1
|
Mühle J, Alenfelder J, Rodrigues MJ, Jürgenliemke L, Guixà-González R, Grätz L, Andres F, Bacchin A, Hennig M, Schihada H, Crüsemann M, König GM, Schertler G, Kostenis E, Deupi X. Cyclic peptide inhibitors function as molecular glues to stabilize Gq/11 heterotrimers. Proc Natl Acad Sci U S A 2025; 122:e2418398122. [PMID: 40333756 PMCID: PMC12088423 DOI: 10.1073/pnas.2418398122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Heterotrimeric Gα:Gβγ G proteins function as molecular switches downstream of G protein-coupled receptors (GPCRs). They alternate between a heterotrimeric GDP-bound OFF-state and a GTP-bound ON-state in which GαGTP is separated from the Gβγ dimer. Consequently, pharmacological tools to securely prevent the OFF-ON transition are of utmost importance to investigate their molecular switch function, specific contribution to GPCR signal transduction, and potential as drug targets. FR900359 (FR) and YM-254890 (YM), two natural cyclic peptides and highly specific inhibitors of Gq/11 heterotrimers, are exactly such tools. To date, their efficient and long-lasting inhibition of Gq/11 signaling has been attributed solely to a wedge-like binding to Gα, thereby preventing separation of the GTPase and α-helical domains and thus GDP release. Here, we use X-ray crystallography, biochemical and signaling assays, and BRET-based biosensors to show that FR and YM also function as stabilizers of the Gα:Gβγ subunit interface. Our high-resolution structures reveal a network of residues in Gα and two highly conserved amino acids in Gβ that are targeted by FR and YM to glue the Gβγ complex to the inactive GαGDP subunit. Unlike all previously developed nucleotide-state specific inhibitors that sequester Gα in its OFF-state but compete with Gβγ, FR and YM actively promote the inhibitory occlusion of GαGDP by Gβγ. In doing so, they securely lock the entire heterotrimer, not just Gα, in its inactive state. Our results identify FR and YM as molecular glues for Gα and Gβγ that combine simultaneous binding to both subunits with inhibition of G protein signaling.
Collapse
Affiliation(s)
- Jonas Mühle
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Matthew J. Rodrigues
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Lars Jürgenliemke
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
- Research Training Group RTG 2873, University of Bonn, Bonn, Germany
| | - Ramon Guixà-González
- Condensed Matter Theory Group, PSI Center for Scientific Computing, Theory and Data, Villigen5232, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia-Spanish National Research Council (IQAC-CSIC), Barcelona08034, Spain
| | - Lukas Grätz
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Fabio Andres
- LeadXpro AG, Park Innovaare, Villigen5234, Switzerland
| | | | | | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg35032, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt60438, Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Gebhard Schertler
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
- Condensed Matter Theory Group, PSI Center for Scientific Computing, Theory and Data, Villigen5232, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| |
Collapse
|
2
|
Sakari M, Bhadane R, Kumar S, Azevedo R, Malakoutikhah M, Masoumi A, Littler DR, Härmä H, Kopra K, Pulliainen AT. ADP-ribosyltransferase-based biocatalysis of nonhydrolyzable NAD+ analogs. J Biol Chem 2025; 301:108106. [PMID: 39706271 PMCID: PMC11786771 DOI: 10.1016/j.jbc.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Enzyme promiscuity is the ability of an enzyme to catalyze an unexpected side reaction in addition to its main reaction. Here, we describe a biocatalytic process to produce nonhydrolyzable NAD+ analogs based on the ADP-ribosyltransferase activity of pertussis toxin PtxS1 subunit. First, in identical manner to normal catalysis, PtxS1 activates NAD+ to form the reactive oxocarbenium cation. Subsequently, the electrophilic ribose 1' carbon of the oxocarbenium cation is subject of an attack by the nitrogen atom of an amino group coupled to nicotinamide mimicking compounds. The nitrogen atom acts as the nucleophile instead of the natural sulfur atom substrate of the human Gαi protein. The invention builds on structural data indicating the presence of an NAD+ analog, benzamide amino adenine dinucleotide, at the NAD+ binding site of PtxS1. This was witnessed upon cocrystallization of PtxS1 with NAD+ and 3-aminobenzamide (3-AB). A pharmacophore-based screening on 3-AB followed by quantum mechanical simulations identified analogs of 3-AB with capacity to react with the oxocarbenium cation. Based on HPLC and mass spectrometry, we confirmed the formation of benzamide amino adenine dinucleotide by PtxS1, and also identified two new chemical entities. We name the new entities as isoindolone amine adenine dinucleotide, and isoquinolinone amine adenine dinucleotide, the latter being a highly fluorescent compound. The new NAD+ analogs emerge as valuable tools to study the structural biology and enzymology of NAD+ binding and consuming enzymes, such as human poly(ADP-ribose) polymerases and bacterial ADP-ribosyltransferase exotoxins, and to advance the ongoing drug development efforts.
