1
|
Choi S, Ahn S, Cho KH, Lee SK, Kee JM. Chemoproteomic identification of phosphohistidine acceptors: posttranslational activity regulation of a key glycolytic enzyme. Chem Sci 2025; 16:8014-8022. [PMID: 40201162 PMCID: PMC11974560 DOI: 10.1039/d5sc01024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Histidine phosphorylation, an unconventional and understudied posttranslational modification, often involves phosphohistidine (pHis) "acceptor" proteins, which bind to pHis residues and undergo phosphotransfer from pHis. While the roles of pHis acceptors are well-documented in bacterial cell signalling and metabolism, the presence and functions of additional pHis acceptors remain largely unknown. In this study, we introduce a chemoproteomic strategy leveraging a stable analogue of 3-pHis to identify 13 putative pHis acceptors in Escherichia coli. Among these, we identified phosphofructokinase-1 (PfkA), a central enzyme in glycolysis, as a pHis acceptor phosphorylated at His249 by phosphocarrier protein HPr (PtsH). This phosphorylation, modulated by carbon source availability, inhibited PfkA's kinase activity, while the pHis-specific phosphatase signal inhibitory factor X (SixA) reversed the effect, restoring the kinase function. Our findings reveal a novel regulatory mechanism in which histidine phosphorylation dynamically controls a key glycolytic enzyme, implicating a broader role for pHis in bacterial metabolism.
Collapse
Affiliation(s)
- Solbee Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Kyung Hyun Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
2
|
Chowdhury S, Fong SS, Uetz P. The protein interactome of Escherichia coli carbohydrate metabolism. PLoS One 2025; 20:e0315240. [PMID: 39903745 PMCID: PMC11793828 DOI: 10.1371/journal.pone.0315240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/21/2024] [Indexed: 02/06/2025] Open
Abstract
We investigate how protein-protein interactions (PPIs) can regulate carbohydrate metabolism in Escherichia coli. We specifically investigated the stoichiometry of 378 PPIs involving carbohydrate metabolic enzymes. In 48 interactions, the interactors were much more abundant than the enzyme and are thus likely to affect enzyme activity and carbohydrate metabolism. Many of these PPIs are conserved across thousands of bacteria including pathogens and microbial species. E. coli adapts to different cellular environments by adjusting the quantities of the interacting proteins (25 PPIs) in a way that the protein-enzyme interaction (PEI) is a likely mechanism to regulate its metabolism in specific environments. We predict 3 PPIs (RpsB-AdhE, DcyD-NanE and MinE-Yccx) previously not known to regulate metabolism.
Collapse
Affiliation(s)
- Shomeek Chowdhury
- Center for Integrative Life Sciences Education, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Stephen S. Fong
- Center for Integrative Life Sciences Education, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Peter Uetz
- Center for Biological Data Science, School of Life Sciences, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
3
|
Samanta D, Rauniyar S, Saxena P, Sani RK. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis. mSystems 2024; 9:e0024824. [PMID: 38695578 PMCID: PMC11237726 DOI: 10.1128/msystems.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
4
|
Li H, Li C, Shi C, Alharbi M, Cui H, Lin L. Phosphoproteomics analysis reveals the anti-bacterial and anti-virulence mechanism of eugenol against Staphylococcus aureus and its application in meat products. Int J Food Microbiol 2024; 414:110621. [PMID: 38341904 DOI: 10.1016/j.ijfoodmicro.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
The increasing risk of food poisoning caused by Staphylococcus aureus (S. aureus) contamination has aroused great concern about food safety. Eugenol is highly favored due to its broad-spectrum antibacterial activity and non-drug resistance property. The study aimed to reveal the anti-bacterial and anti-virulence mechanisms of eugenol against S. aureus using phosphoproteomics. The results indicated that eugenol could inhibit the phosphorylation levels of enzyme I in the bacterial phosphotransferase system (PTS). Meanwhile, it could also inhibit the phosphorylation levels of key enzymes in bacterial carbon metabolism (such as glucose-6-phosphate isomerase of glycolysis and succinyl-CoA synthetase of tricarboxylic acid cycle), thereby decreasing the content of ATP and accelerating bacterial death. In addition, eugenol could inhibit the phosphorylation of AgrA in the quorum sensing system, thereby inhibiting the expression of agr operons (agrA and agrC) and downstream virulence genes (RNAIII, hla and seb). Finally, the application on beef indicated that eugenol could effectively decrease the content of enterotoxins and improve its storage quality. These findings provide a new way for eugenol to prevent S. aureus contamination and food poisoning in meat products.
Collapse
Affiliation(s)
- Hong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
5
|
Das S, Chowdhury C, Kumar SP, Roy D, Gosavi SW, Sen R. Microbial production of N-acetyl-D-glucosamine (GlcNAc) for versatile applications: Biotechnological strategies for green process development. Carbohydr Res 2024; 536:109039. [PMID: 38277719 DOI: 10.1016/j.carres.2024.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a commercially important amino sugar for its wide range of applications in pharmaceutical, food, cosmetics and biofuel industries. In nature, GlcNAc is polymerised into chitin biopolymer, which is one of the major constituents of fungal cell wall and outer shells of crustaceans. Sea food processing industries generate a large volume of chitin as biopolymeric waste. Because of its high abundance, chitinaceous shellfish wastes have been exploited as one of the major precursor substrates of GlcNAc production, both in chemical and enzymatic means. Nevertheless, the current process of GlcNAc extraction from shellfish wastes generates poor turnover and attracts environmental hazards. Moreover, GlcNAc isolated from shellfish could not be prescribed to certain groups of people because of the allergic nature of shell components. Therefore, an alternative route of GlcNAc production is advocated. With the advancement of metabolic construction and synthetic biology, microbial synthesis of GlcNAc is gaining much attention nowadays. Several new and cutting-edge technologies like substrate co-utilization strategy, promoter engineering, and CRISPR interference system were proposed in this fascinating area. The study would put forward the potential application of microbial engineering in the production of important pharmaceuticals. Very recently, autotrophic fermentation of GlcNAc synthesis has been proposed. The metabolic engineering approaches would offer great promise to mitigate the issues of low yield and high production cost, which are major challenges in microbial bio-processes industries. Further process optimization, optimising metabolic flux, and efficient recovery of GlcNAc from culture broth, should be investigated in order to achieve a high product titer. The current study presents a comprehensive review on microbe-based eco-friendly green methods that would pave the way towards the development of future research directions in this field for the designing of a cost-effective fermentation process on an industrial setup.
