1
|
Liu C, Zang K, Ma Q. Structural insight into ligand interactions of thymidylate synthase from white spot syndrome virus. Biochem Biophys Res Commun 2025; 759:151683. [PMID: 40138761 DOI: 10.1016/j.bbrc.2025.151683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
White spot syndrome virus (WSSV) is one of the deadliest crustacean pathogens, causing huge economic loss in global shrimp industry. WSSV encodes a thymidylate synthase (wTS) that is essential for DNA replication and viral proliferation, serving as a promising drug target against WSSV infections. To aid drug design, we solved wTS structures in complex with dUMP and dUMP/raltitrexed, at 2.28 Å and 1.43 Å resolutions, respectively. wTS forms a homodimer and each ligand-binding cavity is contributed by both monomers. In wTS-dUMP binary structure, the protein adopts an open conformation, with dUMP bound to the cavity through extensive hydrogen bonds and salt bridges. In wTS-dUMP-raltitrexed ternary structure, the protein exhibits a closed conformation; the TS inhibitor raltitrexed contacts intensively with the protein and dUMP via hydrogen bonding and hydrophobic interactions, resulting in the covalent bond formation between dUMP and the catalytic cysteine. Pairwise comparison of the structures of wTS and shrimp TS shows that they share similarity in the dUMP bound forms but differ significantly in the dUMP/raltitrexed bound forms: wTS presents a more tightly closed conformation than shrimp TS, showing more interactions with raltitrexed. As the ligand binding residues are conserved between the two proteins, the observed structural differences are supposed to originate from the variations in other vicinity residues. In sum, the comparative structural study on the homologous viral and host proteins would boost the opportunity to design wTS-specific inhibitors against WSSV infections.
Collapse
Affiliation(s)
- Changshui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Kun Zang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingjun Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
2
|
Tóth ZS, Leveles I, Nyíri K, Nagy GN, Harmat V, Jaroentomeechai T, Ozohanics O, Miller RL, Álvarez MB, Vértessy BG, Benedek A. The homodimerization domain of the Stl repressor is crucial for efficient inhibition of mycobacterial dUTPase. Sci Rep 2024; 14:27171. [PMID: 39511242 PMCID: PMC11544220 DOI: 10.1038/s41598-024-76349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The dUTPase is a key DNA repair enzyme in Mycobacterium tuberculosis, and it may serve as a novel promising anti-tuberculosis target. Stl repressor from Staphylococcus aureus was shown to bind to and inhibit dUTPases from various sources, and its expression in mycobacterial cells interfered with cell growth. To fine-tune and optimize Stl-induced inhibition of mycobacterial dUTPase, we aimed to decipher the molecular details of this interaction. Structural background of the complex between dUTPase and a truncated Stl lacking the repressor C-terminal homodimerization domain has been described, however, the effects of this truncation of Stl on enzyme binding and inhibition are still not known. Using several independent biophysical, structural and enzyme kinetic methods, here we show that lack of the repressor homodimerization domain strongly perturbs both enzyme binding and inhibition. We also investigated the role of a mycobacteria-specific loop in the Stl-interaction. Our results show that removal of this loop leads to a ten-fold increase in the apparent inhibition constant of Stl. We present a high-resolution three-dimensional structure of mycobacterial dUTPase lacking the genus-specific loop for structural insight. Our present data suggest that potent inhibition of mycobacterial dUTPase by Stl requires the wild-type full-length protein context.
Collapse
Affiliation(s)
- Zoé S Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Ibolya Leveles
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kinga Nyíri
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gergely N Nagy
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Protein Modelling Research Group, Hungarian Research Network, Budapest, Hungary
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Oliver Ozohanics
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Marina Ballesteros Álvarez
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
| | - András Benedek
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
3
|
Li J, Ma S, Yang R, Xu J, Wang Y, Ye S. Structural definition of pseudorabies virus dUTPase reveals a novel folding dimer in the herpesvirus family. Int J Biol Macromol 2024; 280:135696. [PMID: 39284464 DOI: 10.1016/j.ijbiomac.2024.135696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The pseudorabies virus (PRV) causes severe and fatal acute respiratory disease in pigs. During PRV proliferation, the enzyme deoxyuridine 5'-triphosphate nucleotide hydrolase (dUTPase) plays a pivotal role in maintaining a low dUTP/dTTP ratio, thereby ensuring the accuracy of viral DNA replication. However, its structure and catalytic mechanisms have not been fully elucidated. Here, we report the crystal structure of PRV dUTPase at a 2.24 Å resolution and demonstrate an unprecedented dimeric architecture, with a conserved enzyme activity center of the herpesvirus family. The enzyme activity center is located in a cavity between the two domains, forming a pocket for binding substrate dUMP and magnesium ions. Remarkably, the exquisite interface of the dimer is primarily composed of four antiparallel β-sheets, which form 11 hydrogen bonds between the residues P33-V36 and R242-A248 to maintain protein stability. To the best of our knowledge, this is the first report demonstrating that dUTPase exists as a dimer in the herpesvirus family. These findings not only present a novel fold dimeric structure but also deepen the scope of our comprehension of structural diversity in dUTPase family.