Collapse
Affiliation(s)
- Moona Sakari
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Sujit Kumar
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Rita Azevedo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Harri Härmä
- Department of Chemistry, University of Turku, Turku, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Turku, Finland
| | | |
Collapse
|
3
|
Liu Y, Yu D, Wang K, Ye Q. Global resurgence of pertussis: A perspective from China. J Infect 2024; 89:106289. [PMID: 39357571 DOI: 10.1016/j.jinf.2024.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Pertussis (or whooping cough) is a highly infectious acute respiratory disease primarily caused by Bordetella pertussis, which is also one of the most important causes of infant death worldwide. The widespread use of vaccines has greatly reduced the morbidity and mortality of pertussis. However, since the 1980s, in a number of countries with high vaccine coverage, the incidence of pertussis has risen again after remaining low for many years, with outbreaks even occurring in some areas. The peak onset of pertussis is shifting from infancy to adolescence, and adolescence is becoming the main source of infection for infants. Despite the increasing incidence of pertussis, serological findings suggest that the true prevalence of the disease may be significantly underestimated. Therefore, in this narrative review, we summarize the pathogenic process and immune characteristics of bacteria, the diagnosis and treatment of diseases, as well as vaccination and prevalence of pertussis at home and abroad, and attempt to analyze the causes and influencing factors of pertussis resurgence and summarize some prevention and control strategies to assist in improving the understanding of pertussis and preventing unexpected outbreaks.
Collapse
Affiliation(s)
- Ying Liu
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Daojun Yu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.
| |
Collapse
|
4
|
Chemello AJ, Fowler CC. Alternate typhoid toxin assembly evolved independently in the two Salmonella species. mBio 2024; 15:e0340323. [PMID: 38501873 PMCID: PMC11005416 DOI: 10.1128/mbio.03403-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
AB5-type toxins are a diverse family of protein toxins composed of an enzymatic active (A) subunit and a pentameric delivery (B) subunit. Salmonella enterica serovar Typhi's typhoid toxin features two A subunits, CdtB and PltA, in complex with the B subunit PltB. Recently, it was shown that S. Typhi encodes a horizontally acquired B subunit, PltC, that also assembles with PltA/CdtB to produce a second form of typhoid toxin. S. Typhi therefore produces two AB5 toxins with the same A subunits but distinct B subunits, an evolutionary twist that is unique to typhoid toxin. Here, we show that, remarkably, the Salmonella bongori species independently evolved an analogous capacity to produce two typhoid toxins with distinct B subunits. S. bongori's alternate B subunit, PltD, is evolutionarily distant from both PltB and PltC and outcompetes PltB to form the predominant toxin. We show that, surprisingly, S. bongori elicits similar levels of CdtB-mediated intoxication as S. Typhi during infection of cultured human epithelial cells. This toxicity is exclusively due to the PltB toxin, and strains lacking pltD produce increased amounts of PltB toxin and exhibit increased toxicity compared to the wild type, suggesting that the acquisition of the PltD subunit potentially made S. bongori less virulent toward humans. Collectively, this study unveils a striking example of convergent evolution that highlights the importance of the poorly understood "two-toxin" paradigm for typhoid toxin biology and, more broadly, illustrates how the flexibility of A-B interactions has fueled the evolutionary diversification and expansion of AB5-type toxins. IMPORTANCE Typhoid toxin is an important Salmonella Typhi virulence factor and an attractive target for therapeutic interventions to combat typhoid fever. The recent discovery of a second version of this toxin has substantial implications for understanding S. Typhi pathogenesis and combating typhoid fever. In this study, we discover that a remarkably similar two-toxin paradigm evolved independently in Salmonella bongori, which strongly suggests that this is a critical aspect of typhoid toxin biology. We observe significant parallels between how the two toxins assemble and their capacity to intoxicate host cells during infection in S. Typhi and S. bongori, which provides clues to the biological significance of this unusual toxin arrangement. More broadly, AB5 toxins with diverse activities and mechanisms are essential virulence factors for numerous important bacterial pathogens. This study illustrates the capacity for novel A-B interactions to evolve and thus provides insight into how such a diverse arsenal of toxins might have emerged.