Collapse
Affiliation(s)
- Sancharini Das
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India; Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India.
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - S Pavan Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN, 600 036, India
| | - Debasis Roy
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Suresh W Gosavi
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
6
|
Hua J, Hua P, Qin K. Highly fluorescent N, F co-doped carbon dots with tunable light emission for multicolor bio-labeling and antibacterial applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132331. [PMID: 37604034 DOI: 10.1016/j.jhazmat.2023.132331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Carbon dots (CDs) have emerged as potential biomaterials for bioimaging and antimicrobial applications. However, the lack of tunable long-wavelength emission performance and imprecise antibacterial mechanism limit their practical application. Thus, developing versatile CDs that combine outstanding optical performance and excellent antibacterial activity is of great practical significance. Herein, we prepared a novel nitrogen and fluorine co-doped CDs (N, F-CDs) from o-phenylenediamine and 2,3,5,6-tetrafluoroterephthalic acid, which exhibit high fluorescence quantum yield of 52.2%, large Stokes shift of 112 nm, as well tunable multicolor emission light from blue to red region. Thanks to the high biocompatibility and excellent photostability, the N, F-CDs were successfully implemented to multicolor biolabeling of mammalian cells, protozoan cells and plant cells. Moreover, the negatively charged N, F-CDs hold inherent efficient antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). By thoroughly studying the underlying antibacterial mechanisms at the molecular level through real-time quantitative PCR assay, we found the expression of related genes was notably down-regulated, further demonstrated that N, F-CDs against two bacterial strains had distinct target pathways. Our work provides a new reference for developing highly fluorescent multicolor CDs, and may facilitate the design and application of CDs-based nanomaterials in biological environment.
Collapse
Affiliation(s)
- Jianhao Hua
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Peng Hua
- Third People's Hospital of Yunnan Province, Kunming, Yunnan Province, 650011, China
| | - Kunhao Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
7
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Proteomic analysis to unravel the biochemical mechanisms triggered by Bacillus toyonensis SFC 500-1E under chromium(VI) and phenol stress. Biometals 2023; 36:1081-1108. [PMID: 37209221 DOI: 10.1007/s10534-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María D Paez
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
8
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
9
|
Carreón-Rodríguez OE, Gosset G, Escalante A, Bolívar F. Glucose Transport in Escherichia coli: From Basics to Transport Engineering. Microorganisms 2023; 11:1588. [PMID: 37375089 PMCID: PMC10305011 DOI: 10.3390/microorganisms11061588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli is the best-known model for the biotechnological production of many biotechnological products, including housekeeping and heterologous primary and secondary metabolites and recombinant proteins, and is an efficient biofactory model to produce biofuels to nanomaterials. Glucose is the primary substrate used as the carbon source for laboratory and industrial cultivation of E. coli for production purposes. Efficient growth and associated production and yield of desired products depend on the efficient sugar transport capabilities, sugar catabolism through the central carbon catabolism, and the efficient carbon flux through specific biosynthetic pathways. The genome of E. coli MG1655 is 4,641,642 bp, corresponding to 4702 genes encoding 4328 proteins. The EcoCyc database describes 532 transport reactions, 480 transporters, and 97 proteins involved in sugar transport. Nevertheless, due to the high number of sugar transporters, E. coli uses preferentially few systems to grow in glucose as the sole carbon source. E. coli nonspecifically transports glucose from the extracellular medium into the periplasmic space through the outer membrane porins. Once in periplasmic space, glucose is transported into the cytoplasm by several systems, including the phosphoenolpyruvate-dependent phosphotransferase system (PTS), the ATP-dependent cassette (ABC) transporters, and the major facilitator (MFS) superfamily proton symporters. In this contribution, we review the structures and mechanisms of the E. coli central glucose transport systems, including the regulatory circuits recruiting the specific use of these transport systems under specific growing conditions. Finally, we describe several successful examples of transport engineering, including introducing heterologous and non-sugar transport systems for producing several valuable metabolites.