Collapse
Affiliation(s)
- Jiachen Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Sen Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Runze Yang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Jinrui Xu
- School of Life Sciences, Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Ningxia, China.
| | - Yaxin Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Liu W, He X, Zhu Y, Li Y, Wang Z, Li P, Pan J, Wang J, Chu B, Yang G, Zhang M, He Q, Li Y, Li W, Zhang C. Identification of a conserved G-quadruplex within the E165R of African swine fever virus (ASFV) as a potential antiviral target. J Biol Chem 2024; 300:107453. [PMID: 38852886 PMCID: PMC11261444 DOI: 10.1016/j.jbc.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.
Collapse
Affiliation(s)
- Wenhao Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Xinglin He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yance Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhihao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jiajia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Chao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
5
|
Comparative Transcriptome Analysis Reveals That WSSV IE1 Protein Plays a Crucial Role in DNA Replication Control. Int J Mol Sci 2022; 23:ijms23158176. [PMID: 35897756 PMCID: PMC9330391 DOI: 10.3390/ijms23158176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
For DNA viruses, the immediate-early (IE) proteins are generally essential regulators that manipulate the host machinery to support viral replication. Recently, IE1, an IE protein encoded by white spot syndrome virus (WSSV), has been demonstrated to function as a transcription factor. However, the target genes of IE1 during viral infection remain poorly understood. Here, we explored the host target genes of IE1 using RNAi coupled with transcriptome sequencing analysis. A total of 429 differentially expressed genes (DEGs) were identified from penaeid shrimp, of which 284 genes were upregulated and 145 genes were downregulated after IE1 knockdown. GO and KEGG pathway enrichment analysis revealed the identified DEGs are significantly enriched in the minichromosome maintenance (MCM) complex and DNA replication, indicating that IE1 plays a critical role in DNA replication control. In addition, it was found that Penaeus vannamei MCM complex genes were remarkably upregulated after WSSV infection, while RNAi-mediated knockdown of PvMCM2 reduced the expression of viral genes and viral loads at the early infection stage. Finally, we demonstrated that overexpression of IE1 promoted the expression of MCM complex genes as well as cellular DNA synthesis in insect High-Five cells. Collectively, our current data suggest that the WSSV IE1 protein is a viral effector that modulates the host DNA replication machinery for viral replication.
Collapse
|
6
|
Ariza ME, Cox B, Martinez B, Mena-Palomo I, Zarate GJ, Williams MV. Viral dUTPases: Modulators of Innate Immunity. Biomolecules 2022; 12:227. [PMID: 35204728 PMCID: PMC8961515 DOI: 10.3390/biom12020227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Most free-living organisms encode for a deoxyuridine triphosphate nucleotidohydrolase (dUTPase; EC 3.6.1.23). dUTPases represent a family of metalloenzymes that catalyze the hydrolysis of dUTP to dUMP and pyrophosphate, preventing dUTP from being incorporated into DNA by DNA polymerases, maintaining a low dUTP/dTTP pool ratio and providing a necessary precursor for dTTP biosynthesis. Thus, dUTPases are involved in maintaining genomic integrity by preventing the uracilation of DNA. Many DNA-containing viruses, which infect mammals also encode for a dUTPase. This review will summarize studies demonstrating that, in addition to their classical enzymatic activity, some dUTPases possess novel functions that modulate the host innate immune response.
