1
|
Webb NE, Sevareid CM, Sanchez C, Tobin NH, Aldrovandi GM. Natural Variation in HIV-1 Entry Kinetics Map to Specific Residues and Reveal an Interdependence Between Attachment and Fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600587. [PMID: 38979136 PMCID: PMC11230229 DOI: 10.1101/2024.06.25.600587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
HIV-1 entry kinetics reflect the fluid motion of the HIV envelope glycoprotein through at least three major structural configurations that drive virus-cell membrane fusion. The lifetime of each state is an important component of potency for inhibitors that target them. We used the time-of-addition inhibitor assay and a novel analytical strategy to define the kinetics of pre-hairpin exposure (using T20) and co-receptor engagement (via. maraviroc), through a characteristic delay metric, across a variety of naturally occurring HIV Env isolates. Among 257 distinct HIV-1 envelope isolates we found a remarkable breadth of T20 and maraviroc delays ranging from as early as 30 seconds to as late as 60 minutes. The most extreme delays were observed among transmission-linked clade C isolates. We identified four single-residue determinants of late T20 and maraviroc delays that are associated with either receptor engagement or gp41 function. Comparison of these delays with T20 sensitivity suggest co-receptor engagement and fusogenic activity in gp41 act cooperatively but sequentially to drive entry. Our findings support current models of entry where co-receptor engagement drives gp41 eclipse and have strong implications for the design of entry inhibitors and antibodies that target transient entry states. Author Summary The first step of HIV-1 infection is entry, where virus-cell membrane fusion is driven by the HIV-1 envelope glycoprotein through a series of conformational changes. Some of the most broadly active entry inhibitors work by binding conformations that exist only transiently during entry. The lifetimes of these states and the kinetics of entry are important elements of inhibitor activity for which little is known. We demonstrate a remarkable range of kinetics among 257 diverse HIV-1 isolates and find that this phenotype is highly flexible, with multiple single-residue determinants. Examination of the kinetics of two conformational landmarks shed light on novel kinetic features that offer new details about the role of co-receptor engagement and provide a framework to explain entry inhibitor synergy.
Collapse
|
2
|
Bruun TUJ, Tang S, Erwin G, Deis L, Fernandez D, Kim PS. Structure-guided stabilization improves the ability of the HIV-1 gp41 hydrophobic pocket to elicit neutralizing antibodies. J Biol Chem 2023; 299:103062. [PMID: 36841484 PMCID: PMC10064241 DOI: 10.1016/j.jbc.2023.103062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The hydrophobic pocket found in the N-heptad repeat (NHR) region of HIV-1 gp41 is a highly conserved epitope that is the target of various HIV-1-neutralizing monoclonal antibodies. Although the high conservation of the pocket makes it an attractive vaccine candidate, it has been challenging to elicit potent anti-NHR antibodies via immunization. Here, we solved a high-resolution structure of the NHR mimetic IQN17, and, consistent with previous ligand-bound gp41 pocket structures, we observed remarkable conformational plasticity of the pocket. The high malleability of this pocket led us to test whether we could improve the immunogenicity of the gp41 pocket by stabilizing its conformation. We show that the addition of five amino acids at the C terminus of IQN17, to generate IQN22, introduces a stabilizing salt bridge at the base of the peptide that rigidifies the pocket. Mice immunized with IQN22 elicited higher avidity antibodies against the gp41 pocket and a more potent, albeit still weak, neutralizing response against HIV-1 compared with IQN17. Stabilized epitope-focused immunogens could serve as the basis for future HIV-1 fusion-inhibiting vaccines.