Collapse
Affiliation(s)
| | | | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| |
Collapse
|
10
|
Xu Y, Zeng C, Wen H, Shi Q, Zhao X, Meng Q, Li X, Xiao J. Discovery of AI-2 Quorum Sensing Inhibitors Targeting the LsrK/HPr Protein-Protein Interaction Site by Molecular Dynamics Simulation, Virtual Screening, and Bioassay Evaluation. Pharmaceuticals (Basel) 2023; 16:ph16050737. [PMID: 37242520 DOI: 10.3390/ph16050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism that regulates bacterial pathogenicity, biofilm formation, and antibiotic sensitivity. Among the identified quorum sensing, AI-2 QS exists in both Gram-negative and Gram-positive bacteria and is responsible for interspecies communication. Recent studies have highlighted the connection between the phosphotransferase system (PTS) and AI-2 QS, with this link being associated with protein-protein interaction (PPI) between HPr and LsrK. Here, we first discovered several AI-2 QSIs targeting the LsrK/HPr PPI site through molecular dynamics (MD) simulation, virtual screening, and bioassay evaluation. Of the 62 compounds purchased, eight compounds demonstrated significant inhibition in LsrK-based assays and AI-2 QS interference assays. Surface plasmon resonance (SPR) analysis confirmed that the hit compound 4171-0375 specifically bound to the LsrK-N protein (HPr binding domain, KD = 2.51 × 10-5 M), and therefore the LsrK/HPr PPI site. The structure-activity relationships (SARs) emphasized the importance of hydrophobic interactions with the hydrophobic pocket and hydrogen bonds or salt bridges with key residues of LsrK for LsrK/HPr PPI inhibitors. These new AI-2 QSIs, especially 4171-0375, exhibited novel structures, significant LsrK inhibition, and were suitable for structural modification to search for more effective AI-2 QSIs.
Collapse
Affiliation(s)
- Yijie Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunlan Zeng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Huiqi Wen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qianqian Shi
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xingzhou Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhai Xiao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
11
|
Rodionova IA, Hosseinnia A, Kim S, Goodacre N, Zhang L, Zhang Z, Palsson B, Uetz P, Babu M, Saier MH. E. coli allantoinase is activated by the downstream metabolic enzyme, glycerate kinase, and stabilizes the putative allantoin transporter by direct binding. Sci Rep 2023; 13:7345. [PMID: 37147430 PMCID: PMC10163214 DOI: 10.1038/s41598-023-31812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/17/2023] [Indexed: 05/07/2023] Open
Abstract
Allantoin is a good source of ammonium for many organisms, and in Escherichia coli it is utilized under anaerobic conditions. We provide evidence that allantoinase (AllB) is allosterically activated by direct binding of the allantoin catabolic enzyme, glycerate 2-kinase (GlxK) in the presence of glyoxylate. Glyoxylate is known to be an effector of the AllR repressor which regulates the allantoin utilization operons in E. coli. AllB has low affinity for allantoin, but its activation by GlxK leads to increased affinity for its substrate. We also show that the predicted allantoin transporter YbbW (re-named AllW) has allantoin specificity and the protein-protein interaction with AllB. Our results show that the AllB-dependent allantoin degradative pathway is subject to previously unrecognized regulatory mechanisms involving direct protein-protein interactions.
Collapse
Affiliation(s)
- Irina A Rodionova
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA, 92093-0116, USA.
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Li Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
- College of Food Science and Engineering, Ocean University of China, Yushan Road, Shinan District, Qingdao, 266003, China
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Bernhard Palsson
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA, 92093-0116, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Fagerquist CK, Shi Y, Dodd CE. Toxin and phage production from pathogenic E. coli by antibiotic induction analyzed by chemical reduction, MALDI-TOF-TOF mass spectrometry and top-down proteomic analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9505. [PMID: 36905351 DOI: 10.1002/rcm.9505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Shiga toxin-producing Escherichia coli (STEC) are an ongoing threat to public health and agriculture. Our laboratory has developed a rapid method for identification of Shiga toxin (Stx), bacteriophage, and host proteins produced from STEC. We demonstrate this technique on two genomically sequenced STEC O145:H28 strains linked to two major outbreaks of foodborne illness occurring in 2007 (Belgium) and 2010 (Arizona). METHODS Our approach was to induce expression of stx, prophage, and host genes by antibiotic exposure, chemically reduce samples, and identify protein biomarkers from unfractionated samples using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, tandem mass spectrometry (MS/MS), and post-source decay (PSD). The protein mass and prominent fragment ions were used to identify protein sequences using top-down proteomic software developed in-house. Prominent fragment ions are the result of polypeptide backbone cleavage resulting from the aspartic acid effect fragmentation mechanism. RESULTS The B-subunit of Stx and acid-stress proteins HdeA and HdeB were identified in both STEC strains in their intramolecular disulfide bond-intact and reduced states. In addition, two cysteine-containing phage tail proteins were detected and identified from the Arizona strain but only under reducing conditions, which suggests that bacteriophage complexes are bound by intermolecular disulfide bonds. An acyl carrier protein (ACP) and a phosphocarrier protein were also identified from the Belgium strain. ACP was post-translationally modified with attachment of a phosphopantetheine linker at residue S36. The abundance of ACP (plus linker) was significantly increased on chemical reduction, suggesting the release of fatty acids bound to the ACP + linker at a thioester bond. MS/MS-PSD revealed dissociative loss of the linker from the precursor ion as well as fragment ions with and without the attached linker consistent with its attachment at S36. CONCLUSIONS This study demonstrates the advantages of chemical reduction in facilitating the detection and top-down identification of protein biomarkers of pathogenic bacteria.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- US Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - Yanlin Shi
- US Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - Claire E Dodd
- US Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| |
Collapse
|
13
|
Caballero V, Estévez M, Tomás-Barberán FA, Morcuende D, Martín I, Delgado J. Biodegradation of Punicalagin into Ellagic Acid by Selected Probiotic Bacteria: A Study of the Underlying Mechanisms by MS-Based Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16273-16285. [PMID: 36519204 PMCID: PMC9801417 DOI: 10.1021/acs.jafc.2c06585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Pomegranate (Punica granatum L.) is a well-known source of bioactive phenolic compounds such as ellagitannins, anthocyanins, and flavanols. Punicalagin, one of the main constituents of pomegranate, needs to be biodegraded by bacteria to yield metabolites of medicinal interest. In this work, we tested 30 lactic acid bacteria (LAB) and their capacity to transform punicalagin from a punicalagin-rich pomegranate extract into smaller bioactive molecules, namely, ellagic acid and urolithins. These were identified and quantified by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS2). Further, we evaluated the molecular mechanism governing this transformation through label-free comparative MS-based proteomics. All tested LAB strains were capable of transforming punicalagin into ellagic acid, while the biosynthesis of urolithins was not observed. Proteomic analysis revealed an increase of generic transglycosylases that might have a hydrolytic role in the target phenolic molecule, coupled with an increase in the quantity of ATP-binding cassette (ABC) transporters, which might play a relevant role in transporting the resulting byproducts in and out of the cell.