Collapse
Affiliation(s)
- Maria Eugenia Ariza
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Brandon Cox
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Britney Martinez
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Irene Mena-Palomo
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Gloria Jeronimo Zarate
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Marshall Vance Williams
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| |
Collapse
|
7
|
Identification and Characterization of a Novel Epitope of ASFV-Encoded dUTPase by Monoclonal Antibodies. Viruses 2021; 13:v13112175. [PMID: 34834981 PMCID: PMC8620545 DOI: 10.3390/v13112175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) of African swine fever virus (ASFV) is an essential enzyme required for efficient virus replication. Previous crystallography data have indicated that dUTPase (E165R) may serve as a therapeutic target for inhibiting ASFV replication; however, the specificity of the targeting site(s) in ASFV dUTPase remains unclear. In this study, 19 mouse monoclonal antibodies (mAbs) were produced, in which four mAbs showed inhibitory reactivity against E165R recombinant protein. Epitope mapping studies indicated that E165R has three major antigenic regions: 100-120 aa, 120-140 aa, and 140-165 aa. Three mAbs inhibited the dUTPase activity of E165R by binding to the highly conserved 149-RGEGRFGSTG-158 amino acid sequence. Interestingly, 8F6 mAb specifically recognized ASFV dUTPase but not Sus scrofa dUTPase, which may be due to structural differences in the amino acids of F151, R153, and F154 in the motif V region. In summary, we developed anti-E165R-specific mAbs, and identified an important antibody-binding antigenic epitope in the motif V of ASFV dUTPase. Our study provides a comprehensive analysis of mAbs that target the antigenic epitope of ASFV dUTPase, which may contribute to the development of novel antibody-based ASFV therapeutics.
Collapse
|
8
|
Szabó JE, Nyíri K, Andrási D, Matejka J, Ozohanics O, Vértessy B. Redox status of cysteines does not alter functional properties of human dUTPase but the Y54C mutation involved in monogenic diabetes decreases protein stability. Sci Rep 2021; 11:19197. [PMID: 34584184 PMCID: PMC8478915 DOI: 10.1038/s41598-021-98790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Recently it was proposed that the redox status of cysteines acts as a redox switch to regulate both the oligomeric status and the activity of human dUTPase. In a separate report, a human dUTPase point mutation, resulting in a tyrosine to cysteine substitution (Y54C) was identified as the monogenic cause of a rare syndrome associated with diabetes and bone marrow failure. These issues prompt a critical investigation about the potential regulatory role of cysteines in the enzyme. Here we show on the one hand that independently of the redox status of wild-type cysteines, human dUTPase retains its characteristic trimeric assembly and its catalytic activity. On the other hand, the Y54C mutation did not compromise the substrate binding and the catalytic properties of the enzyme at room temperature. The thermal stability of the mutant protein was found to be decreased, which resulted in the loss of 67% of its activity after 90 min incubation at the physiological temperature in contrast to the wild-type enzyme. In addition, the presence or absence of reducing agents had no effect on hDUTY54C activity and stability, although it was confirmed that the introduced cysteine contains a solvent accessible thiol group.
Collapse
Affiliation(s)
- Judit Eszter Szabó
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Kinga Nyíri
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dániel Andrási
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit Matejka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Olivér Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Beáta Vértessy
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
9
|
Structural basis of staphylococcal Stl inhibition on a eukaryotic dUTPase. Int J Biol Macromol 2021; 184:821-830. [PMID: 34171258 DOI: 10.1016/j.ijbiomac.2021.06.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
dUTPases are key enzymes in all life kingdoms. A staphylococcal repressor protein (Stl) inhibited dUTPases from multiple species to various extents. Understanding the molecular basis underlying the inhibition differences is crucial to develop effective proteinaceous inhibitors of dUTPases. Herein, we report the complex structure of Stl N-terminal domain (StlN-ter) and Litopenaeus vannamei dUTPase domain (lvDUT65-210). Stl inhibited lvDUT65-210 through its N-terminal domain. The lvDUT65-210-StlN-ter complex structure revealed a heterohexamer encompassing three StlN-ter monomers bound to one lvDUT65-210 trimer, generating two types of Stl-dUTPase interfaces. Interface I is formed by Stl interaction with the lvDUT65-210 active-site region that is contributed by motifs I-IV from its two subunits; interface II results from Stl binding to the C-terminal motif V of the third lvDUT65-210 subunit. Structural comparison revealed both conserved features and obvious differences in Stl-dUTPase interaction patterns, giving clues about the inhibition differences of Stl on dUTPases. Noticeably, interface II is only observed in lvDUT65-210-StlN-ter. The Stl-interacting residues of lvDUT65-210 are conserved in other eukaryotic dUTPases, particularly human dUTPase. Altogether, our study presents the first structural model of Stl interaction with eukaryotic dUTPase, contributing to a more complete view of Stl inhibition and facilitating the development of proteinaceous inhibitor for eukaryotic dUTPases.