Collapse
Affiliation(s)
- Theodora U J Bruun
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Shaogeng Tang
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Graham Erwin
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Lindsay Deis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Fernandez
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Chem-H Macromolecular Structure Knowledge Center (MSKC), Stanford University, Stanford, California, USA
| | - Peter S Kim
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
3
|
Bell BN, Bruun TUJ, Friedland N, Kim PS. HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier. Proc Natl Acad Sci U S A 2023; 120:e2215792120. [PMID: 36795752 PMCID: PMC9974412 DOI: 10.1073/pnas.2215792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
HIV-1 strains are categorized into one of three neutralization tiers based on the relative ease by which they are neutralized by plasma from HIV-1-infected donors not on antiretroviral therapy; tier-1 strains are particularly sensitive to neutralization while tier-2 and tier-3 strains are increasingly difficult to neutralize. Most broadly neutralizing antibodies (bnAbs) previously described target the native prefusion conformation of HIV-1 Envelope (Env), but the relevance of the tiered categories for inhibitors targeting another Env conformation, the prehairpin intermediate, is not well understood. Here, we show that two inhibitors targeting distinct highly conserved regions of the prehairpin intermediate have strikingly consistent neutralization potencies (within ~100-fold for a given inhibitor) against strains in all three neutralization tiers of HIV-1; in contrast, best-in-class bnAbs targeting diverse Env epitopes vary by more than 10,000-fold in potency against these strains. Our results indicate that antisera-based HIV-1 neutralization tiers are not relevant for inhibitors targeting the prehairpin intermediate and highlight the potential for therapies and vaccine efforts targeting this conformation.
Collapse
Affiliation(s)
- Benjamin N. Bell
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Theodora U. J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
4
|
Polo-Megías D, Cano-Muñoz M, Berruezo AG, Laumond G, Moog C, Conejero-Lara F. Exploring Highly Conserved Regions of SARS-CoV-2 Spike S2 Subunit as Targets for Fusion Inhibition Using Chimeric Proteins. Int J Mol Sci 2022; 23:ijms232415511. [PMID: 36555153 PMCID: PMC9778920 DOI: 10.3390/ijms232415511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, considerable efforts have been made to develop protective vaccines against SARS-CoV-2 infection. However, immunity tends to decline within a few months, and new virus variants are emerging with increased transmissibility and capacity to evade natural or vaccine-acquired immunity. Therefore, new robust strategies are needed to combat SARS-CoV-2 infection. The viral spike composed of S1 and S2 subunits mediates viral attachment and membrane fusion to infect the host cell. In this process, interaction between the highly conserved heptad repeat 1 and 2 regions (HR1 and HR2) of S2 is crucial and for this reason; these regions are promising targets to fight SARS-CoV-2. Here, we describe the design and characterization of chimeric proteins that structurally imitate the S2 HR1 region in a trimeric coiled-coil conformation. We biophysically characterized the proteins and determined their capacity to bind the HR2 region, as well as their inhibitory activity of SARS-CoV-2 infection in vitro. HR1 mimetic proteins showed conformational heterogeneity and a propensity to form oligomers. Moreover, their structure is composed of subdomains with varied stability. Interestingly, the full HR1 proteins showed high affinity for HR2-derived peptides and SARS-CoV-2 inhibitory activity, whereas smaller proteins mimicking HR1 subdomains had a decreased affinity for their complementary HR2 region and did not inhibit the virus. The results provide insight into effective strategies to create mimetic proteins with broad inhibitory activity and therapeutic potential against SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Polo-Megías
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Alberto G Berruezo
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Géraldine Laumond
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
- Vaccine Research Institute (VRI), F-94000 Créteil, France
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Alshorman A, Al-Hosainat N, Jackson T. Analysis of HIV latent infection model with multiple infection stages and different drug classes. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:713-732. [PMID: 36264087 DOI: 10.1080/17513758.2022.2113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Latently infected CD4+ T cells represent one of the major obstacles to HIV eradication even after receiving prolonged highly active anti-retroviral therapy (HAART). Long-term use of HAART causes the emergence of drug-resistant virus which is then involved in HIV transmission. In this paper, we develop mathematical HIV models with staged disease progression by incorporating entry inhibitor and latently infected cells. We find that entry inhibitor has the same effect as protease inhibitor on the model dynamics and therefore would benefit HIV patients who developed resistance to many of current anti-HIV medications. Numerical simulations illustrate the theoretical results and show that the virus and latently infected cells reach an infected steady state in the absence of treatment and are eliminated under treatment whereas the model including homeostatic proliferation of latently infected cells maintains the virus at low level during suppressive treatment. Therefore, complete cure of HIV needs complete eradication of latent reservoirs.