Collapse
Affiliation(s)
- Víctor Caballero
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Mario Estévez
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | | | - David Morcuende
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Irene Martín
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Josué Delgado
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| |
Collapse
|
14
|
Mao Q, Jiang J, Wu X, Ma Y, Zhang Y, Zhao Y, Zhang Y, Wang Q. Bifunctional alcohol/aldehyde dehydrogenase AdhE controls phospho-transferase system sugar utilization and virulence gene expression by interacting PtsH in Edwardsiella piscicida. Microbiol Res 2022; 260:127018. [DOI: 10.1016/j.micres.2022.127018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
15
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Liu D, Ge S, Wang Z, Li M, Zhuang W, Yang P, Chen Y, Ying H. Identification of a sensor histidine kinase (BfcK) controlling biofilm formation in Clostridium acetobutylicum. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
18
|
Fagerquist CK, Dodd CE. Top-down proteomic identification of plasmid and host proteins produced by pathogenic Escherichia coli using MALDI-TOF-TOF tandem mass spectrometry. PLoS One 2021; 16:e0260650. [PMID: 34843608 PMCID: PMC8629258 DOI: 10.1371/journal.pone.0260650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Fourteen proteins produced by three pathogenic Escherichia coli strains were identified using antibiotic induction, MALDI-TOF-TOF tandem mass spectrometry (MS/MS) and top-down proteomic analysis using software developed in-house. Host proteins as well as plasmid proteins were identified. Mature, intact protein ions were fragmented by post-source decay (PSD), and prominent fragment ions resulted from the aspartic acid effect fragmentation mechanism wherein polypeptide backbone cleavage (PBC) occurs on the C-terminal side of aspartic acid (D), glutamic acid (E) and asparagine (N) residues. These highly specific MS/MS-PSD fragment ions were compared to b- and y-type fragment ions on the C-terminal side of D-, E- and N-residues of in silico protein sequences derived from whole genome sequencing. Nine proteins were found to be post-translationally modified with either removal of an N-terminal methionine or a signal peptide. The protein sequence truncation algorithm of our software correctly identified all full and truncated protein sequences. Truncated sequences were compared to those predicted by SignalP. Nearly complete concurrence was obtained except for one protein where SignalP mis-identified the cleavage site by one residue. Two proteins had intramolecular disulfide bonds that were inferred by the absence of PBC on the C-terminal side of a D-residue located within the disulfide loop. These results demonstrate the utility of MALDI-TOF-TOF for identification of full and truncated bacterial proteins.
Collapse
Affiliation(s)
- Clifton K. Fagerquist
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Claire E. Dodd
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| |
Collapse
|
19
|
Responses of Escherichia coli and Listeria monocytogenes to ozone treatment on non-host tomato: Efficacy of intervention and evidence of induced acclimation. PLoS One 2021; 16:e0256324. [PMID: 34710139 PMCID: PMC8553054 DOI: 10.1371/journal.pone.0256324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
Because of the continuous rise of foodborne illnesses caused by the consumption of raw fruits and vegetables, effective post-harvest anti-microbial strategies are necessary. The aim of this study was to evaluate the anti-microbial efficacy of ozone (O3) against two common causes of fresh produce contamination, the Gram-negative Escherichia coli O157:H7 and Gram-positive Listeria monocytogenes, and to relate its effects to potential mechanisms of xenobiosis by transcriptional network modeling. The study on non-host tomato environment correlated the dose × time aspects of xenobiosis by examining the correlation between bacterial survival in terms of log-reduction and defense responses at the level of gene expression. In E. coli, low (1 μg O3/g of fruit) and moderate (2 μg O3/g of fruit) doses caused insignificant reduction in survival, while high dose (3 μg/g of fruit) caused significant reduction in survival in a time-dependent manner. In L. monocytogenes, moderate dose caused significant reduction even with short-duration exposure. Distinct responses to O3 xenobiosis between E. coli and L. monocytogenes are likely related to differences in membrane and cytoplasmic structure and components. Transcriptome profiling by RNA-Seq showed that primary defenses in E. coli were attenuated after exposure to a low dose, while the responses at moderate dose were characterized by massive upregulation of pathogenesis and stress-related genes, which implied the activation of defense responses. More genes were downregulated during the first hour at high dose, with a large number of such genes getting significantly upregulated after 2 hr and 3 hr. This trend suggests that prolonged exposure led to potential adaptation. In contrast, massive downregulation of genes was observed in L. monocytogenes regardless of dose and exposure duration, implying a mechanism of defense distinct from that of E. coli. The nature of bacterial responses revealed by this study should guide the selection of xenobiotic agents for eliminating bacterial contamination on fresh produce without overlooking the potential risks of adaptation.