Collapse
|
10
|
Wang X, Ma Q. Wzb of Vibrio vulnificus represents a new group of low-molecular-weight protein tyrosine phosphatases with a unique insertion in the W-loop. J Biol Chem 2021; 296:100280. [PMID: 33450227 PMCID: PMC7948962 DOI: 10.1016/j.jbc.2021.100280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Protein tyrosine phosphorylation regulates the production of capsular polysaccharide, an essential virulence factor of the deadly pathogen Vibrio vulnificus. The process requires the protein tyrosine kinase Wzc and its cognate phosphatase Wzb, both of which are largely uncharacterized. Herein, we report the structures of Wzb of V. vulnificus (VvWzb) in free and ligand-bound forms. VvWzb belongs to the low-molecular-weight protein tyrosine phosphatase (LMWPTP) family. Interestingly, it contains an extra four-residue insertion in the W-loop, distinct from all known LMWPTPs. The W-loop of VvWzb protrudes from the protein body in the free structure, but undergoes significant conformational changes to fold toward the active site upon ligand binding. Deleting the four-residue insertion from the W-loop severely impaired the enzymatic activity of VvWzb, indicating its importance for optimal catalysis. However, mutating individual residues or even substituting the whole insertion with four alanine residues only modestly decreased the enzymatic activity, suggesting that the contribution of the insertion to catalysis is not determined by the sequence specificity. Furthermore, inserting the four residues into Escherichia coli Wzb at the corresponding position enhanced its activity as well, indicating that the four-residue insertion in the W-loop can act as a general activity enhancing element for other LMWPTPs. The novel W-loop type and phylogenetic analysis suggested that VvWzb and its homologs should be classified into a new group of LMWPTPs. Our study sheds new insight into the catalytic mechanism and structural diversity of the LMWPTP family and promotes the understanding of the protein tyrosine phosphorylation system in prokaryotes.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
11
|
Li P, Liu C, Li B, Ma Q. Structural analysis of the CARB β-lactamase from Vibrio parahaemolyticus facilitates application of the β-lactam/β-lactamase inhibitor therapy. Biochimie 2020; 171-172:213-222. [DOI: 10.1016/j.biochi.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
|
12
|
Structural Insight into African Swine Fever Virus dUTPase Reveals a Novel Folding Pattern in the dUTPase Family. J Virol 2020; 94:JVI.01698-19. [PMID: 31748385 DOI: 10.1128/jvi.01698-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
The African swine fever virus (ASFV) is the deadly pathogen of African swine fever (ASF) that induces high mortality, approaching 100% in domestic pigs, causes enormous losses to the global pig industry, and threatens food security. Currently, there is no effective treatment or preventive countermeasure. dUTPases (deoxyuridine 5'-triphosphate pyrophosphatases) are ubiquitous enzymes that are essential for the hydrolysis of dUTP and prevent the misincorporation of dUTP into newly synthesized DNA. Here, we present the crystal structures of the ASFV dUTPase in complex with the product dUMP and cofactor Mg2+ at a resolution of 2.2 Å. We observed that a unique "turning point" at G125 plays an unexpected critical role in the swapping region of the C-terminal segment, which is further stabilized by the interactions of the last C-terminal β strand with the β1 and β2 strands, thereby positioning the catalytic motif 5 into the active site of its own subunit instead of into a third subunit. Therefore, the ASFV dUTPase employs a novel two-subunit active site that is different than the classic trimeric dUTPase active site, which is composed of all three subunits. Meanwhile, further results confirmed that the configuration of motifs 1 to 5 has high structural homology with and a catalytic mechanism similar to that of the known trimeric dUTPases. In general, our study expands the information not only on the structural diversity of the conserved dUTPase family but also on the details needed to utilize this dUTPase as a novel target in the treatment of ASF.IMPORTANCE African swine fever virus (AFSV), a large enveloped double-stranded DNA virus, causes a deadly infection in domestic pigs. In addition to Africa, Europe, and South America, countries in Asia, such as China, Vietnam, and Mongolia, have suffered the hazards posed by ASFV outbreaks in recent years. Until now, there has been no vaccine for protection from ASFV infection or effective treatments to cure ASF. Here, we solved the crystal structure of the ASFV dUTPase-dUMP-Mg2+ complex. The ASFV dUTPase displays a noncanonical folding pattern that differs from that of the classic homotrimeric dUTPase, in which the active site is composed of two subunits. In addition, several nonconserved residues within the 3-fold axis channel play a vital role in ASFV dUTPase homotrimer stability. Our finding on these unique structural features of the ASFV dUTPase could be explored for the design of potential specific inhibitors that target this unique enzyme.
Collapse
|