Collapse
Affiliation(s)
- Antonio J. Chemello
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
6
|
Brown PI, Ojiakor A, Chemello AJ, Fowler CC. The diverse landscape of AB5-type toxins. ENGINEERING MICROBIOLOGY 2023; 3:100104. [PMID: 39628907 PMCID: PMC11610972 DOI: 10.1016/j.engmic.2023.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 12/06/2024]
Abstract
AB5-type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens such as Shigella dysenteriae, Vibrio cholerae, Bordetella pertussis, and certain lineages of pathogenic Escherichia coli and Salmonella enterica. AB5 toxins are composed of an active (A) subunit that manipulates host cell biology in complex with a pentameric binding/delivery (B) subunit that mediates the toxin's entry into host cells and its subsequent intracellular trafficking. Broadly speaking, all known AB5-type toxins adopt similar structural architectures and employ similar mechanisms of binding, entering and trafficking within host cells. Despite this, there is a remarkable amount of diversity amongst AB5-type toxins; this includes different toxin families with unrelated activities, as well as variation within families that can have profound functional consequences. In this review, we discuss the diversity that exists amongst characterized AB5-type toxins, with an emphasis on the genetic and functional variability within AB5 toxin families, how this may have evolved, and its impact on human disease.
Collapse
Affiliation(s)
- Paris I. Brown
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Adaobi Ojiakor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Antonio J. Chemello
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| |
Collapse
|
7
|
Ono Y, Kawakami K, Nakamura G, Ishida S, Aoki J, Inoue A. Generation of Gαi knock-out HEK293 cells illuminates Gαi-coupling diversity of GPCRs. Commun Biol 2023; 6:112. [PMID: 36709222 PMCID: PMC9884212 DOI: 10.1038/s42003-023-04465-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are pivotal cell membrane proteins that sense extracellular molecules and activate cellular responses. The G-protein α subunit i (Gαi) family represents the most common GPCR-coupling partner and consists of eight subunits with distinct signaling properties. However, analyzing the coupling pattern has been challenging owing to endogenous expression of the Gαi subunits in virtually all cell lines. Here, we generate a HEK293 cell line lacking all Gαi subunits, which enables the measurement of GPCR-Gαi coupling upon transient re-expression of a specific Gαi subunit. We profile Gαi-coupling selectivity across 11 GPCRs by measuring ligand-induced inhibitory activity for cAMP accumulation. The coupling profiles are then classified into three clusters, representing those preferentially coupled to Gαz, those to Gαo, and those with unapparent selectivity. These results indicate that individual Gαi-coupled GPCRs fine-tune Gαi signaling by exerting coupling preference at the Gαi-subunit level.
Collapse
Affiliation(s)
- Yuki Ono
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Kouki Kawakami
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Gaku Nakamura
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Satoru Ishida
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Junken Aoki
- grid.26999.3d0000 0001 2151 536XDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Asuka Inoue
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| |
Collapse
|
8
|
Sasmal A, Khan N, Khedri Z, Kellman BP, Srivastava S, Verhagen A, Yu H, Bruntse AB, Diaz S, Varki N, Beddoe T, Paton AW, Paton JC, Chen X, Lewis NE, Varki A. Simple and practical sialoglycan encoding system reveals vast diversity in nature and identifies a universal sialoglycan-recognizing probe derived from AB5 toxin B subunits. Glycobiology 2022; 32:1101-1115. [PMID: 36048714 PMCID: PMC9680115 DOI: 10.1093/glycob/cwac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Vertebrate sialic acids (Sias) display much diversity in modifications, linkages, and underlying glycans. Slide microarrays allow high-throughput explorations of sialoglycan-protein interactions. A microarray presenting ~150 structurally defined sialyltrisaccharides with various Sias linkages and modifications still poses challenges in planning, data sorting, visualization, and analysis. To address these issues, we devised a simple 9-digit code for sialyltrisaccharides with terminal Sias and underlying two monosaccharides assigned from the nonreducing end, with 3 digits assigning a monosaccharide, its modifications, and linkage. Calculations based on the encoding system reveal >113,000 likely linear sialyltrisaccharides in nature. Notably, a biantennary N-glycan with 2 terminal sialyltrisaccharides could thus have >1010 potential combinations and a triantennary N-glycan with 3 terminal sequences, >1015 potential combinations. While all possibilities likely do not exist in nature, sialoglycans encode enormous diversity. While glycomic approaches are used to probe such diverse sialomes, naturally occurring bacterial AB5 toxin B subunits are simpler tools to track the dynamic sialome in biological systems. Sialoglycan microarray was utilized to compare sialoglycan-recognizing bacterial toxin B subunits. Unlike the poor correlation between B subunits and species phylogeny, there is stronger correlation with Sia-epitope preferences. Further supporting this pattern, we report a B subunit (YenB) from Yersinia enterocolitica (broad host range) recognizing almost all sialoglycans in the microarray, including 4-O-acetylated-Sias not recognized by a Yersinia pestis orthologue (YpeB). Differential Sia-binding patterns were also observed with phylogenetically related B subunits from Escherichia coli (SubB), Salmonella Typhi (PltB), Salmonella Typhimurium (ArtB), extra-intestinal E.coli (EcPltB), Vibrio cholera (CtxB), and cholera family homologue of E. coli (EcxB).
