,Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
29
|
Manganese homeostasis at the host-pathogen interface and in the host immune system. Semin Cell Dev Biol 2021; 115:45-53. [PMID: 33419608 DOI: 10.1016/j.semcdb.2020.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Manganese serves as an indispensable catalytic center and the structural core of various enzymes that participate in a plethora of biological processes, including oxidative phosphorylation, glycosylation, and signal transduction. In pathogenic microorganisms, manganese is required for survival by maintaining basic biochemical activity and virulence; in contrast, the host utilizes a process known as nutritional immunity to sequester manganese from invading pathogens. Recent epidemiological and animal studies have shown that manganese increases the immune response in a wide range of vertebrates, including humans, rodents, birds, and fish. On the other hand, excess manganese can cause neurotoxicity and other detrimental effects. Here, we review recent data illustrating the essential role of manganese homeostasis at the host-pathogen interface and in the host immune system. We also discuss the accumulating body of evidence that manganese modulates various signaling pathways in immune processes. Finally, we discuss the key molecular players involved in manganese's immune regulatory function, as well as the clinical implications with respect to cancer immunotherapy.
Collapse
|
30
|
Li S, De La Cruz J, Hutchens S, Mukhopadhyay S, Criss ZK, Aita R, Pellon-Cardenas O, Hur J, Soteropoulos P, Husain S, Dhawan P, Verlinden L, Carmeliet G, Fleet JC, Shroyer NF, Verzi MP, Christakos S. Analysis of 1,25-Dihydroxyvitamin D 3 Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Mol Cell Biol 2020; 41:e00372-20. [PMID: 33139494 PMCID: PMC7849401 DOI: 10.1128/mcb.00372-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica De La Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Zachary K Criss
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rohit Aita
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Joseph Hur
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Seema Husain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Lieve Verlinden
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
31
|
Iron and manganese transport in mammalian systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118890. [PMID: 33091506 DOI: 10.1016/j.bbamcr.2020.118890] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Studies in recent years have significantly expanded, refined, and redefined the repertoire of transporters and other proteins involved in iron and manganese (Mn) transport and homeostasis. In this review, we discuss highlights of the recent literature on iron and Mn transport, focusing on the roles of membrane transporters and related proteins. Studies are considered from the vantage point of main organs, tissues, and cell types that actively control whole-body iron or Mn homeostasis, with emphasis on studies in which in vivo metal transport was measured directly or implicated by using knockout mouse models. Overviews of whole-body and cellular iron and Mn homeostasis are also provided to give physiological context for key transporters and to highlight how they participate in the uptake, intracellular trafficking, and efflux of each metal. Important similarities and differences in iron and Mn transport are noted, and future research opportunities and challenges are identified.
Collapse
|
32
|
Iron-responsive-like elements and neurodegenerative ferroptosis. ACTA ACUST UNITED AC 2020; 27:395-413. [PMID: 32817306 PMCID: PMC7433652 DOI: 10.1101/lm.052282.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
A set of common-acting iron-responsive 5′untranslated region (5′UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aβ from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem–loops reside in their transcripts. APP and αsyn have a role in iron transport while gene duplications elevate the expression of their products to cause rare familial cases of AD and PDD. Of note, IRE-like sequences are responsive to excesses of brain iron in a potential feedback loop to accelerate neuronal ferroptosis and cognitive declines as well as amyloidosis. This pathogenic feedback is consistent with the translational control of the iron storage protein ferritin. We discuss how the IRE-like RNA motifs in the 5′UTRs of APP, alpha-synuclein and PrP mRNAs represent uniquely folded drug targets for therapies to prevent perturbed iron homeostasis that accelerates AD, PD, PD dementia (PDD) and Lewy body dementia, thus preventing cognitive deficits. Inhibition of alpha-synuclein translation is an option to block manganese toxicity associated with early childhood cognitive problems and manganism while Pb toxicity is epigenetically associated with attention deficit and later-stage AD. Pathologies of heavy metal toxicity centered on an embargo of iron export may be treated with activators of APP and ferritin and inhibitors of alpha-synuclein translation.