Collapse
Affiliation(s)
- Areej Alshorman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | | | - Trachette Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Schapiro HM, Khasnis MD, Ahn K, Karagiaridi A, Hayden S, Cilento ME, Root MJ. Regulation of epitope exposure in the gp41 membrane-proximal external region through interactions at the apex of HIV-1 Env. PLoS Pathog 2022; 18:e1010531. [PMID: 35584191 PMCID: PMC9154124 DOI: 10.1371/journal.ppat.1010531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Glycoprotein Env of human immunodeficiency virus type 1 (HIV-1) mediates viral entry through membrane fusion. Composed of gp120 and gp41 subunits arranged as a trimer-of-heterodimers, Env adopts a metastable, highly dynamic conformation on the virion surface. This structural plasticity limits the temporospatial exposure of many highly conserved, neutralizing epitopes, contributing to the difficulty in developing effective HIV-1 vaccines. Here, we employed antibody neutralization of HIV-1 infectivity to investigate how inter- and intra-gp120 interactions mediated by variable loops V1/V2 and V3 at the Env apex regulate accessibility of the gp41 membrane-proximal external region (MPER) at the Env base. Swapping the V3 loop from EnvSF162 into the EnvHXB2 background shifted MPER exposure from the prefusogenic state to a functional intermediate conformation that was distinct from the prehairpin-intermediate state sensitive to gp41-targeted fusion inhibitors. The V3-loop swap had a profound impact on global protein dynamics, biasing the equilibrium to a closed conformation resistant to most anti-gp120 antibodies, stabilizing the protein to both cold- and soluble CD4-induced Env inactivation, and increasing the CD4 requirements for viral entry. Further dissection of the EnvHXB2 V3 loop revealed that residue 306 uniquely modulated epitope exposure and trimer stability. The R306S substitution substantially decreased sensitivity to antibodies targeting the gp41 MPER and, surprisingly, the gp120 V3-loop crown (residues 312-315), but had only modest effects on exposure of intervening gp120 epitopes. Furthermore, the point mutation reduced soluble CD4-induced inactivation, but had no impact on cold inactivation. The residue appeared to exert its effects by electrostatically modifying the strength of intra-subunit interactions between the V1/V2 and V3 loops. The distinct patterns of neutralization and stability pointed to a novel prefusogenic Env conformation along the receptor activation pathway and suggested that apical Env-regulation of gp41 MPER exposure can be decoupled from much of the dynamics of gp120 subunits.
Collapse
Affiliation(s)
- Hannah M. Schapiro
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Koree Ahn
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Karagiaridi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Stephanie Hayden
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Maria E. Cilento
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Root
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Zhang S, Holmes AP, Dick A, Rashad AA, Enríquez Rodríguez L, Canziani GA, Root MJ, Chaiken IM. Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators. Retrovirology 2021; 18:31. [PMID: 34627310 PMCID: PMC8501640 DOI: 10.1186/s12977-021-00575-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. RESULTS HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. CONCLUSIONS Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env's prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Andrew P Holmes
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Gabriela A Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael J Root
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, OH, Columbus, USA.
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Parajuli B, Acharya K, Nangarlia A, Zhang S, Parajuli B, Dick A, Ngo B, Abrams CF, Chaiken I. Identification of a glycan cluster in gp120 essential for irreversible HIV-1 lytic inactivation by a lectin-based recombinantly engineered protein conjugate. Biochem J 2020; 477:4263-4280. [PMID: 33057580 DOI: 10.1042/bcj20200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
We previously discovered a class of recombinant lectin conjugates, denoted lectin DLIs ('dual-acting lytic inhibitors') that bind to the HIV-1 envelope (Env) protein trimer and cause both lytic inactivation of HIV-1 virions and cytotoxicity of Env-expressing cells. To facilitate mechanistic investigation of DLI function, we derived the simplified prototype microvirin (MVN)-DLI, containing an MVN domain that binds high-mannose glycans in Env, connected to a DKWASLWNW sequence (denoted 'Trp3') derived from the membrane-associated region of gp41. The relatively much stronger affinity of the lectin component than Trp3 argues that the lectin functions to capture Env to enable Trp3 engagement and consequent Env membrane disruption and virolysis. The relatively simplified engagement pattern of MVN with Env opened up the opportunity, pursued here, to use recombinant glycan knockout gp120 variants to identify the precise Env binding site for MVN that drives DLI engagement and lysis. Using mutagenesis combined with a series of biophysical and virological experiments, we identified a restricted set of residues, N262, N332 and N448, all localized in a cluster on the outer domain of gp120, as the essential epitope for MVN binding. By generating these mutations in the corresponding HIV-1 virus, we established that the engagement of this glycan cluster with the lectin domain of MVN*-DLI is the trigger for DLI-derived virus and cell inactivation. Beyond defining the initial encounter step for lytic inactivation, this study provides a guide to further elucidate DLI mechanism, including the stoichiometry of Env trimer required for function, and downstream DLI optimization.