Collapse
Affiliation(s)
- Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zahra Khedri
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Saurabh Srivastava
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Verhagen
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, CA 95616, USA
| | - Anders Bech Bruntse
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Sandra Diaz
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nissi Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Xi Chen
- Department of Chemistry, University of California Davis, CA 95616, USA
| | - Nathan E Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Khan N, Sasmal A, Khedri Z, Secrest P, Verhagen A, Srivastava S, Varki N, Chen X, Yu H, Beddoe T, Paton AW, Paton JC, Varki A. Sialoglycan binding patterns of bacterial AB5 toxin B subunits correlate with host range and toxicity, indicating evolution independent of A subunits. J Biol Chem 2022; 298:101900. [PMID: 35398357 PMCID: PMC9120245 DOI: 10.1016/j.jbc.2022.101900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria secrete AB5 toxins that can be virulence factors. Cytotoxic A subunits are delivered to the cytosol following B subunit binding to specific host cell surface glycans. Some B subunits are not associated with A subunits, for example, YpeB of Yersinia pestis, the etiologic agent of plague. Plague cannot be eradicated because of Y. pestis' adaptability to numerous hosts. We previously showed selective binding of other B5 pentamers to a sialoglycan microarray, with sialic acid (Sia) preferences corresponding to those prominently expressed by various hosts, for example, N-acetylneuraminic acid (Neu5Ac; prominent in humans) or N-glycolylneuraminic acid (Neu5Gc; prominent in ruminant mammals and rodents). Here, we report that A subunit phylogeny evolved independently of B subunits and suggest a future B subunit nomenclature based on bacterial species names. We also found via phylogenetic analysis of B subunits, which bind Sias, that homologous molecules show poor correlation with species phylogeny. These data indicate ongoing lateral gene transfers between species, including mixing of A and B subunits. Consistent with much broader host range of Y. pestis, we show that YpeB recognizes all mammalian Sia types, except for 4-O-acetylated ones. Notably, YpeB alone causes dose-dependent cytotoxicity, which is abolished by a mutation (Y77F) eliminating Sia recognition, suggesting that cell proliferation and death are promoted via lectin-like crosslinking of cell surface sialoglycoconjugates. These findings help explain the host range of Y. pestis and could be important for pathogenesis. Overall, our data indicate ongoing rapid evolution of both host Sias and pathogen toxin-binding properties.
Collapse
|
10
|
Danielewicz N, Rosato F, Dai W, Römer W, Turnbull WB, Mairhofer J. Microbial carbohydrate-binding toxins – From etiology to biotechnological application. Biotechnol Adv 2022; 59:107951. [DOI: 10.1016/j.biotechadv.2022.107951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
11
|
Sakari M, Tran MT, Rossjohn J, Pulliainen AT, Beddoe T, Littler DR. Crystal structures of pertussis toxin with NAD+ and analogs provide structural insights into the mechanism of its cytosolic ADP-ribosylation activity. J Biol Chem 2022; 298:101892. [PMID: 35378130 PMCID: PMC9079181 DOI: 10.1016/j.jbc.2022.101892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a highly contagious respiratory disease. Pertussis toxin (PT), a major virulence factor secreted by B. pertussis, is an AB5-type protein complex topologically related to cholera toxin. The PT protein complex is internalized by host cells and follows a retrograde trafficking route to the endoplasmic reticulum, where it subsequently dissociates. The released enzymatic S1 subunit is then translocated from the endoplasmic reticulum into the cytosol and subsequently ADP-ribosylates the inhibitory alpha-subunits (Gαi) of heterotrimeric G proteins, thus promoting dysregulation of G protein–coupled receptor signaling. However, the mechanistic details of the ADP-ribosylation activity of PT are not well understood. Here, we describe crystal structures of the S1 subunit in complex with nicotinamide adenine dinucleotide (NAD+), with NAD+ hydrolysis products ADP-ribose and nicotinamide, with NAD+ analog PJ34, and with a novel NAD+ analog formed upon S1 subunit crystallization with 3-amino benzamide and NAD+, which we name benzamide amino adenine dinucleotide. These crystal structures provide unprecedented insights into pre- and post-NAD+ hydrolysis steps of the ADP-ribosyltransferase activity of PT. We propose that these data may aid in rational drug design approaches and further development of PT-specific small-molecule inhibitors.