Collapse
|
20
|
Chowdhury S, Hepper S, Lodi MK, Saier MH, Uetz P. The Protein Interactome of Glycolysis in Escherichia coli. Proteomes 2021; 9:proteomes9020016. [PMID: 33917325 PMCID: PMC8167557 DOI: 10.3390/proteomes9020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glycolysis is regulated by numerous mechanisms including allosteric regulation, post-translational modification or protein-protein interactions (PPI). While glycolytic enzymes have been found to interact with hundreds of proteins, the impact of only some of these PPIs on glycolysis is well understood. Here we investigate which of these interactions may affect glycolysis in E. coli and possibly across numerous other bacteria, based on the stoichiometry of interacting protein pairs (from proteomic studies) and their conservation across bacteria. We present a list of 339 protein-protein interactions involving glycolytic enzymes but predict that ~70% of glycolytic interactors are not present in adequate amounts to have a significant impact on glycolysis. Finally, we identify a conserved but uncharacterized subset of interactions that are likely to affect glycolysis and deserve further study.
Collapse
Affiliation(s)
- Shomeek Chowdhury
- Integrative Life Sciences, Virginia Commonwealth University, 1000 West Cary Street, Richmond, VA 23284, USA; or
| | - Stephen Hepper
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.H.); (M.K.L.)
| | - Mudassir K. Lodi
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.H.); (M.K.L.)
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA;
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.H.); (M.K.L.)
- Correspondence:
| |
Collapse
|
21
|
Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature. Toxins (Basel) 2020; 12:toxins12100645. [PMID: 33036317 PMCID: PMC7601483 DOI: 10.3390/toxins12100645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/02/2022] Open
Abstract
Cellular proteomes and exoproteomes are dynamic, allowing pathogens to respond to environmental conditions to sustain growth and virulence. Bacillus cereus is an important food-borne pathogen causing intoxication via emetic toxin and/or multiple protein exotoxins. Here, we compared the dynamics of the cellular proteome and exoproteome of emetic B. cereus cells grown at low (16 °C) and high (30 °C) temperature. Tandem mass spectrometry (MS/MS)-based shotgun proteomics analysis identified 2063 cellular proteins and 900 extracellular proteins. Hierarchical clustering following principal component analysis indicated that in B. cereus the abundance of a subset of these proteins—including cold-stress responders, and exotoxins non-hemolytic enterotoxin (NHE) and hemolysin I (cereolysin O (CLO))—decreased at low temperature, and that this subset governs the dynamics of the cellular proteome. NHE, and to a lesser extent CLO, also contributed significantly to exoproteome dynamics; with decreased abundances in the low-temperature exoproteome, especially in late growth stages. Our data therefore indicate that B. cereus may reduce its production of secreted protein toxins to maintain appropriate proteome dynamics, perhaps using catabolite repression to conserve energy for growth in cold-stress conditions, at the expense of virulence.
Collapse
|
22
|
Aboulwafa M, Zhang Z, Saier MH. Protein-Protein Interactions in the Cytoplasmic Membrane of Escherichia coli: Influence of the Overexpression of Diverse Transporter-Encoding Genes on the Activities of PTS Sugar Uptake Systems. Microb Physiol 2020; 30:36-49. [PMID: 32998150 DOI: 10.1159/000510257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
The prokaryotic phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS) concomitantly transports and phosphorylates its substrate sugars. In a recent publication, we provided evidence that protein-protein interactions of the fructose-specific integral membrane transporter (FruAB) with other PTS sugar group translocators regulate the activities of the latter systems in vivo and sometimes in vitro. In this communication, we examine the consequences of the overexpression of several different transport systems on the activities of selected PTS and non-PTS permeases. We report that high levels of these transport systems enhance the in vivo activities of several other systems in a fairly specific fashion. Thus, (1) overexpression of ptsG (glucose porter) selectively enhanced mannitol, N-acetylglucosamine, and 2-deoxyglucose (2DG) uptake rates; (2) overexpression of mtlA (mannitol porter) promoted methyl α-glucoside (αMG) and 2DG uptake; (3) manYZ (but not manY alone) (mannose porter) overexpression enhanced αMG uptake; (4) galP (galactose porter) overexpression enhanced mannitol and αMG uptake; and (5) ansP (asparagine porter) overexpression preferentially enhanced αMG and 2DG uptake, all presumably as a result of direct protein-protein interactions. Thus, it appears that high level production of several integral membrane permeases enhances sugar uptake rates, with the PtsG and ManXYZ systems being most consistently stimulated, but the MtlA and NagE systems being more selectively stimulated and to a lesser extent. Neither enhanced expression nor in vitro PEP-dependent phosphorylation activities of the target PTS systems were appreciably affected. The results are consistent with the suggestion that integral membrane transport proteins form an interacting network in vivo with physiological consequences, dependent on specific transporters and their concentrations in the membrane.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, USA,
| |
Collapse
|
23
|
Zhang Q, Fang G, Chen W, Zhong X, Long Y, Qin H, Ye J. The molecular effects of ultrasound on the expression of cellular proteome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137439. [PMID: 32143036 DOI: 10.1016/j.scitotenv.2020.137439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
High frequency and low intensity, diagnostic ultrasound methods are recognized to be safe in epidemiology and pathology but the bioeffects of these methods on molecular and proteomic levels are unknown. As a representative organism that can directly reflect the molecular response to stresses, Escherichia coli was selected for exposure to ultrasound probes C1-5, M5s and 9 L for 10 min and 20 min. ITRAQ was used to measure the expression of the cellular proteome. The results showed that both the frequency and time of exposure to ultrasound affected the proteome expression. Fifty biological processes were affected and nineteen metabolic processes, including carbohydrate metabolism, asparagine metabolism and phosphate import were differentially regulated. Lower frequency ultrasound caused copper export and iron‑sulfur cluster biosynthesis upregulation. Nine proteins (GlpD, AsnB, TdcB, CopA, IscR, IscU, IscS, IscA, RecA) were key for the adaption to ultrasound. Accordingly, the results of the potential risks based on the calculation of the orthologous genome clarified that relevant pathways and potentially sensitive individuals were worthy of further study. These findings offer insights into reveal the bioeffects of ultrasound at the metabolic network and proteomic levels.