Collapse
|
33
|
Kersemans V, Wallington S, Allen PD, Gilchrist S, Kinchesh P, Browning R, Vallis KA, Schilling K, Holdship P, Stork LA, Smart S. Manganese-free chow, a refined non-invasive solution to reduce gastrointestinal signal for T 1-weighted magnetic resonance imaging of the mouse abdomen. Lab Anim 2020; 54:353-364. [PMID: 31526094 PMCID: PMC7425378 DOI: 10.1177/0023677219869363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Commercial mouse chow is designed to provide a complete, nutrient-rich diet, and it can contain upwards of 100 mg/kg manganese, an essential mineral. Manganese acts as a relaxation time-shortening contrast agent for both T1 and T2, and where standard chow is hydrated in the gastrointestinal tract, bright signals are produced when using T1-weighted imaging (T1WI). As a result of peristalsis, gastrointestinal hyperintensities result in temporally unstable signals, leading to image ghosting and decreased resolution from that prescribed. To avoid the problem, various methods of gastrointestinal tract modulation, including the use of intestinal cleansing with laxatives and dietary modulation, have been reported. Here, dietary modulation has been extended to the use of a biologically innocuous, long-term change of diet. In this study, we report on the use of a commercially available manganese-free chow to improve the image quality of the gastrointestinal tract. This manganese-free chow, apart from the omitted manganese which is available in tap water, is a complete diet and readily available. We investigated the time-dependent, diet-related gastrointestinal intensities on short-TR T1WI magnetic resonance imaging; monitored body mass, food and water consumption and standard blood biochemistry analysis following diet change; and determined manganese concentration in blood plasma following a five-day change to manganese-free chow. We show that the manganese-free chow presents a refinement to other gastrointestinal tract modulation, as it avoids the need for invasive procedures for gut voiding and can be provided ad libitum so that animals can be maintained with no need for prescribed diet change before imaging.
Collapse
Affiliation(s)
- Veerle Kersemans
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Sheena Wallington
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Philip D Allen
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Stuart Gilchrist
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Paul Kinchesh
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Richard Browning
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Katherine A Vallis
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | | | - Phil Holdship
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Lee-Anne Stork
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Sean Smart
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Pfalzer AC, Wilcox JM, Codreanu SG, Totten M, Bichell TJV, Halbesma T, Umashanker P, Yang KL, Parmalee NL, Sherrod SD, Erikson KM, Harrison FE, McLean JA, Aschner M, Bowman AB. Huntington's disease genotype suppresses global manganese-responsive processes in pre-manifest and manifest YAC128 mice. Metallomics 2020; 12:1118-1130. [PMID: 32421118 PMCID: PMC7773276 DOI: 10.1039/d0mt00081g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is an essential micronutrient required for the proper function of several enzymes. Accumulating evidence demonstrates a selective decrease of bioavailable Mn in vulnerable cell types of Huntington's Disease (HD), an inherited progressive neurodegenerative disorder with no cure. Amelioration of underlying pathophysiology, such as alterations in Mn-dependent biology, may be therapeutic. We therefore sought to investigate global Mn-dependent and Mn-responsive biology following various Mn exposures in a mouse model of HD. YAC128 and wildtype (WT) littermate control mice received one of three different Mn exposure paradigms by subcutaneous injection of 50 mg kg-1 MnCl2·4(H2O) across two distinct HD disease stages. "Pre-manifest" (12-week old mice) mice received either a single (1 injection) or week-long (3 injections) exposure of Mn or vehicle (H2O) and were sacrificed at the pre-manifest stage. "Manifest" (32-week old) mice were sacrificed following either a week-long Mn or vehicle exposure during the manifest stage, or a 20-week-long chronic (2× weekly injections) exposure that began in the pre-manifest stage. Tissue Mn, mRNA, protein, and metabolites were measured in the striatum, the brain region most sensitive to neurodegeneration in HD. Across all Mn exposure paradigms, pre-manifest YAC128 mice exhibited a suppressed response to transcriptional and protein changes and manifest YAC128 mice showed a suppressed metabolic response, despite equivalent elevations in whole striatal Mn. We conclude that YAC128 mice respond differentially to Mn compared to WT as measured by global transcriptional, translational, and metabolomic changes, suggesting an impairment in Mn homeostasis across two different disease stages in YAC128 mice.