Collapse
Affiliation(s)
- Moona Sakari
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland
| | - Mai T Tran
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland.
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Miura S, Satoh R, Tamamura-Andoh Y, Tokugawa K, Beppu M, Nozaki C, Murata R, Kusumoto M, Uchida I. Intra-macrophage expression of ArtAB toxin gene in Salmonella. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35333707 DOI: 10.1099/mic.0.001152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104), S. Worthington, and S. bongori produce ArtAB toxin, which catalyses ADP-ribosylation of pertussis toxin-sensitive G protein. ArtAB gene (artAB) is encoded on a prophage in Salmonella, and prophage induction by SOS-inducing agents is associated with increases in ArtAB production in vitro. However, little is known about the expression of artAB in vivo. Here, we showed a significant increase in artAB transcription of DT104 within macrophage-like RAW264.7 cells. Intracellular expression of ArtAB was also observed by immunofluorescence staining. The induced expression of artAB in DT104 and S. bongori was enhanced by treatment of RAW264.7 cells with phorbol 12-myristate 13-acetate (PMA), which stimulates the production of reactive oxygen species (ROS); however, such induction was not observed in S. Worthington. Upregulation of oxyR, a major regulator of oxidative stress, and cI, a repressor of prophage induction, was observed in S. Worthington within RAW264.7 cells treated with PMA but not in the DT104 strain. Although the expression of oxyR was increased, artAB was upregulated in S. bongori, which lacks the cI gene in the incomplete artAB-encoded prophage. Taken together, oxidative stress plays a role in the production of artAB toxins in macrophages, and high expression levels of oxyR and cI are responsible for the low expression of artAB. Therefore, strain variation in the level of artAB expression within macrophages could be explained by differences in the oxidative stress response of bacteria and might be reflected in its virulence.
Collapse
Affiliation(s)
- Shou Miura
- Veterinary Bacteriology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Rin Satoh
- Veterinary Bacteriology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Yukino Tamamura-Andoh
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kanetaka Tokugawa
- Veterinary Bacteriology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Miho Beppu
- Veterinary Bacteriology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Chiharu Nozaki
- Veterinary Bacteriology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Ryo Murata
- Veterinary Bacteriology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Masahiro Kusumoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ikuo Uchida
- Veterinary Bacteriology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| |
Collapse
|
13
|
Keen AC, Pedersen MH, Lemel L, Scott DJ, Canals M, Littler DR, Beddoe T, Ono Y, Shi L, Inoue A, Javitch JA, Lane JR. OZITX, a pertussis toxin-like protein for occluding inhibitory G protein signalling including Gα z. Commun Biol 2022; 5:256. [PMID: 35322196 PMCID: PMC8943041 DOI: 10.1038/s42003-022-03191-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are the main signalling effectors for G protein-coupled receptors. Understanding the distinct functions of different G proteins is key to understanding how their signalling modulates physiological responses. Pertussis toxin, a bacterial AB5 toxin, inhibits Gαi/o G proteins and has proven useful for interrogating inhibitory G protein signalling. Pertussis toxin, however, does not inhibit one member of the inhibitory G protein family, Gαz. The role of Gαz signalling has been neglected largely due to a lack of inhibitors. Recently, the identification of another Pertussis-like AB5 toxin was described. Here we show that this toxin, that we call OZITX, specifically inhibits Gαi/o and Gαz G proteins and that expression of the catalytic S1 subunit is sufficient for this inhibition. We identify mutations that render Gα subunits insensitive to the toxin that, in combination with the toxin, can be used to interrogate the signalling of each inhibitory Gα G protein.