Collapse
Affiliation(s)
- Qinglin Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guiting Fang
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xing Zhong
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Shu X, Singh M, Karampudi NBR, Bridges DF, Kitazumi A, Wu VCH, De los Reyes BG. Xenobiotic Effects of Chlorine Dioxide to Escherichia coli O157:H7 on Non-host Tomato Environment Revealed by Transcriptional Network Modeling: Implications to Adaptation and Selection. Front Microbiol 2020; 11:1122. [PMID: 32582084 PMCID: PMC7286201 DOI: 10.3389/fmicb.2020.01122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli serotype O157:H7 is one of the major agents of pathogen outbreaks associated with fresh fruits and vegetables. Gaseous chlorine dioxide (ClO2) has been reported to be an effective intervention to eliminate bacterial contamination on fresh produce. Although remarkable positive effects of low doses of ClO2 have been reported, the genetic regulatory machinery coordinating the mechanisms of xenobiotic effects and the potential bacterial adaptation remained unclear. This study examined the temporal transcriptome profiles of E. coli O157:H7 during exposure to different doses of ClO2 in order to elucidate the genetic mechanisms underlying bacterial survival under such harsh conditions. Dosages of 1 μg, 5 μg, and 10 μg ClO2 per gram of tomato fruits cause different effects with dose-by-time dynamics. The first hour of exposure to 1 μg and 5 μg ClO2 caused only partial killing with significant growth reduction starting at the second hour, and without further significant reduction at the third hour. However, 10 μg ClO2 exposure led to massive bacterial cell death at 1 h with further increase in cell death at 2 and 3 h. The first hour exposure to 1 μg ClO2 caused activation of primary defense and survival mechanisms. However, the defense response was attenuated during the second and third hours. Upon treatment with 5 μg ClO2, the transcriptional networks showed massive downregulation of pathogenesis and stress response genes at the first hour of exposure, with decreasing number of differentially expressed genes at the second and third hours. In contrast, more genes were further downregulated with exposure to 10 μg ClO2 at the first hour, with the number of both upregulated and downregulated genes significantly decreasing at the second hour. A total of 810 genes were uniquely upregulated at the third hour at 10 μg ClO2, suggesting that the potency of xenobiotic effects had led to potential adaptation. This study provides important knowledge on the possible selection of target molecules for eliminating bacterial contamination on fresh produce without overlooking potential risks of adaptation.
Collapse
Affiliation(s)
- Xiaomei Shu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Manavi Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | | - David F. Bridges
- Produce Safety and Microbiology Research, Western Regional Research Center, United States Department of Agriculture – Agricultural Research Service, Albany, CA, United States
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vivian C. H. Wu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
- Produce Safety and Microbiology Research, Western Regional Research Center, United States Department of Agriculture – Agricultural Research Service, Albany, CA, United States
| | | |
Collapse
|
25
|
Tan S, Hua X, Xue Z, Ma J. Cajanin Stilbene Acid Inhibited Vancomycin-Resistant Enterococcus by Inhibiting Phosphotransferase System. Front Pharmacol 2020; 11:473. [PMID: 32372958 PMCID: PMC7179074 DOI: 10.3389/fphar.2020.00473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance has become a serious threat to human and animal health, and vancomycin-resistant Enterococcus has become an important nosocomial infection pathogen, causing thousands of deaths each year. In this study, after screening a variety of natural products, we found that cajanin stilbene acid (CSA) had significant inhibitory effect on sensitive and vancomycin-resistant Enterococcus (VRE) in vitro. And we also confirmed that CSA had significant anti-VRE infection ability in vivo. Subsequently, we studied the antibacterial mechanism of CSA through proteomics experiments, and the results showed that CSA killed Enterococcus by inhibiting the phosphotransferase system of Enterococcus, thus hinders the normal growth and metabolic functions of bacteria. The results of this study provided evidence for the in-depth study on the mechanism of the antibacterial action of CSA and also provided a candidate for the development of anti-VRE drugs.
Collapse
Affiliation(s)
- Shengnan Tan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Jianzhang Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
26
|
Yoshida H, Wada A, Shimada T, Maki Y, Ishihama A. Coordinated Regulation of Rsd and RMF for Simultaneous Hibernation of Transcription Apparatus and Translation Machinery in Stationary-Phase Escherichia coli. Front Genet 2019; 10:1153. [PMID: 31867037 PMCID: PMC6904343 DOI: 10.3389/fgene.2019.01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023] Open
Abstract
Transcription and translation in growing phase of Escherichia coli, the best-studied model prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-dependent control of the synthesis of RNA polymerase (RNAP) core enzyme (the core component of transcription apparatus) and ribosomes (the core component of translation machinery) is tightly coordinated to keep the relative level of transcription apparatus and translation machinery constant for effective and efficient utilization of resources and energy. Upon entry into the stationary phase, transcription apparatus is modulated by replacing RNAP core-associated sigma (promoter recognition subunit) from growth-related RpoD to stationary-phase-specific RpoS. The anti-sigma factor Rsd participates for the efficient replacement of sigma, and the unused RpoD is stored silent as Rsd–RpoD complex. On the other hand, functional 70S ribosome is transformed into inactive 100S dimer by two regulators, ribosome modulation factor (RMF) and hibernation promoting factor (HPF). In this review article, we overview how we found these factors and what we know about the molecular mechanisms for silencing transcription apparatus and translation machinery by these factors. In addition, we provide our recent findings of promoter-specific transcription factor (PS-TF) screening of the transcription factors involved in regulation of the rsd and rmf genes. Results altogether indicate the coordinated regulation of Rsd and RMF for simultaneous hibernation of transcription apparatus and translation machinery.