Collapse
Affiliation(s)
- Anna C Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordyn M Wilcox
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Melissa Totten
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, USA
| | - Terry J V Bichell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy Halbesma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Preethi Umashanker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin L Yang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy L Parmalee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stacy D Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Keith M Erikson
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, USA
| | - Fiona E Harrison
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA and School of Health Sciences, Purdue University, 550 Stadium Mall Drive - HAMP 1173A, West Lafayette, IN 47907-2051, USA.
| |
Collapse
|
35
|
Ahmad TR, Higuchi S, Bertaggia E, Hung A, Shanmugarajah N, Guilz NC, Gamarra JR, Haeusler RA. Bile acid composition regulates the manganese transporter Slc30a10 in intestine. J Biol Chem 2020; 295:12545-12558. [PMID: 32690612 DOI: 10.1074/jbc.ra120.012792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) comprise heterogenous amphipathic cholesterol-derived molecules that carry out physicochemical and signaling functions. A major site of BA action is the terminal ileum, where enterocytes actively reuptake BAs and express high levels of BA-sensitive nuclear receptors. BA pool size and composition are affected by changes in metabolic health, and vice versa. One of several factors that differentiate BAs is the presence of a hydroxyl group on C12 of the steroid ring. 12α-Hydroxylated BAs (12HBAs) are altered in multiple disease settings, but the consequences of 12HBA abundance are incompletely understood. We employed mouse primary ileum organoids to investigate the transcriptional effects of varying 12HBA abundance in BA pools. We identified Slc30a10 as one of the top genes differentially induced by BA pools with varying 12HBA abundance. SLC30A10 is a manganese efflux transporter critical for whole-body manganese excretion. We found that BA pools, especially those low in 12HBAs, induce cellular manganese efflux and that Slc30a10 induction by BA pools is driven primarily by lithocholic acid signaling via the vitamin D receptor. Administration of lithocholic acid or a vitamin D receptor agonist resulted in increased Slc30a10 expression in mouse ileum epithelia. These data demonstrate a previously unknown role for BAs in intestinal control of manganese homeostasis.
Collapse
Affiliation(s)
- Tiara R Ahmad
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Sei Higuchi
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Enrico Bertaggia
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Allison Hung
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Niroshan Shanmugarajah
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Nicole C Guilz
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Jennifer R Gamarra
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Rebecca A Haeusler
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA .,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| |
Collapse
|
36
|
Taylor CA, Shawlot W, Ren JX, Mukhopadhyay S. Generation and Validation of Tissue-Specific Knockout Strains for Toxicology Research. ACTA ACUST UNITED AC 2020; 81:e86. [PMID: 31529798 DOI: 10.1002/cptx.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue-specific knockout mice are widely used throughout scientific research. A principle method for generating tissue-specific knockout mice is the Cre-loxP system. Here, we give a detailed description of the steps required to generate and validate tissue-specific knockout mice using the Cre-loxP system. The first protocol describes how to use gene targeting in mouse embryonic stem cells to generate mice with conditional alleles. Subsequent protocols describe how to recover Cre transgenic mice from cryopreserved sperm using in vitro fertilization and present a breeding strategy for obtaining tissue-specific knockouts. Finally, methods are provided for validating the knockout mice using PCR of genomic DNA, reverse-transcription PCR and quantitative reverse-transcription PCR of mRNA, and immunoblot analysis of proteins. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology and Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - William Shawlot
- Mouse Genetic Engineering Facility, University of Texas at Austin, Austin, Texas
| | - Jin Xiang Ren
- Mouse Genetic Engineering Facility, University of Texas at Austin, Austin, Texas
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology and Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
37
|
Taylor CA, Tuschl K, Nicolai MM, Bornhorst J, Gubert P, Varão AM, Aschner M, Smith DR, Mukhopadhyay S. Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity. J Nutr 2020; 150:1360-1369. [PMID: 32211802 PMCID: PMC7269748 DOI: 10.1093/jn/nxaa066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Manganese is an essential metal, but elevated brain Mn concentrations produce a parkinsonian-like movement disorder in adults and fine motor, attentional, cognitive, and intellectual deficits in children. Human Mn neurotoxicity occurs owing to elevated exposure from occupational or environmental sources, defective excretion (e.g., due to cirrhosis), or loss-of-function mutations in the Mn transporters solute carrier family 30 member 10 or solute carrier family 39 member 14. Animal models are essential to study Mn neurotoxicity, but in order to be translationally relevant, such models should utilize environmentally relevant Mn exposure regimens that reproduce changes in brain Mn concentrations and neurological function evident in human patients. Here, we provide guidelines for Mn exposure in mice, rats, nematodes, and zebrafish so that brain Mn concentrations and neurobehavioral sequelae remain directly relatable to the human phenotype.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Karin Tuschl
- Department of Cell and Developmental Biology, University College London, London, United Kingdom,Department of Developmental Neurobiology, King's College London, London, United Kingdom,Address correspondence to KT (e-mail: )
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami-LIKA, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Postgraduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Alexandre M Varão
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA,Address correspondence to SM (e-mail: )
| |
Collapse
|
38
|
Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, Haynes EN, Bowman AB. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem 2020; 295:6312-6329. [PMID: 32188696 PMCID: PMC7212623 DOI: 10.1074/jbc.rev119.009453] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.