Collapse
Affiliation(s)
- Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Maria Hauge Pedersen
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Daniel J Scott
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, 3052, Australia
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3052, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yuki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK.
| |
Collapse
|
14
|
Ma L, Sedney C, Su Y, Dewan KK, Linz B, Harvill ET. Contribution of a Novel Pertussis Toxin-Like Factor in Mediating Persistent Otitis Media. Front Cell Infect Microbiol 2022; 12:795230. [PMID: 35360099 PMCID: PMC8963424 DOI: 10.3389/fcimb.2022.795230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic otitis media (COM) is the long-term infection and inflammation of the middle ears typically caused by upper respiratory tract pathogens that are able to ascend the Eustachian tube. Our understanding of contributing factors is limited because human otopathogens cannot naturally colonize or persist in the middle ears of mice. We recently described a natural COM in mice caused by Bordetella pseudohinzii and proposed this as an experimental system to study bacterial mechanisms of immune evasion that allow persistent infection of the middle ear. Here we describe a novel pertussis toxin (PTx)-like factor unique to B. pseudohinzii, apparently acquired horizontally, that is associated with its particularly efficient persistence and pathogenesis. The catalytic subunit of this toxin, PsxA, has conserved catalytic sites and substantial predicted structural homology to pertussis toxin catalytic subunit PtxA. Deletion of the gene predicted to encode the catalytic subunit, psxA, resulted in a significant decrease in persistence in the middle ears. The defect was not observed in mice lacking T cells, indicating that PsxA is necessary for persistence only when T cells are present. These results demonstrate the role of a novel putative toxin in the persistence of B. pseudohinzii and its generation of COM. This PsxA-mediated immune evasion strategy may similarly be utilized by human otopathogens, via other PTx-like toxins or alternative mechanisms to disrupt critical T cell functions necessary to clear bacteria from the middle ear. This work demonstrates that this experimental system can allow for the detailed study of general strategies and specific mechanisms that otopathogens use to evade host immune responses to persist in the middle ear to cause COM.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Colleen Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Yang Su
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Abstract
Typhoid toxin is an A2B5 protein toxin and an important virulence factor for the human-adapted bacterial pathogen Salmonella enterica serovar Typhi, the causative agent of typhoid fever. Typhoid toxin contains two enzymatic subunits, PltA and CdtB, which dock onto a pentameric delivery platform composed of the protein PltB. It was recently reported that the same enzymatic subunits can assemble with a different delivery platform composed of the protein PltC, forming a distinct version of typhoid toxin. However, the differences in structure and receptor specificity between the PltC and PltB typhoid toxins remain unknown. Here, we determined atomic-level structures of the pentameric PltC subunit, the fully assembled PltC typhoid toxin, and the PltC pentamers in complex with glycan receptors. Biochemical and structural analyses indicate that PltB and PltC are unable to form heteromeric delivery complexes due to electrostatic repulsion at the subunit interface and thus form separate toxins only. We further observed that, despite low sequence similarity between PltB and PltC, they interact with PltA in a similar manner but that PltC exhibits stronger electrostatic interactions with PltA, enabling it to outcompete PltB in toxin assembly. The ligand-bound atomic structures of PltC show an additional glycan binding site not found in PltB and glycan array analysis indicates that PltB and PltC exhibit significant differences in glycan binding specificity. Collectively, this study offers atomic-level insights into how S. Typhi produces two distinct versions of typhoid toxin, thereby generating functional diversity in this key virulence factor. IMPORTANCE Typhoid fever is a devastating disease that kills more than 115,000 people every year and is caused by Salmonella Typhi. Typhoid toxin, exclusively produced by S. Typhi, was demonstrated to be responsible for the pathogenesis of typhoid fever. Typhoid toxin consists of a pentameric delivery B subunit to transport the catalytic A subunits into the host cell through binding of the glycan receptors. Recent study shows that S. Typhi encodes two homologous delivery B subunits that are able to associate with the same active subunits to produce alternative toxins with distinct functional characteristics. Here, we show that the two delivery subunits can form only homopentameric delivery platforms that compete to associate with typhoid toxin's active subunits and that the two resulting toxins have distinct glycan-binding properties that confer distinct functional traits. These findings highlight the unique assembly and functional diversification of typhoid toxins.