Collapse
Affiliation(s)
- Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Wada
- Yoshida Biological Laboratory, Kyoto, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Japan.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Yasushi Maki
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
27
|
Park SB, White SB, Steadman CS, Pechan T, Pechanova O, Clemente HJ, Thirumalai RVKG, Willard ST, Ryan PL, Feugang JM. Silver-coated magnetic nanocomposites induce growth inhibition and protein changes in foodborne bacteria. Sci Rep 2019; 9:17499. [PMID: 31767879 PMCID: PMC6877574 DOI: 10.1038/s41598-019-53080-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 01/13/2023] Open
Abstract
Cytotoxicity concerns of nanoparticles on animal or human bodies have led to the design of iron oxide core nanocomposites, coated with elemental silver to allow their magnetic removal from bio-mixtures. Although the antimicrobial effect of silver is well-described, the effects of nanoparticles derived from silver on microorganisms remain unfolded. Here, we characterized a customized magnetic silver nanocomposite (Ag-MNP) and evaluated its effects on bacterial growth and protein changes. The Ag-MNP displayed both longitudinal and round shapes under High-Resolution Transmission Electron Microscopy imaging, while the Energy Dispersive X-ray Spectroscopy and X-ray diffraction analysis confirmed the presence of Ag, Fe3O4 (Magnetite) and FeO2 (Goethite). Optical density, bioluminescence imaging, and Colony Forming Unit assessments revealed that the presence of Ag-MNP induced strong dose-dependent bacteria (Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and S. Anatum) growth inhibition. The TEM imaging showed penetration and infiltration of bacteria by Ag-MNP, leading to membrane degeneration and vacuole formation. The presence of Ag-MNP led to fifteen up-regulated and nine down-regulated proteins (P < 0.05) that are involved in cell membrane synthesis, inhibition of protein synthesis, interference with DNA synthesis, and energy metabolism inhibition. This study provides insights to develop alternative antimicrobials to treat foodborne pathogens with antibiotic resistance avoidance.
Collapse
Affiliation(s)
- Seong B Park
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Shecoya B White
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Christy S Steadman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Olga Pechanova
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, 39762, USA
| | | | - Rooban V K G Thirumalai
- Institute for Imaging and Analytical Technologies, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
28
|
Aboulwafa M, Zhang Z, Saier MH. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system. PLoS One 2019; 14:e0219332. [PMID: 31751341 PMCID: PMC6872149 DOI: 10.1371/journal.pone.0219332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023] Open
Abstract
The multicomponent phosphoenolpyruvate (PEP)-dependent sugar-transporting phosphotransferase system (PTS) in Escherichia coli takes up sugar substrates from the medium and concomitantly phosphorylates them, releasing sugar phosphates into the cytoplasm. We have recently provided evidence that many of the integral membrane PTS permeases interact with the fructose PTS (FruA/FruB) [1]. However, the biochemical and physiological significance of this finding was not known. We have carried out molecular genetic/biochemical/physiological studies that show that interactions of the fructose PTS often enhance, but sometimes inhibit the activities of other PTS transporters many fold, depending on the target PTS system under study. Thus, the glucose (Glc), mannose (Man), mannitol (Mtl) and N-acetylglucosamine (NAG) permeases exhibit enhanced in vivo sugar transport and sometimes in vitro PEP-dependent sugar phosphorylation activities while the galactitol (Gat) and trehalose (Tre) systems show inhibited activities. This is observed when the fructose system is induced to high levels and prevented when the fruA/fruB genes are deleted. Overexpression of the fruA and/or fruB genes in the absence of fructose induction during growth also enhances the rates of uptake of other hexoses. The β-galactosidase activities of man, mtl, and gat-lacZ transcriptional fusions and the sugar-specific transphosphorylation activities of these enzyme transporters were not affected either by frustose induction or by fruAB overexpression, showing that the rates of synthesis of the target PTS permeases were not altered. We thus suggest that specific protein-protein interactions within the cytoplasmic membrane regulate transport in vivo (and sometimes the PEP-dependent phosphorylation activities in vitro) of PTS permeases in a physiologically meaningful way that may help to provide a hierarchy of preferred PTS sugars. These observations appear to be applicable in principle to other types of transport systems as well.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol Adv 2018; 37:284-305. [PMID: 30576718 DOI: 10.1016/j.biotechadv.2018.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
Overflow metabolism is a common phenomenon observed at higher glycolytic flux in many bacteria, yeast (known as Crabtree effect), and mammalian cells including cancer cells (known as Warburg effect). This phenomenon has recently been characterized as the trade-offs between protein costs and enzyme efficiencies based on coarse-graining approaches. Moreover, it has been recognized that the glycolytic flux increases as the source of energy generation changes from energetically efficient respiration to inefficient respiro-fermentative or fermentative metabolism causing overflow metabolism. It is highly desired to clarify the metabolic regulation mechanisms behind such phenomena. Metabolic fluxes are located on top of the hierarchical regulation systems, and represent the outcome of the integrated response of all levels of cellular regulation systems. In the present article, we discuss about the different levels of regulation systems for the modulation of fluxes depending on the growth rate, growth condition such as oxygen limitation that alters the metabolism towards fermentation, and genetic perturbation affecting the source of energy generation from respiration to respiro-fermentative metabolism in relation to overflow metabolism. The intracellular metabolite of the upper glycolysis such as fructose 1,6-bisphosphate (FBP) plays an important role not only for flux sensing, but also for the regulation of the respiratory activity either directly or indirectly (via transcription factors) at higher growth rate. The glycolytic flux regulation is backed up (enhanced) by unphosphorylated EIIA and HPr of the phosphotransferase system (PTS) components, together with the sugar-phosphate stress regulation, where the transcriptional regulation is further modulated by post-transcriptional regulation via the degradation of mRNA (stability of mRNA) in Escherichia coli. Moreover, the channeling may also play some role in modulating the glycolytic cascade reactions.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