Collapse
Affiliation(s)
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, University of Texas, Austin, Texas 78712
| | - Danielle McBride
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Jennifer Veevers
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Erin N Haynes
- College of Public Health, University of Kentucky, Lexington, Kentucky 40536
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
39
|
Winslow JW, Limesand KH, Zhao N. The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis. Int J Mol Sci 2020; 21:ijms21093304. [PMID: 32392784 PMCID: PMC7246657 DOI: 10.3390/ijms21093304] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
As an essential nutrient, manganese is required for the regulation of numerous cellular processes, including cell growth, neuronal health, immune cell function, and antioxidant defense. However, excess manganese in the body is toxic and produces symptoms of neurological and behavioral defects, clinically known as manganism. Therefore, manganese balance needs to be tightly controlled. In the past eight years, mutations of genes encoding metal transporters ZIP8 (SLC39A8), ZIP14 (SLC39A14), and ZnT10 (SLC30A10) have been identified to cause dysregulated manganese homeostasis in humans, highlighting the critical roles of these genes in manganese metabolism. This review focuses on the most recent advances in the understanding of physiological functions of these three identified manganese transporters and summarizes the molecular mechanisms underlying how the loss of functions in these genes leads to impaired manganese homeostasis and human diseases.
Collapse
|
40
|
Li D, Mukhopadhyay S. Functional analyses of the UDP-galactose transporter SLC35A2 using the binding of bacterial Shiga toxins as a novel activity assay. Glycobiology 2020; 29:490-503. [PMID: 30834435 DOI: 10.1093/glycob/cwz016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/13/2023] Open
Abstract
SLC35A2 transports UDP-galactose from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum for glycosylation. Mutations in SLC35A2 induce a congenital disorder of glycosylation. Despite the biomedical relevance, mechanisms of transport via SLC35A2 and the impact of disease-associated mutations on activity are unclear. To address these issues, we generated a predicted structure of SLC35A2 and assayed for the effects of a set of structural and disease-associated mutations. Activity assays were performed using a rescue approach in ΔSLC35A2 cells and took advantage of the fact that SLC35A2 is required for expression of the glycosphingolipid globotriaosylceramide (Gb3), the cell surface receptor for Shiga toxin 1 (STx1) and 2 (STx2). The N- and C-terminal cytoplasmic loops of SLC35A2 were dispensable for activity, but two critical glycine (Gly-202 and Gly-214) and lysine (Lys-78 and Lys-297) residues in transmembrane segments were required. Residues corresponding to Gly-202 and Gly-214 in the related transporter SLC35A1 form a substrate-translocating channel, suggesting that a similar mechanism may be involved in SLC35A2. Among the eight disease-associated mutations tested, SLC35A2 function was completely inhibited by two (S213F and G282R) and partially inhibited by three (R55L, G266V, and S304P), providing a straight-forward mechanism of disease. Interestingly, the remaining three (V331I, V258M, and Y267C) did not impact SLC35A2 function, suggesting that complexities beyond loss of transporter activity may underlie disease due to these mutations. Overall, our results provide new insights into the mechanisms of transport of SLC35A2 and improve understanding of the relationship between SLC35A2 mutations and disease.