Collapse
|
16
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
17
|
Overgaard E, Morris B, Mohammad Mousa O, Price E, Rodriguez A, Cufurovic L, Beard RS, Tinker JK. Cellular Activity of Salmonella Typhimurium ArtAB Toxin and Its Receptor-Binding Subunit. Toxins (Basel) 2021; 13:toxins13090599. [PMID: 34564603 PMCID: PMC8472264 DOI: 10.3390/toxins13090599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Salmonellosis is among the most reported foodborne illnesses in the United States. The Salmonellaenterica Typhimurium DT104 phage type, which is associated with multidrug-resistant disease in humans and animals, possesses an ADP-ribosylating toxin called ArtAB. Full-length artAB has been found on a number of broad-host-range non-typhoidal Salmonella species and serovars. ArtAB is also homologous to many AB5 toxins from diverse Gram-negative pathogens, including cholera toxin (CT) and pertussis toxin (PT), and may be involved in Salmonella pathogenesis, however, in vitro cellular toxicity of ArtAB has not been characterized. artAB was cloned into E. coli and initially isolated using a histidine tag (ArtABHIS) and nickel chromatography. ArtABHIS was found to bind to African green monkey kidney epithelial (Vero) cells using confocal microscopy and to interact with glycans present on fetuin and monosialotetrahexosylganglioside (GM1) using ELISA. Untagged, or native, holotoxin (ArtAB), and the pentameric receptor-binding subunit (ArtB) were purified from E. coli using fetuin and d-galactose affinity chromatography. ArtAB and ArtB metabolic and cytotoxic activities were determined using Vero and Chinese hamster ovary (CHO) epithelial cells. Vero cells were more sensitive to ArtAB, however, incubation with both cell types revealed only partial cytotoxicity over 72 h, similar to that induced by CT. ArtAB induced a distinctive clustering phenotype on CHO cells over 72 h, similar to PT, and an elongated phenotype on Vero cells, similar to CT. The ArtB binding subunit alone also had a cytotoxic effect on CHO cells and induced morphological rounding. Results indicate that this toxin induces distinctive cellular outcomes. Continued biological characterization of ArtAB will advance efforts to prevent disease caused by non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Elise Overgaard
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| | - Brad Morris
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Omid Mohammad Mousa
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Emily Price
- Idaho Veterans Research and Education Foundation, Infectious Diseases Section, Boise, ID 83702, USA;
| | - Adriana Rodriguez
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Leyla Cufurovic
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Richard S. Beard
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA;
| | - Juliette K. Tinker
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
- Correspondence: ; Tel.: +1-208-426-5472
| |
Collapse
|
18
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
19
|
Yoshida T, Tsuge H. Common Mechanism for Target Specificity of Protein- and DNA-Targeting ADP-Ribosyltransferases. Toxins (Basel) 2021; 13:toxins13010040. [PMID: 33430384 PMCID: PMC7827354 DOI: 10.3390/toxins13010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
Many bacterial pathogens utilize ADP-ribosyltransferases (ARTs) as virulence factors. The critical aspect of ARTs is their target specificity. Each individual ART modifies a specific residue of its substrates, which could be proteins, DNA, or antibiotics. However, the mechanism underlying this specificity is poorly understood. Here, we review the substrate recognition mechanism and target residue specificity based on the available complex structures of ARTs and their substrates. We show that there are common mechanisms of target residue specificity among protein- and DNA-targeting ARTs.
Collapse
Affiliation(s)
- Toru Yoshida
- Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan;
| | - Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Center for Molecular Research in Infectious Diseases, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Correspondence: ; Tel.: +81-75-705-3117
| |
Collapse
|
20
|
Cao J, Xu L, Pan J. Analysis of Multiple Factors Involved in Pertussis-Like Coughing. Clin Pediatr (Phila) 2020; 59:641-646. [PMID: 32075427 DOI: 10.1177/0009922820905871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives. To identify risk factors associated with the prognosis of pertussis-like coughing. Methods. A retrospective study on children hospitalized with pertussis-like coughing from 2018 to 2019. We collected all the case data from medical records including age, gender, vaccination, clinical symptoms, complication, pathogens, white blood cell (WBC) count, lymphocyte ratio, application of macrolide antibiotics, usage of sulfamethoxazole, and usage of inhaled glucocorticoids. Logistic regression was used in this study. Results. A total of 213 hospitalized children with pertussis-like coughing were included in this study. About 70 children were cured within 2 weeks. One120 children were cured from 2 weeks to 3 months, including cases of initial attack and relapse. Symptoms lasting longer than 3 months accounts for 10.8%. Bordetella pertussis, WBC count >20 × 109/L and lymphocyte ratio >60% were associated with poor prognosis (P < .05). Conclusions. Bordetella pertussis, WBC count, and lymphocyte ratio are independent risk factors for poor prognosis.