Collapse
Affiliation(s)
- Bibek Parajuli
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Bijay Parajuli
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Brendon Ngo
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, U.S.A
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| |
Collapse
|
9
|
Potent inhibition of HIV replication in primary human cells by novel synthetic polyketides inspired by Aureothin. Sci Rep 2020; 10:1326. [PMID: 31992748 PMCID: PMC6987146 DOI: 10.1038/s41598-020-57843-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/06/2020] [Indexed: 11/08/2022] Open
Abstract
Overcoming the global health threat of HIV infection requires continuous pipelines of novel drug candidates. We identified the γ-pyrone polyketides Aureothin/Neoaureothin as potent hits by anti-HIV screening of an extensive natural compound collection. Total synthesis of a structurally diverse group of Aureothin-derivatives successfully identified a lead compound (#7) superior to Aureothin that combines strong anti-HIV activity (IC90<45 nM), photostability and improved cell safety. Compound #7 inhibited de novo virus production from integrated proviruses by blocking the accumulation of HIV RNAs that encode the structural components of virions and include viral genomic RNAs. Thus, the mode-of-action displayed by compound #7 is different from those of all current clinical drugs. Proteomic analysis indicated that compound #7 does not affect global protein expression in primary blood cells and may modulate cellular pathways linked to HIV infection. Compound #7 inhibited multiple HIV genotypes, including HIV-type 1 and 2 and synergistically inhibited HIV in combination with clinical reverse transcriptase and integrase inhibitors. We conclude that compound #7 represents a promising new class of HIV inhibitors that will facilitate the identification of new virus-host interactions exploitable for antiviral attack and holds promise for further drug development.
Collapse
|
10
|
Jurado S, Cano-Muñoz M, Morel B, Standoli S, Santarossa E, Moog C, Schmidt S, Laumond G, Cámara-Artigas A, Conejero-Lara F. Structural and Thermodynamic Analysis of HIV-1 Fusion Inhibition Using Small gp41 Mimetic Proteins. J Mol Biol 2019; 431:3091-3106. [PMID: 31255705 DOI: 10.1016/j.jmb.2019.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
Development of effective inhibitors of the fusion between HIV-1 and the host cell membrane mediated by gp41 continues to be a grand challenge due to an incomplete understanding of the molecular and mechanistic details of the fusion process. We previously developed single-chain, chimeric proteins (named covNHR) that accurately mimic the N-heptad repeat (NHR) region of gp41 in a highly stable coiled-coil conformation. These molecules bind strongly to peptides derived from the gp41 C-heptad repeat (CHR) and are potent and broad HIV-1 inhibitors. Here, we investigated two covNHR variants differing in two mutations, V10E and Q123R (equivalent to V38E and Q40R in gp41 sequence) that reproduce the effect of HIV-1 mutations associated with resistance to fusion inhibitors, such as T20 (enfuvirtide). A detailed calorimetric analysis of the binding between the covNHR proteins and CHR peptides (C34 and T20) reveals drastic changes in affinity due to the mutations as a result of local changes in interactions at the site of T20 resistance. The crystallographic structure of the covNHR:C34 complex shows a virtually identical CHR-NHR binding interface to that of the post-fusion structure of gp41 and underlines an important role of buried interfacial water molecules in binding affinity and in development of resistance against CHR peptides. Despite the great difference in affinity, both covNHR variants demonstrate strong inhibitory activity for a wide variety of HIV-1 strains. These properties support the high potential of these covNHR proteins as new potent HIV-1 inhibitors. Our results may guide future inhibition approaches.