Collapse
Affiliation(s)
- Danyang Li
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
41
|
Christakos S, Li S, De La Cruz J, Shroyer NF, Criss ZK, Verzi MP, Fleet JC. Vitamin D and the intestine: Review and update. J Steroid Biochem Mol Biol 2020; 196:105501. [PMID: 31655181 PMCID: PMC6954280 DOI: 10.1016/j.jsbmb.2019.105501] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
The central role of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. This article describes the early work that served as the foundation for the initial model of vitamin D mediated calcium absorption. In addition, other research related to the role of vitamin D in the intestine, including those which have challenged the traditional model and the crucial role of specific calcium transport proteins, are reviewed. More recent work identifying novel targets of 1,25(OH)2D3 action in the intestine and highlighting the importance of 1,25(OH)2D3 action across the proximal/distal and crypt/villus axes in the intestine is summarized.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jessica De La Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary K Criss
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, New Brunswick, NJ 08854, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
42
|
Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, KyunPark S. Heavy Metals Exposure and Alzheimer's Disease and Related Dementias. J Alzheimers Dis 2020; 76:1215-1242. [PMID: 32651318 PMCID: PMC7454042 DOI: 10.3233/jad-200282] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease and related dementias lack effective treatment or cures and are major public health challenges. Risk for Alzheimer's disease and related dementias is partially attributable to environmental factors. The heavy metals lead, cadmium, and manganese are widespread and persistent in our environments. Once persons are exposed to these metals, they are adept at entering cells and reaching the brain. Lead and cadmium are associated with numerous health outcomes even at low levels of exposure. Although manganese is an essential metal, deficiency or environmental exposure or high levels of the metal can be toxic. In cell and animal model systems, lead, cadmium, and manganese are well documented neurotoxicants that contribute to canonical Alzheimer's disease pathologies. Adult human epidemiologic studies have consistently shown lead, cadmium, and manganese are associated with impaired cognitive function and cognitive decline. No longitudinal human epidemiology study has assessed lead or manganese exposure on Alzheimer's disease specifically though two studies have reported a link between cadmium and Alzheimer's disease mortality. More longitudinal epidemiologic studies with high-quality time course exposure data and incident cases of Alzheimer's disease and related dementias are warranted to confirm and estimate the proportion of risk attributable to these exposures. Given the widespread and global exposure to lead, cadmium, and manganese, even small increases in the risks of Alzheimer's disease and related dementias would have a major population impact on the burden on disease. This article reviews the experimental and epidemiologic literature of the associations between lead, cadmium, and manganese on Alzheimer's disease and related dementias and makes recommendations of critical areas of future investment.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ruby C. Hickman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Brandt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Harita S. Vadari
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Howard Hu
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Sung KyunPark
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
The Cation Diffusion Facilitator Family Protein EmfA Confers Resistance to Manganese Toxicity in Brucella abortus 2308 and Is an Essential Virulence Determinant in Mice. J Bacteriol 2019; 202:JB.00357-19. [PMID: 31591273 DOI: 10.1128/jb.00357-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022] Open
Abstract
The gene designated bab_rs23470 in the Brucella abortus 2308 genome encodes an ortholog of the cation diffusion facilitator family protein EmfA which has been linked to resistance to Mn toxicity in Rhizobium etli A B. abortus emfA null mutant derived from strain 2308 displays increased sensitivity to elevated levels of Mn in the growth medium compared to that of the parent strain but wild-type resistance to Fe, Mg, Zn, Cu, Co, and Ni. Inductively coupled plasma mass spectroscopy also indicates that the B. abortus emfA mutant retains significantly higher levels of cellular Mn after exposure to this metal than the parent strain, which is consistent with the proposed role of EmfA as a Mn exporter. Phenotypic analysis of mutants indicates that EmfA plays a much more important role in maintaining Mn homeostasis and preventing the toxicity of this metal in Brucella than does the Mn-responsive transcriptional regulator Mur. EmfA is also an essential virulence determinant for B. abortus 2308 in C57BL/6 and C57BL/6Nramp1+/+ mice, which suggests that avoiding Mn toxicity plays a critical role in Brucella pathogenesis.IMPORTANCE Mn nutrition is essential for the basic physiology and virulence of Brucella strains. The results of the study presented here demonstrate that the cation diffusion facilitator (CDF)-type metal exporter EmfA plays critical roles in maintaining Mn homeostasis and preventing Mn toxicity in Brucella and is an essential virulence determinant for these bacteria. EmfA and other cellular components involved in Mn homeostasis represent attractive targets for the development of improved vaccines and chemotherapeutic strategies for preventing and treating brucellosis in humans and animals.