Collapse
Affiliation(s)
- Jiaying Cao
- Anhui Medical University, Hefei, China.,Anhui Provincial Hospital, Hefei, China
| | - Lu Xu
- Anhui Medical University, Hefei, China
| | - Jiahua Pan
- Anhui Medical University, Hefei, China.,Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
21
|
Ashok Y, Miettinen M, Oliveira DKHD, Tamirat MZ, Näreoja K, Tiwari A, Hottiger MO, Johnson MS, Lehtiö L, Pulliainen AT. Discovery of Compounds Inhibiting the ADP-Ribosyltransferase Activity of Pertussis Toxin. ACS Infect Dis 2020; 6:588-602. [PMID: 31899865 DOI: 10.1021/acsinfecdis.9b00412] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The targeted pathogen-selective approach to drug development holds promise to minimize collateral damage to the beneficial microbiome. The AB5-topology pertussis toxin (PtxS1-S5) is a major virulence factor of Bordetella pertussis, the causative agent of the highly contagious respiratory disease whooping cough. Once internalized into the host cell, PtxS1 ADP-ribosylates α-subunits of the heterotrimeric Gαi-superfamily, thereby disrupting G-protein-coupled receptor signaling. Here, we report the discovery of the first small molecules inhibiting the ADP-ribosyltransferase activity of pertussis toxin. We developed protocols to purify milligram-levels of active recombinant B. pertussis PtxS1 from Escherichia coli and an in vitro high throughput-compatible assay to quantify NAD+ consumption during PtxS1-catalyzed ADP-ribosylation of Gαi. Two inhibitory compounds (NSC228155 and NSC29193) with low micromolar IC50-values (3.0 μM and 6.8 μM) were identified in the in vitro NAD+ consumption assay that also were potent in an independent in vitro assay monitoring conjugation of ADP-ribose to Gαi. Docking and molecular dynamics simulations identified plausible binding poses of NSC228155 and in particular of NSC29193, most likely owing to the rigidity of the latter ligand, at the NAD+-binding pocket of PtxS1. NSC228155 inhibited the pertussis AB5 holotoxin-catalyzed ADP-ribosylation of Gαi in living human cells with a low micromolar IC50-value (2.4 μM). NSC228155 and NSC29193 might prove to be useful hit compounds in targeted B. pertussis-selective drug development.
Collapse
Affiliation(s)
- Yashwanth Ashok
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 7A, P.O. Box 5400, FI-90014, Oulu, Finland
| | - Moona Miettinen
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Danilo Kimio Hirabae de Oliveira
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 7A, P.O. Box 5400, FI-90014, Oulu, Finland
| | - Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Katja Näreoja
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Avlokita Tiwari
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 7A, P.O. Box 5400, FI-90014, Oulu, Finland
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections, and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|
22
|
Gao C, Wei M, McKitrick TR, McQuillan AM, Heimburg-Molinaro J, Cummings RD. Glycan Microarrays as Chemical Tools for Identifying Glycan Recognition by Immune Proteins. Front Chem 2019; 7:833. [PMID: 31921763 PMCID: PMC6923789 DOI: 10.3389/fchem.2019.00833] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Glycans and glycan binding proteins (GBPs or lectins) are essential components in almost every aspect of immunology. Investigations of the interactions between glycans and GBPs have greatly advanced our understanding of the molecular basis of these fundamental immunological processes. In order to better study the glycan-GBP interactions, microscope glass slide-based glycan microarrays were conceived and proved to be an incredibly useful and successful tool. A variety of methods have been developed to better present the glycans so that they mimic natural presentations. Breakthroughs in chemical biology approaches have also made available glycans with sophisticated structures that were considered practically impossible just a few decade ago. Glycan microarrays provide a wealth of valuable information in immunological studies. They allow for discovery of detailed glycan binding preferences or novel binding epitopes of known endogenous immune receptors, which can potentially lead to the discovery of natural ligands that carry the glycans. Glycan microarrays also serve as a platform to discover new GBPs that are vital to the process of infection and invasion by microorganisms. This review summarizes the construction strategies and the immunological applications of glycan microarrays, particularly focused on those with the most comprehensive sets of glycan structures. We also review new methods and technologies that have evolved. We believe that glycan microarrays will continue to benefit the growing research community with various interests in the field of immunology.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard D. Cummings
- Department of Surgery, National Center for Functional Glycomics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Chen C, Barbieri JT. When Escherichia coli doesn't fit the mold: A pertussis-like toxin with altered specificity. J Biol Chem 2017; 292:15159-15160. [PMID: 28887436 DOI: 10.1074/jbc.h117.796094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial toxins introduce protein modifications such as ADP-ribosylation to manipulate host cell signaling and physiology. Several general mechanisms for toxin function have been established, but the extent to which previously uncharacterized toxins utilize these mechanisms is unknown. A study of an Escherichia coli pertussis-like toxin demonstrates that this protein acts on a known toxin substrate but displays distinct and dual chemoselectivity, suggesting this E. coli pertussis-like toxin may serve as a unique tool to study G-protein signaling in eukaryotic cells.
Collapse
Affiliation(s)
- Chen Chen
- From the Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph T Barbieri
- From the Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|