30
|
Suo Y, Gao S, Baranzoni GM, Xie Y, Liu Y. Comparative transcriptome RNA-Seq analysis of Listeria monocytogenes with sodium lactate adaptation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Rodionova IA, Goodacre N, Do J, Hosseinnia A, Babu M, Uetz P, Saier MH. The uridylyltransferase GlnD and tRNA modification GTPase MnmE allosterically control Escherichia coli folylpoly-γ-glutamate synthase FolC. J Biol Chem 2018; 293:15725-15732. [PMID: 30089654 DOI: 10.1074/jbc.ra118.004425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/31/2018] [Indexed: 01/20/2023] Open
Abstract
Folate derivatives are important cofactors for enzymes in several metabolic processes. Folate-related inhibition and resistance mechanisms in bacteria are potential targets for antimicrobial therapies and therefore a significant focus of current research. Here, we report that the activity of Escherichia coli poly-γ-glutamyl tetrahydrofolate/dihydrofolate synthase (FolC) is regulated by glutamate/glutamine-sensing uridylyltransferase (GlnD), THF-dependent tRNA modification enzyme (MnmE), and UDP-glucose dehydrogenase (Ugd) as shown by direct in vitro protein-protein interactions. Using kinetics analyses, we observed that GlnD, Ugd, and MnmE activate FolC many-fold by decreasing the K half of FolC for its substrate l-glutamate. Moreover, FolC inhibited the GTPase activity of MnmE at low GTP concentrations. The growth phenotypes associated with these proteins are discussed. These results, obtained using direct in vitro enzyme assays, reveal unanticipated networks of allosteric regulatory interactions in the folate pathway in E. coli and indicate regulation of polyglutamylated tetrahydrofolate biosynthesis by the availability of nitrogen sources, signaled by the glutamine-sensing GlnD protein.
Collapse
Affiliation(s)
- Irina A Rodionova
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116,
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284, and
| | - Jimmy Do
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284, and
| | - Milton H Saier
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116,
| |
Collapse
|
32
|
The Nitrogen Regulatory PII Protein (GlnB) and N-Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli. J Bacteriol 2018; 200:JB.00691-17. [PMID: 29229699 DOI: 10.1128/jb.00691-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Amino sugars are good sources of both ammonia and fructose-6-phosphate, produced by the glucosamine 6-phosphate deaminase, NagB. NagB is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the phosphocarrier protein of the bacterial phosphotransferase system, HPr, in Escherichia coli We provide evidence that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein (U-PII) also allosterically activate NagB by direct protein-protein interactions. NanE is essential for neuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and PII is known to be a central metabolic nitrogen regulator. We demonstrate that uridylylated PII (but not underivatized PII) activates NagB >10-fold at low concentrations of substrate, whereas NanE increases NagB activity >2-fold. NanE activates NagB in the absence or presence of GlcNAc-6P, but HPr and U-PII activation requires the presence of GlcNAc-6P. Activation of NagB by HPr and uridylylated PII, as well as by NanE and HPr (but not by NanE and U-PII), is synergistic, and the modeling, which suggests specific residues involved in complex formation, provides possible explanations. Specific physiological functions for the regulation of NagB by its three protein activators are proposed. Each regulatory agent is suggested to mediate signal transduction in response to a different stimulus.IMPORTANCE The regulation of amino sugar utilization is important for the survival of bacteria in a competitive environment. NagB, a glucosamine 6-phosphate deaminase in Escherichia coli, is essential for amino sugar utilization and is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the histidine-phosphorylatable phosphocarrier protein, HPr. We provide evidence here that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein allosterically activate NagB by direct protein-protein interactions. NanE is essential for N-acetylneuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and the PII protein is known to be a central metabolic nitrogen regulator. Regulatory links between carbon and nitrogen metabolism are important for adaptation of metabolism to different growth conditions.
Collapse
|
33
|
Global landscape of cell envelope protein complexes in Escherichia coli. Nat Biotechnol 2017; 36:103-112. [PMID: 29176613 DOI: 10.1038/nbt.4024] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Bacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli. After extraction with non-denaturing detergents, we affinity-purified 785 endogenously tagged CEPs and identified stably associated polypeptides by precision mass spectrometry. The resulting high-quality physical interaction network, comprising 77% of targeted CEPs, revealed many previously uncharacterized heteromeric complexes. We found that the secretion of autotransporters requires translocation and the assembly module TamB to nucleate proper folding from periplasm to cell surface through a cooperative mechanism involving the β-barrel assembly machinery. We also establish that an ABC transporter of unknown function, YadH, together with the Mla system preserves outer membrane lipid asymmetry. This E. coli CEP 'interactome' provides insights into the functional landscape governing CE systems essential to bacterial growth, metabolism and drug resistance.
Collapse
|