Collapse
|
44
|
Mercadante CJ, Prajapati M, Conboy HL, Dash ME, Herrera C, Pettiglio MA, Cintron-Rivera L, Salesky MA, Rao DB, Bartnikas TB. Manganese transporter Slc30a10 controls physiological manganese excretion and toxicity. J Clin Invest 2019; 129:5442-5461. [PMID: 31527311 PMCID: PMC6877324 DOI: 10.1172/jci129710] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Manganese (Mn), an essential metal and nutrient, is toxic in excess. Toxicity classically results from inhalational exposures in individuals who work in industrial settings. The first known disease of inherited Mn excess, identified in 2012, is caused by mutations in the metal exporter SLC30A10 and is characterized by Mn excess, dystonia, cirrhosis, and polycythemia. To investigate the role of SLC30A10 in Mn homeostasis, we first generated whole-body Slc30a10-deficient mice, which developed severe Mn excess and impaired systemic and biliary Mn excretion. Slc30a10 localized to canalicular membranes of hepatocytes, but mice with liver Slc30a10 deficiency developed minimal Mn excess despite impaired biliary Mn excretion. Slc30a10 also localized to the apical membrane of enterocytes, but mice with Slc30a10 deficiency in small intestines developed minimal Mn excess despite impaired Mn export into the lumen of the small intestines. Finally, mice with Slc30a10 deficiency in liver and small intestines developed Mn excess that was less severe than that observed in mice with whole-body Slc30a10 deficiency, suggesting that additional sites of Slc30a10 expression contribute to Mn homeostasis. Overall, these results indicated that Slc30a10 is essential for Mn excretion by hepatocytes and enterocytes and could be an effective target for pharmacological intervention to treat Mn toxicity.
Collapse
Affiliation(s)
- Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Heather L. Conboy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Miriam E. Dash
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Carolina Herrera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Michael A. Pettiglio
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Layra Cintron-Rivera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Madeleine A. Salesky
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Deepa B. Rao
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
45
|
Thompson KJ, Wessling-Resnick M. ZIP14 is degraded in response to manganese exposure. Biometals 2019; 32:829-843. [PMID: 31541377 PMCID: PMC7755095 DOI: 10.1007/s10534-019-00216-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022]
Abstract
Manganese (Mn) is an essential element necessary for proper development and brain function. Circulating Mn levels are regulated by hepatobiliary clearance to limit toxic levels and prevent tissue deposition. To characterize mechanisms involved in hepatocyte Mn uptake, polarized human HepaRG cells were used for this study. Western blot analysis and immunofluorescence microscopy showed the Mn transporter ZIP14 was expressed and localized to the basolateral surface of polarized HepaRG cells. HepaRG cells took up 54Mn in a time- and temperature-dependent manner but uptake was reduced after exposure to Mn. This loss in transport activity was associated with decreased ZIP14 protein levels in response to Mn exposure. Mn-induced degradation of ZIP14 was blocked by bafilomycin A1, which increased localization of the transporter in Lamp1-positive vesicles. Mn exposure also down-regulated the Golgi proteins TMEM165 and GPP130 while the ER stress marker BiP was induced. These results indicate that Mn exposure decreases ZIP14 protein levels to limit subsequent uptake of Mn as a cytoprotective response. Thus, high levels of Mn may compromise first-pass-hepatic clearance mechanisms.
Collapse
Affiliation(s)
- Khristy J Thompson
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
46
|
Felber DM, Wu Y, Zhao N. Regulation of the Metal Transporters ZIP14 and ZnT10 by Manganese Intake in Mice. Nutrients 2019; 11:E2099. [PMID: 31487869 PMCID: PMC6770778 DOI: 10.3390/nu11092099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023] Open
Abstract
The metal transporters ZIP14 and ZnT10 play key physiological roles in maintaining manganese (Mn) homeostasis. However, in vivo regulation of these two transporters by Mn is not understood. Here, we examined how dietary Mn intake regulates ZIP14 and ZnT10 by feeding mice a low-Mn diet, a control diet, or a high-Mn diet for 6 weeks. Inductively coupled plasma mass spectrometry was used to measure Mn and iron (Fe) levels. ZIP14 and ZnT10 protein levels were measured by western blot analysis. While mice on the high-Mn diet exhibited significantly higher levels of Mn in the blood, liver, and brain, the low-Mn diet group did not display matching reductions, indicating that high Mn intake is more effective in disrupting Mn homeostasis in mice. Additionally, Fe levels were only slightly altered, suggesting independent transport mechanisms for Mn and Fe. In the high-Mn diet group, ZIP14 and ZnT10 were both upregulated in the liver, as well as in the small intestine, indicating a coordinated role for these transporters in Mn excretion. Unexpectedly, this upregulation only occurred in male mice, with the exception of hepatic ZIP14, providing new insight into mechanisms behind widely observed sex differences in Mn homeostasis.