Collapse
Affiliation(s)
- Samuel Jurado
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Sara Standoli
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Elisabetta Santarossa
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sylvie Schmidt
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Géraline Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento, 04120 Almeria, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
11
|
Comparison of null models for combination drug therapy reveals Hand model as biochemically most plausible. Sci Rep 2019; 9:3002. [PMID: 30816136 PMCID: PMC6395630 DOI: 10.1038/s41598-019-38907-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023] Open
Abstract
Null models for the effect of combination therapies are widely used to evaluate synergy and antagonism of drugs. Due to the relevance of null models, their suitability is continuously discussed. Here, we contribute to the discussion by investigating the properties of five null models. Our study includes the model proposed by David J. Hand, which we refer to as Hand model. The Hand model has been introduced almost 20 years ago but hardly was used and studied. We show that the Hand model generalizes the principle of dose equivalence compared to the Loewe model and resolves the ambiguity of the Tallarida model. This provides a solution to the persisting conflict about the compatibility of two essential model properties: the sham combination principle and the principle of dose equivalence. By embedding several null models into a common framework, we shed light in their biochemical validity and provide indications that the Hand model is biochemically most plausible. We illustrate the practical implications and differences between null models by examining differences of null models on published data.
Collapse
|
12
|
Yu D, Ding X, Liu Z, Wu X, Zhu Y, Wei H, Chong H, Cui S, He Y. Molecular mechanism of HIV-1 resistance to sifuvirtide, a clinical trial-approved membrane fusion inhibitor. J Biol Chem 2018; 293:12703-12718. [PMID: 29929981 DOI: 10.1074/jbc.ra118.003538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Indexed: 12/25/2022] Open
Abstract
Host cell infection with HIV-1 requires fusion of viral and cell membranes. Sifuvirtide (SFT) is a peptide-based HIV-1 fusion inhibitor approved for phase III clinical trials in China. Here, we focused on characterizing HIV-1 variants highly resistant to SFT to gain insight into the molecular resistance mechanism. Three primary substitutions (V38A, A47I, and Q52R) located at the inhibitor-binding site of HIV-1's envelope protein (Env) and one secondary substitution (N126K) located at the C-terminal heptad repeat region of the viral protein gp41, which is part of the envelope, conferred high SFT resistance and cross-resistance to the anti-HIV-1 drug T20 and the template peptide C34. Interestingly, SFT's resistance profile could be dramatically improved with an M-T hook structure-modified SFT (MTSFT) and with short-peptide inhibitors that mainly target the gp41 pocket (2P23 and its lipid derivative LP-19). We found that the V38A and Q52R substitutions reduce the binding stabilities of SFT, C34, and MTSFT, but they had no effect on the binding of 2P23 and LP-19; in sharp contrast, the A47I substitution enhanced fusion inhibitor binding. Furthermore, the primary resistance substitutions impaired Env-mediated membrane fusion and cell entry and changed the conformation of the gp41 core structure. Importantly, whereas the V38A and Q52R substitutions disrupted the N-terminal helix of gp41, a single A47I substitution greatly enhanced its thermostability. Taken together, our results provide crucial structural insights into the mechanism of HIV-1 resistance to gp41-dependent fusion inhibitors, which may inform the development of additional anti-HIV drugs.
Collapse
Affiliation(s)
- Danwei Yu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaohui Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixuan Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiyuan Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huanmian Wei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
13
|
Gierasch LM, DeMartino G. The Herbert Tabor Young Investigator Awards: Meet the awardees! J Biol Chem 2018; 293:3468-3469. [PMID: 29500271 PMCID: PMC5836134 DOI: 10.1074/jbc.e118.002395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
|
14
|
Abstract
HIV fusion with the cell membrane can be inhibited by blocking coreceptor binding or by preventing fusion-inducing conformational changes in the Env protein. Logically, inhibitors that act by these two mechanisms should act synergistically, but previous studies have reported conflicting results. A new study by Ahn and Root reconciles these discordant reports by demonstrating that synergy emerges when Env engages multiple coreceptors prior to inducing fusion and when high-affinity inhibitory peptides are used, a condition that may not be satisfied in vivo.
Collapse
Affiliation(s)
- Gregory B Melikyan
- From the Department of Pediatrics, Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|