Collapse
Affiliation(s)
- Danielle M Felber
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Yuze Wu
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ningning Zhao
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
47
|
Zogzas CE, Mukhopadhyay S. Putative metal binding site in the transmembrane domain of the manganese transporter SLC30A10 is different from that of related zinc transporters. Metallomics 2019; 10:1053-1064. [PMID: 29989630 DOI: 10.1039/c8mt00115d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SLC30 proteins belong to the cation diffusion facilitator (CDF) superfamily of metal transporters. SLC30A10 mediates manganese efflux, while other SLC30 members transport zinc. Metal specificity of CDFs may be conferred by amino acids that form a transmembrane metal binding site (Site A). Site A of zinc-transporting CDFs, such as SLC30A1/ZnT1, have a HXXXD motif, but manganese transporters, such as SLC30A10, harbor a NXXXD motif. This critical histidine-to-asparagine substitution, at residue 43, was proposed to underlie manganese transport specificity of SLC30A10. However, we recently discovered that asparagine-43 was dispensable for manganese efflux in HeLa cells; instead, glutamate-25, aspartate-40, asparagine-127, and aspartate-248 were required. In contrast, another group reported that asparagine-43 was required in a chicken cell line. The goal of this study was to resolve the divergent results about the requirement of the crucial asparagine-43 residue. For this, we compared the manganese efflux activity of four cell types that stably over-expressed SLC30A10wild-type (WT), SLC30A10N43A or SLC30A10E25A: physiologically-relevant hepatic HepG2 and neuronal AF5 cells, HEK cells, and embryonic fibroblasts from Slc30a10-/- mice. In all cell types, manganese efflux activity of SLC30A10N43A was comparable to WT, while SLC30A10E25A lacked activity. Importantly, unlike SLC30A10, the histidine residue of the HXXXD motif of SLC30A1/ZnT1 was required for zinc transport. These results imply that the mechanisms of ion coordination within the transmembrane domain of SLC30A10 substantially differ from previously-studied CDFs, suggest that factors beyond Site A residues may confer metal specificity to CDFs, and improve understanding of the pathobiology of manganese toxicity due to mutations in SLC30A10.
Collapse
Affiliation(s)
- Charles E Zogzas
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, 3.510E BME, 107 W. Dean Keeton, Austin, TX 78712, USA.
| | | |
Collapse
|
48
|
Selyunin AS, Hutchens S, McHardy SF, Mukhopadhyay S. Tamoxifen blocks retrograde trafficking of Shiga toxin 1 and 2 and protects against lethal toxicosis. Life Sci Alliance 2019; 2:2/3/e201900439. [PMID: 31243048 PMCID: PMC6599968 DOI: 10.26508/lsa.201900439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
This study reports an unexpected role of late endosome–lysosome fusion in early endosome-to-Golgi trafficking of Shiga toxins and identifies tamoxifen to be a potent inhibitor of Shiga toxicosis. Shiga toxin 1 (STx1) and 2 (STx2), produced by Shiga toxin–producing Escherichia coli, cause lethal untreatable disease. The toxins invade cells via retrograde trafficking. Direct early endosome-to-Golgi transport allows the toxins to evade degradative late endosomes. Blocking toxin trafficking, particularly at the early endosome-to-Golgi step, is appealing, but transport mechanisms of the more disease-relevant STx2 are unclear. Using data from a genome-wide siRNA screen, we discovered that disruption of the fusion of late endosomes, but not autophagosomes, with lysosomes blocked the early endosome-to-Golgi transport of STx2. A subsequent screen of clinically approved lysosome-targeting drugs identified tamoxifen (TAM) to be a potent inhibitor of the trafficking and toxicity of STx1 and STx2 in cells. The protective effect was independent of estrogen receptors but dependent on the weak base property of TAM, which allowed TAM to increase endolysosomal pH and alter endosomal dynamics. Importantly, TAM treatment enhanced survival of mice injected with a lethal dose of STx1 or STx2. Thus, it may be possible to repurpose TAM for treating Shiga toxin–producing E. coli infections.
Collapse
Affiliation(s)
- Andrey S Selyunin
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Stanton F McHardy
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas San Antonio, San Antonio, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy; Institute for Cellular and Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
49
|
Dos Santos NR, Rodrigues JLG, Bandeira MJ, Anjos ALDS, Araújo CDFS, Adan LFF, Menezes-Filho JA. Manganese exposure and association with hormone imbalance in children living near a ferro-manganese alloy plant. ENVIRONMENTAL RESEARCH 2019; 172:166-174. [PMID: 30782536 DOI: 10.1016/j.envres.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
It has been suggested that manganese (Mn) plays a fundamental role in the reproductive system through interference with the regulation of the secretion of hormones related to puberty. The objective of this study was to evaluate the environmental exposure to Mn and its effects on the endocrine regulation of hormones related to puberty in school-aged children living near a ferro-manganese alloy plant. Toenails, occipital hair, and blood samples were collected from 225 children, between 7 and 12 years of age, in four elementary schools in Simões Filho, Bahia, Brazil, who were exposed to different Mn levels owing to different Mn dust deposition rates. The Mn content was determined in the toenails (MnTn), hair (MnH), and blood (MnB), in addition to blood lead levels (PbB), by using graphite furnace atomic absorption spectrometry. Luteinizing hormone (LH), prolactin (PRL), estradiol (E2), testosterone (T), and thyroid stimulating hormone (TSH) levels were determined by using a chemiluminescence method. Of the total participants, 50.2% were boys, with an average age of 9 years. PRL values were higher in children attending the school with a higher Mn deposition rate (p < 0.004). We observed that MnTn was positively correlated with PRL levels and exhibited a non-linear association with LH levels. None of the tested Mn biomarkers were associated with E2, T, or TSH levels. To date, despite several animal studies that have focused on the correlation between Mn exposure and the endocrine regulation of hormones and pubertal development, very few studies have reported a similar relationship between environmental Mn effects and the human endocrine system. Our findings support the hypothesis that elevated exposure to Mn in children may be associated with hormonal imbalances that might trigger the early onset of puberty.
Collapse
Affiliation(s)
- Nathália R Dos Santos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Juliana L G Rodrigues
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Matheus J Bandeira
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Ana Laura Dos S Anjos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil.
| | - Cecília de Freitas S Araújo
- Environmental and Public Health Program, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, Brazil.
| | - Luis Fernando F Adan
- Graduate Program in Medicine and Health, School of Medicine, Federal University of Bahia, Brazil.
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| |
Collapse
|
50
|
Soomro MH, Baiz N, Huel G, Yazbeck C, Botton J, Heude B, Bornehag CG, Annesi-Maesano I. Exposure to heavy metals during pregnancy related to gestational diabetes mellitus in diabetes-free mothers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:870-876. [PMID: 30625673 DOI: 10.1016/j.scitotenv.2018.11.422] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Evidence is cumulating on the adverse health effects of environmental exposures on health of the fetus and the childbearing mothers. Among mother's conditions, gestational diabetes mellitus has been considered rarely in spite of its importance for both mother and child. We determined the role of maternal exposure to lead (Pb), cadmium (Cd) and manganese (Mn) to gestational diabetes mellitus (GDM) on diagnosed GDM and impaired glucose tolerance (IGT) in diabetes-free mothers from the French EDEN mother-child cohort. 623 pregnant women without pre-existing diabetes were included in the study. GDM and IGT were diagnosed by a gynecologist during consultations after blood analysis. Pb, Cd and Mn were measured in second-trimester blood samples. Associations between ln-transformed concentrations of metals and GDM and IGT respectively were examined using multiple logistic regression analysis adjusted for potential confounders. The prevalences of GDM and IGT were 7.1% and 10.1% respectively. After adjustment for confounders, Cd was statistically related to having had a diagnosis of GDM or IGT (Adjusted Odds-Ratio (AOR): 1.61, 1.05-2.48), and Pb to GDM at borderline significance (AOR: 1.65, 0.82-3.34). Our findings add to the growing evidence supporting the role of maternal exposure to heavy toxic metals that persist longtime in the environment as a risk factor for GDM.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, 27 rue Chaligny, 75571 Paris CEDEX 12, France.
| | - Nour Baiz
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, 27 rue Chaligny, 75571 Paris CEDEX 12, France
| | - Guy Huel
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, 27 rue Chaligny, 75571 Paris CEDEX 12, France
| | - Chadi Yazbeck
- Obstetrics Gynecology and Reproductive Medicine Department, CMC Pierre Cherest, 5 rue Pierre Cherest, 92200 Neuilly Sur Seine, France; Obstetrics Gynecology and Reproductive Medicine Department, Hôpital Foch, 40 rue Worth, 92151 Suresnes, France
| | - Jérémie Botton
- INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Early ORigin of the Child's Health and Development Team (ORCHAD), Paris, France; Université Paris Sud, Faculty of Pharmacy, Châtenay-Malabry, France
| | - Barbara Heude
- INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Early ORigin of the Child's Health and Development Team (ORCHAD), Paris, France; Paris Descartes University, Paris, France
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Isabella Annesi-Maesano
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, 27 rue Chaligny, 75571 Paris CEDEX 12, France
| |
Collapse
|